
The WS-Resource Framework 1

The WS-Resource Framework
Version 1.0

03/05/2004

Authors

Karl Czajkowski (Globus Alliance / USC Information Sciences Institute)

Donald F Ferguson (IBM)

Ian Foster (Globus Alliance / Argonne National Laboratory)

Jeffrey Frey (IBM)

Steve Graham (IBM)

Igor Sedukhin (Computer Associates International)

David Snelling (Fujitsu Laboratories of Europe)

Steve Tuecke (Globus Alliance / Argonne National Laboratory)

William Vambenepe (Hewlett-Packard)

Abstract
The WS-Resource construct has been proposed as a means of expressing the
relationship between stateful resources and Web services. We introduce here the
WS-Resource framework, a set of proposed Web services specifications that define a
rendering of the WS-Resource approach in terms of specific message exchanges and
related XML definitions. These specifications allow the programmer to declare and
implement the association between a Web service and one or more stateful
resources. They describe the means by which a view of the state of the resource is
defined and associated with a Web services description, forming the overall type
definition of a WS-Resource. They also describe how the state of a WS-Resource is
made accessible through a Web service interface, and define related mechanisms
concerned with WS-Resource grouping and addressing. This paper provides an
architectural overview of the WS-Resource framework. It motivates, introduces, and
summarizes the interrelationships among five separate specification documents that
provide the normative definition of the framework: WS-ResourceProperties, WS-
ResourceLifetime, WS-RenewableReferences, WS-ServiceGroup, and WS-BaseFaults.
We also describe how the WS-Resource framework can support the WS-Notification
family of specifications for asynchronous notification.

Status
This whitepaper is an initial draft release and is provided for review and evaluation
only. The authors hope to solicit your contributions and suggestions in the near
future. The authors make no warrantees or representations regarding the
specifications in any manner whatsoever.

The WS-Resource Framework 2

Copyright Notice

© Copyright Computer Associates International, Inc., Fujitsu Limited, Hewlett-
Packard Development Company, International Business Machines Corporation and
The University of Chicago 2003, 2004. All Rights Reserved.

Permission to copy and display this “The WS-Resource Framework” whitepaper (“this
Whitepaper"), in any medium without fee or royalty is hereby granted, provided that
you include the following on ALL copies of this Whitepaper, or portions thereof that
you make:

1. A link or URL to this Whitepaper at this location.

2. This Copyright Notice as shown in this Whitepaper.

THIS WHITEPAPER IS PROVIDED "AS IS," AND COMPUTER ASSOCIATES
INTERNATIONAL, FUJITSU LIMITED, IBM, THE HEWLETT-PACKARD DEVELOPMENT
COMPANY AND THE UNIVERSITY OF CHICAGO (COLLECTIVELY, THE “COMPANIES”)
MAKE NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED, INCLUDING,
BUT NOT LIMITED TO, WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, NON-INFRINGEMENT OR TITLE; THAT THE CONTENTS OF
THIS WHITEPAPER ARE SUITABLE FOR ANY PURPOSE; NOR THAT THE
IMPLEMENTATION OF SUCH CONTENTS WILL NOT INFRINGE ANY THIRD PARTY
PATENTS, COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS.

THE COMPANIES WILL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL,
INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF OR RELATING TO ANY
USE OR DISTRIBUTION OF THIS WHITEPAPER.

The names and trademarks of the Companies may NOT be used in any manner,
including advertising or publicity pertaining to this Whitepaper or its contents,
without specific, written prior permission. Title to copyright in this Whitepaper will at
all times remain with the Companies.

No other rights are granted by implication, estoppel or otherwise.

PORTIONS OF THIS MATERIAL WERE PREPARED AS AN ACCOUNT OF WORK
SPONSORED BY IBM CORPORATION AT UNIVERSITY OF CHICAGO'S ARGONNE
NATIONAL LABORATORY. NEITHER THE AUTHORS, NOR THE UNITED STATES
GOVERNMENT OR ANY AGENCY THEREOF, NOR THE UNIVERSITY OF CHICAGO, NOR
IBM, NOR ANY OF THEIR EMPLOYEES OR OFFICERS, NOR ANY OTHER COPYRIGHT
HOLDERS OR CONTRIBUTORS, MAKES ANY WARRANTY, EXPRESS OR IMPLIED, OR
ASSUMES ANY LEGAL LIABILITY OR RESPONSIBILITY FOR THE ACCURACY,
COMPLETENESS, OR USEFULNESS OF ANY INFORMATION, APPARATUS, PRODUCT,
OR PROCESS DISCLOSED, OR REPRESENTS THAT ITS USE WOULD NOT INFRINGE
PRIVATELY OWNED RIGHTS. REFERENCE HEREIN TO ANY SPECIFIC COMMERCIAL
PRODUCT, PROCESS, OR SERVICE BY TRADE NAME, TRADEMARK, MANUFACTURER,

The WS-Resource Framework 3

OR OTHERWISE, DOES NOT NECESSARILY CONSTITUTE OR IMPLY ITS
ENDORSEMENT, RECOMMENDATION, OR FAVORING BY IBM, THE UNITED STATES
GOVERNMENT OR ANY AGENCY THEREOF OR ANY OTHER COPYRIGHT HOLDERS OR
CONTRIBUTORS. THE VIEW AND OPINIONS OF AUTHORS EXPRESSED HEREIN DO
NOT NECESSARILY STATE OR REFLECT THOSE OF IBM, THE UNITED STATES
GOVERNMENT OR ANY AGENCY THEREOF, OR THE ENTITY BY WHICH AN AUTHOR
MAY BE EMPLOYED.

This manuscript has been created in part by the University of Chicago as Operator of
Argonne National Laboratory ("Argonne") under Contract No. W-31-109-ENG-38 with
the U.S. Department of Energy. The U.S. Government retains for itself, and others
acting on its behalf, a paid-up, nonexclusive, irrevocable worldwide license in said
article to reproduce, prepare derivative works, distribute copies to the public, and
perform publicly and display publicly, by or on behalf of the Government.

The WS-Resource Framework 4

Table of Contents
1 Introduction... 5
2 WS-Resource and Implied Resource Pattern ... 6
3 WS-Resource Lifecycle and Identity... 7

3.1 The WS-Resource Factory Pattern ... 7
3.2 WS-Resource Identity.. 8
3.3 WS-Resource Destruction... 9

3.3.1 Immediate Destruction ... 9
3.3.2 Scheduled Destruction...10

4 WS-Resource Properties ...10
4.1 WS-Resource Properties Document...11
4.2 WS-Resource Property Composition..12
4.3 Accessing WS-Resource Property Values ...13

5 Renewable References..14
6 Service Groups..15
7 Base Faults...15
8 Notification ...15
9 Conclusions ..16
10 Acknowledgements..16
11 References ...17

The WS-Resource Framework 5

1 Introduction
Web service interfaces frequently provide a user with the ability to access and
manipulate state, i.e., data values that persist across, and evolve as a result of, Web
service interactions. In other words, the message exchanges that Web services
implement are frequently intended to enable access to stateful resources. However,
the notion of stateful resources acted upon by the Web service implementation is not
explicit in the interface definition. The messages that the services send and receive
imply (or encourage programmers to infer) the existence of an associated stateful
resource type.

It is desirable to define Web service conventions to enable the discovery of,
introspection on, and interaction with stateful resources in standard and
interoperable ways. Most importantly, such an approach improves the robustness of
design-time selection of services during application assembly and runtime binding to
specific stateful resource instances.

These observations motivated the proposed WS-Resource approach to modeling
state in a Web services context [WS-Resource]. A WS-Resource is defined as the
composition of a Web service and a stateful resource that is (i) expressed as an
association of an XML document with defined type with a Web services portType, and
(ii) addressed and accessed according to the implied resource pattern, a
conventional use of WS-Addressing endpoint references. In the implied resource
pattern, a stateful resource identifier is encapsulated in an endpoint reference and
used to identify the stateful resource to be used in the execution of a Web service
message exchange. The WS-Resource framework allows WS-Resources to be
declared, created, accessed, monitored for change, and destroyed via conventional
Web services mechanisms, but does not require that the Web service component of
the WS-Resource that provides access to the associated stateful resources be
implemented as a stateful message processor.

In this paper, we introduce the WS-Resource framework, a set of five technical
specifications that define the normative description of the WS-Resource approach in
terms of specific Web services message exchanges and related XML definitions.
These technical specifications, summarized in Table 1, define the means by which:

• a WS-Resource can be destroyed, either synchronously with respect to a
destroy request or through a mechanism offering time-based (scheduled)
destruction, and specified resource properties [WS-ResourceProperties] may
be used to inspect and monitor the lifetime of a WS-Resource (WS-
ResourceLifetime);

• the type definition of a WS-Resource can be composed from the interface
description of a Web service and an XML resource properties document, and
the WS-Resource’s state can be queried and modified via Web services
message exchanges (WS-ResourceProperties);

• a Web service endpoint reference (WS-Addressing) can be renewed in the
event the addressing or policy information contained within it becomes invalid
or stale (WS-RenewableReferences);

• heterogeneous by-reference collections of Web services can be defined,
whether or not the services are WS-Resources (WS-ServiceGroups); and

The WS-Resource Framework 6

• fault reporting can be made more standardized through use of an XML
Schema type for base faults and rules for how this base fault type is used and
extended by Web services (WS-BaseFaults).

In the rest of this paper, we first introduce the WS-Resource construct and the
implied resource pattern, and then summarize each of the five WS-Resource
framework technical specifications in turn. We also discuss how an publish/subscribe
(pub/sub) notification mechanism (WS-Notification) can be built on top of the WS-
Resource framework, by creating subscriptions to state changes within the WS-
Resource to monitor and report on resource property changes.

The WS-Resource framework is inspired by the work of the Global Grid Forum’s Open
Grid Services Infrastructure (OGSI) Working Group [Physiology, OGSI-Spec]. Indeed,
it can be viewed as a straightforward refactoring of the concepts and interfaces
developed in the OGSI V1.0 specification in a manner that exploits recent
developments in Web services architecture (e.g., WS-Addressing). We discuss the
relationship between the WS-Resource framework and OGSI elsewhere [OGSI-
Refactor].

Table 1: The WS-Resource Framework is defined by five normative
specifications, each described in a section of this paper.

Name Describes Section

WS-ResourceLifetime Mechanisms for WS-Resource destruction,
including message exchanges that allow a
requestor to destroy a WS-Resource, either
immediately or by using a time-based
scheduled resource termination mechanism.

3

WS-ResourceProperties Definition of a WS-Resource, and mechanisms
for retrieving, changing, and deleting WS-
Resource properties.

4

WS-
RenewableReferences

A conventional decoration of a WS-Addressing
endpoint reference with policy information
needed to retrieve an updated version of an
endpoint reference when it becomes invalid.

5

WS-ServiceGroup An interface to heterogeneous by-reference
collections of Web services.

6

WS-BaseFaults A base fault XML type for use when returning
faults in a Web services message exchange.

7

2 WS-Resource and Implied Resource Pattern
The WS-Resource definition codifies the relationship between Web services and
stateful resources in terms of the implied resource pattern, a set of conventions on
Web services technologies, particularly XML, WSDL, and WS-Addressing [WS-
Addressing]. These conventions allow the state of a resource that participates in the

The WS-Resource Framework 7

implied resource pattern to be defined and associated with the description of a Web
service interface. The state of a resource is defined in terms of a resource properties
document. We summarize these conventions here; more details are provided
elsewhere [WS-Resource]. We use the term WS-Resource to describe this pairing of
a Web service and a resource properties document.

WS-Addressing standardizes the endpoint reference construct used to represent the
address of a Web service deployed at a given network endpoint. An endpoint
reference may contain, in addition to the endpoint address of the Web service, other
metadata associated with the Web service such as service description information
and reference properties, which help to further qualify the use of the Web service
address. The reference properties of the endpoint reference play an important role in
the implied resource pattern.

The implied resource pattern defines a conventional use of WS-Addressing in which a
stateful resource is treated as an implied input for the processing of message
exchanges implemented by a Web service.

An endpoint reference that is described as following the implied resource pattern
may include a ReferenceProperties child element that identifies the stateful resource
to be used in the execution of all message exchanges performed using this
EndpointReference. This type of endpoint reference is referred to as a WS-Resource-
qualified endpoint reference. A request message directed to a Web service
designated by a WS-Resource-qualified endpoint reference must include the
ReferenceProperties information from the endpoint reference, as specified by WS-
Addressing.

Thus, the WS-Resource framework uses a WS-Resource-qualified endpoint reference
to represent a “network-wide pointer” to a WS-Resource. A WS-Resource-qualified
endpoint reference may be returned as a result of a Web service message request to
a factory to create a new WS-Resource or, alternatively, from the evaluation of a
search query on a service registry, or as a result of some application-specific Web
service request.

3 WS-Resource Lifecycle and Identity
The WS-ResourceLifetime specification addresses three important aspects of the WS-
Resource lifecycle, namely creation, identity, and destruction.

3.1 The WS-Resource Factory Pattern
The WS-Resource framework does not attempt to define the message exchanges
used to request creation of new WS-Resources. Instead, it simply notes that new
WS-Resources may be created by some out-of-band mechanism, or through the use
of a use pattern for Web services that the WS-ResourceLifetime specification calls a
WS-Resource factory. (The Factory Pattern is a commonly used creational pattern
[Design Patterns].) A WS-Resource factory is any Web service capable of bringing
one or more WS-Resources into existence. The response message of a WS-Resource
factory operation typically contains at least one endpoint reference that refers to the
new WS-Resource, though a factory may convey the reference to the new WS-
Resource through other means such as placing the WS-Resource-qualified endpoint
reference(s) into a registry for later retrieval.

The WS-Resource Framework 8

Note that there may be many types of Web services (e.g., resource registries) that
return WS-Resource-qualified endpoint references in their response messages.
However, a message exchange is only considered a WS-Resource factory operation if
it results in the actual creation of the WS-Resource referred to in the returned WS-
Resource-qualified endpoint reference.

3.2 WS-Resource Identity
We describe and contrast the role and use of WS-Resource identity from the
perspectives of (i) the WS-Resource implementation, and (ii) a service requestor to
whom an endpoint reference to a WS-Resource is provided.

Recall that, as stated in Section Error! Reference source not found., the stateful
resource component of a WS-Resource is identified through the use of a stateful
resource identifier carried in the reference properties component of an endpoint
reference. The form and contents of the stateful resource identifier carried in the
reference properties is completely encapsulated within the WS-Resource
implementation.

The Web service component of a WS-Resource can construct an address for the WS-
Resource by including an identifier of the stateful resource in the reference
properties component of a WS-Addressing endpoint reference. That endpoint
reference is then said to be WS-Resource-qualified. The WS-Resource-qualified
endpoint reference can then be made available to other entities in a distributed
system, which can subsequently use that endpoint reference to direct requests to the
WS-Resource. Logically, these requests “flow” through the Web service component of
the WS-Resource, which understands the content of the implementation-dependent
stateful resource identifier encapsulated in the WS-Address endpoint reference. Part
of the WS-Address endpoint reference identifies the service, which in turn uses the
reference properties to identify the stateful resource to be used in message
execution.

In contrast, a service requestor that obtains access to a WS-Resource-qualified
endpoint reference should not examine or attempt to interpret the contents of the
reference properties that represent the stateful resource identifier. Even an attempt
by the service requestor to compare two stateful resource identifiers is considered
invalid. From the perspective of the service requestor, the content of the reference
properties component of a WS-Resource’s endpoint reference is opaque.

So how would a service requestor reason about the identity of a stateful resource
component of a WS-Resource? The short answer is that the semantic meaning of the
identity of the stateful resource component of a WS-Resource, and the means by
which it is defined and exposed to a service requestor, is WS-Resource
implementation dependent. At the current time, there are no adopted Web service
specifications that provide for the definition of stateful resource identity. Nor is there
any definition of the means by which the identity of a stateful resource is obtained by
a service requestor.

Whether or not the identity of a stateful resource component of a WS-Resource is
exposed to a service requestor is WS-Resource design dependent. However, we
believe many WS-Resources will provide the ability to retrieve the identity. The
identity should be a portable, namespace-scoped value. Portability is important as it
allows one application to pass the identity to another. Namespace scoping is

The WS-Resource Framework 9

important as it allows for disambiguation of multiple identities that may originate
from different sources.

A Web service requestor that receives a WS-Addressing endpoint reference may pass
that endpoint reference to other services, with the assurance that the receiver may
invoke operations involving the WS-Resource instance. This is fundamental to WS-
Addressing.

We envision that a common approach for exposing the identity of the stateful
resource component of a WS-Resource will be to treat the identity as one or more
resource properties expressed in the WS-Resource properties document. This
approach would allow a service requestor to direct a query against the document,
targeting the properties understood to represent the identity of the stateful resource.
If the identity is exposed as one or more resource properties, the WS-Resource
should ensure read-only access to those properties. Typically, it would be invalid to
allow a service requestor to change the identity of a stateful resource.

As another option, the WS-Resource may implement application-specific message
exchanges intended to provide access to the identity of the stateful resource
component. We anticipate that many applications will recognize the need to
introduce message exchanges related to stateful resource identity. Some such
exchanges may provide for retrieving identity, and some may provide comparison
and equality checks.

3.3 WS-Resource Destruction
A requestor that asks a WS-Resource factory to create a new WS-Resource will
typically only be interested in that new WS-Resource for some finite period. After
that time, it should be possible to destroy the WS-Resource so that its associated
system or application resources can be reclaimed. The WS-Resource framework
standardizes two lifetime management approaches for the destruction of a WS-
Resource: immediate and scheduled destruction.

3.3.1 Immediate Destruction

In many scenarios, it is appropriate for applications making use of a WS-Resource to
request that it be destroyed immediately. A service requestor that wishes to destroy
a WS-Resource immediately must use the appropriate WS-Resource-qualified
endpoint reference to send a destroy request message to the WS-Resource identified
by the endpoint reference. The stateful resource identifier within the endpoint
reference is used to identify the stateful resource component to be destroyed. Note
that the destruction of the stateful resource component of a WS-Resource effectively
destroys the WS-Resource. The immediate destroy message exchange is defined in
the WS-ResourceLifetime specification [WS-ResourceLifetime].

The receipt of the response to the destroy request message represents a point of
synchronism between the service requestor and the WS-Resource receiving the
destroy request message. Upon receipt of the response message, any further
attempted message exchanges with the WS-Resource must result in an Unknown
Resource fault message, absent any other fault conditions that may take precedence.

The WS-Resource Framework 10

3.3.2 Scheduled Destruction

A requestor may be unwilling to destroy a WS-Resource immediately and
synchronously, or indeed may be unable to do so in a distributed computing
environment, because the requestor has become disconnected from the service
provider’s endpoint. Thus, in addition to the ability to destroy a WS-Resource
immediately, we define the means by which a WS-Resource may be scheduled for
termination at a future time. Using a WS-Resource-qualified endpoint reference, a
service requestor may first establish and subsequently renew the scheduled
termination time of the WS-Resource. When that time expires, the WS-Resource may
self destruct without the need for a synchronous destroy request from a service
requestor. A requestor may periodically update the scheduled termination time
(subject to policy) to adjust the lifetime of the WS-Resource. The WS-
ResourceLifetime specification [WS-ResourceLifetime] defines a standard message
exchange by which a service requestor can initially establish and subsequently
change the scheduled termination time of a WS-Resource, and defines a means to
determine the current scheduled termination time of a WS-Resource.

A WS-Resource factory may support the ability to negotiate an initial WS-Resource
scheduled termination time when a WS-Resource is created. Subsequently,
authorized service requestors may use the WS-Resource-qualified endpoint reference
to request that this scheduled termination time be changed, by sending the request
message to the WS-Resource. If the WS-Resource’s termination time is reached, it
may be destroyed and any associated system resources may be reclaimed.

A WS-Resource’s termination time may change non-monotonically. That is, a service
requestor may request a termination time that is earlier than termination time
already associated with the WS-Resource. If the requested termination time
represents a time prior to the current time, as known by the WS-Resource
implementation, the request must be interpreted as a request for immediate, but not
synchronous, destruction of the WS-Resource.

4 WS-Resource Properties
The WS-ResourceProperties specification defines the type and values of those
components of a WS-Resource’s state that can be viewed and modified by service
requestors through a Web services interface. The key ideas are as follows.

• The WS-Resource has an XML resource property document defined using XML
schema.

• Service requestors may determine a WS-Resource’s type by retrieving the
WSDL portType definition by standard means.

• Service requestors may use Web services message exchanges to read, modify,
and query the XML document representing the WS-Resource’s state.

We use the term resource property to refer to an individual component of a WS-
Resource’s state. We call the XML document describing the type of a stateful
resource component of a WS-Resource a WS-Resource properties document. Each
resource property is represented as an XML element within the WS-Resource
properties document.

The use of XML is logical. The underlying state may be in any or multiple formats,
and in a single or multiple locations.

The WS-Resource Framework 11

4.1 WS-Resource Properties Document
The WS-Resource properties document acts as a view on, or projection of, the actual
state of the WS-Resource. The document serves to define the structure upon which
service-requestor-initiated query and update messages can be directed. Any
operation that manipulates a resource property via the WS-Resource properties
document must be reflected in the actual implementation of the WS-Resource’s state.

The WS-Resource properties document is described using XML Schema. Specifically,
the WS-Resource properties document is expressed as an XML global element
declaration (GED) in some XML namespace, comprising a set of references to XML
GEDs of the individual resource properties. For example, consider a stateful resource
named “C.” If the state of “C” comprises three resource property components,
named p1, p2, and p3, then its resource properties document, named
“ExampleResourceProperties,” might be defined as follows.

<xs:schema
 targetNamespace="http://example.com/ResourcePropertiesExample"
 xmlns:tns="http://example.com/ResourcePropertiesExample"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
…
... >

 <xs:element name="p1" type= … />
 <xs:element name="p2" type= …/>
 <xs:element name="p3" type= … />

 <xs:element name="ExampleResourceProperties">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="tns:p1" />
 <xs:element ref="tns:p2" />
 <xs:element ref="tns:p3" />
 </xs:sequence>
 </xs:complexType>
 </xs:element>
…
</xs:schema>

Service requestors may obtain and examine this XML schema definition of the WS-
Resource properties document, which represents the type of stateful resource “C,” by
various means, including message exchanges defined by WS-MetaDataExchange
[WS-MetaDataExchange].

But how did the service requestor know that the GED named
“ExampleResourceProperties” defines the resource properties document of the WS-
Resource? The resource properties document declaration for the WS-Resource occurs
in the WSDL portType definition of the Web service component of the WS-Resource.
The WS-Resource properties document declaration is associated with the WSDL
portType definition via the use of the ResourceProperties attribute, as in the
following example.

<wsdl:definitions
 targetNamespace="http://example.com/ResourcePropertiesExample"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"

The WS-Resource Framework 12

 xmlns:wsrp=
 "http://www.ibm.com/xmlns/stdwip/web-services/ws-resourceProperties"
 xmlns:tns="http://example.com/ResourcePropertiesExample"
…>
…
 <wsdl:types>
 <xs:schema>
 <xs:import
 namespace="http://example.com/ResourcePropertiesExample"
 schemaLocation="…"/>
 </xs:schema>
 </wsdl:types>
…

 <wsdl:portType name="SomePortTypeName"
 wsrp:ResourceProperties="tns:ExampleResourceProperties" >
 <operation name="…
…
 </wsdl:portType>
…
</wsdl:definitions>

This association between the portType and resource properties document effectively
defines the type of the WS-Resource.

4.2 WS-Resource Property Composition
The Web service interfaces associated with the various specifications related to WS-
Resource have been designed to be composable. In WSDL 1.1, the designer of a Web
service interface composes the interface by a copy-and-paste of the operations
defined in the constituent portTypes used in the composition. For example, the
operations defined in an example portType “foo” can be combined with the
operations defined in various standards and specifications to yield a final, complete
set of message exchanges to be implemented by a Web service.

In addition to operation composition, the designer may also aggregate the WS-
Resource properties defined in the WS-Resource properties documents of the various
constituent portTypes to yield the final, complete WS-Resource property document
declared with the final composed portType. The designer may use any approach to
XML document composition to define the final document. Examples include extension
and aggregation.

This WS-Resource properties document composition may be accomplished by adding
(aggregating) additional XML element declarations, using the xs:ref attribute, as
demonstrated in the following example.

 <xs:element name="ExampleResourceProperties">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="tns:p1" />
 <xs:element ref="tns:p2" />
 <xs:element ref="tns:p3" />

 <xs:element ref="xxxx:SomeAdditionalResourceProperty"
 xmlns:xxxx= … />

The WS-Resource Framework 13

 </xs:sequence>
 </xs:complexType>
 </xs:element>

This WS-Resource properties document was constructed by combining the resource
property elements of the WS-Resource properties document for stateful resource “C”
with a resource property element (SomeAdditionalResourceProperty) defined in some
other namespace.

4.3 Accessing WS-Resource Property Values
The state of a WS-Resource, i.e., the values of resource properties exposed in the
WS-Resource’s resource properties document, can be read, modified, and queried by
using standard Web services messages. These message exchanges are defined in the
WS-ResourceProperties specification and should be included as WSDL operations in
any portType that uses the wsrp:ResourceProperties attribute to declare a WS-
Resource properties document. We describe these operations briefly here; the WS-
ResourceProperties specification provides more details [WS-ResourceProperties].

The base functionality is to retrieve the value of a single resource property using a
simple Web services request/response message exchange, identifying the WS-
Resource using a WS-Resource-qualified endpoint reference as described previously
and identifying the resource property by qualified name of its GED. A slightly more
sophisticated variant of this retrieval function allows the retrieval of the value of
multiple resource properties with a single request/response message exchange.

These functions are encoded in the WS-ResourceProperties operation “get,” which
allows the requestor to retrieve the value of one or more WS-Resource properties as
specified in the get request message, as follows.

 <wsrp:GetMultipleResourceProperties>
 <wsrp:ResourceProperty>QName <wsrp:ResourceProperty>+
 </wsrp:GetMultipleResourceProperties>

The response to this message is a sequence of XML elements, corresponding to the
values of the WS-Resource properties identified by the QNames specified in the
request message.

For example, the following message represents a request to retrieve the value of the
property “p1” from a stateful resource such as “C.”

<soap:Envelope>
 <soap:Header>
 <tns:resourceID> C </tns:resourceID>
 </soap:Header>
 <soap:Body>
 <wsrp:GetMultipleResourceProperty>
 <wsrp:ResourceProperty>tns:p1</wsrp:ResourceProperty>
 </wsrp:GetMultipleResourceProperty>
 </soap:Body>
</soap:Envelope>

Remember that the endpoint reference used to designate the target of this request
message contains an identifier in the ReferenceProperties component that identifies
the stateful resource named “C.” This identifier information is carried in the SOAP
header element in the example, which is the standard encoding for WS-Addressing
endpoint reference ReferenceProperties.

The WS-Resource Framework 14

The WS-Resource would respond with a message containing the values of the WS-
Resource property named p1 as follows.

<soap:Envelope>
 <soap:Body>
 <wsrp:GetMultipleResourcePropertyResponse>
 <p1>xyz</p1>
 </wsrp:GetMultipleResourcePropertyResponse>
 </soap:Body>
</soap:Envelope>

The WS-ResourceProperties specification also defines a “set” operation that allows
the values of WS-Resource properties to be inserted, updated, and deleted. The
following is a brief pseudo-syntax for the “set” request message.

 <wsrp:SetResourceProperties>
 {
 <wsrp:Insert >
 {any}*
 </wsrp:Insert> |

 <wsrp:Update >
 {any}*
 </wsrp:Update> |

 <wsrp:Delete ResourceProperty=”QName” />
 }+
 </wsrp:SetResourceProperties>

A fourth operation defined in the WS-ResourceProperties specification allows the
service requestor to execute an arbitrary query expression (such as an XPath 1.0
query expression) against a WS-Resource property document. Various query
expression types may be used, for example, to support resource discovery based on
the current values of a WS-Resource’s state.

Finally, the WS-ResourceProperties specification also defines the means by which a
service requestor can subscribe for notifications of value changes in the resource
properties of a WS-Resource. This is done by defining a particular use of the
capabilities defined in the WS-Notification family of specifications [WS-Notification].

5 Renewable References
The WS-RenewableReferences work must define mechanisms that can be used to
renew an endpoint reference that has become invalid. These mechanisms can be
applied to any endpoint reference, but are particularly useful in the case of an
endpoint reference that refers to a WS-Resource, as it can provide a persistent and
stable reference to the WS-Resource that can allow the same state to be accessed
repeatedly over time.

A WS-Addressing endpoint reference may contain not only addressing but also policy
information concerning interactions with the service. Typically, endpoint references
are constructed by an authoritative source of the addressing and policy information.
An endpoint reference made available to a client represents a copy of that
information that may, at some point, become incoherent due to changes introduced
by the authoritative source that effects the endpoint location and/or the policy

The WS-Resource Framework 15

assertions governing message exchanges with the Web service. In such situations, it
becomes important to be able to renew the endpoint reference.

WS-RenewableReferences should define a specific WS-Policy assertion for the
purpose of decorating endpoint references with information necessary to retrieve a
new endpoint reference in the event the reference becomes invalid.

6 Service Groups
The WS-ServiceGroup specification must define a means of representing and
managing heterogeneous by-reference collections of Web services. This specification
can be used to organize collections of WS-Resources, for example to build registries,
or to build services that can perform collective operations on a collection of WS-
Resources.

The ServiceGroup specification can express ServiceGroup membership rules,
membership constraints, and classifications using the resource property model from
WS-ResourceProperties. Groups can be defined as a collection of members that meet
the constraints of the group as expressed through resource properties. The
ServiceGroup specification should also define interfaces for managing the
membership of a ServiceGroup.

The interfaces defined by WS-ServiceGroup are expected to be composed with other
Web services interfaces, which define more specialized interaction with the service
group and/or with the services that are members of the ServiceGroup. For example,
specialized interfaces may other means of querying the contents of the ServiceGroup,
and for performing collective operations across members of the ServiceGroup.

7 Base Faults
The WS-BaseFaults specification must define a base fault type for use when
returning faults in a Web services message exchange. While there is nothing specific
to WS-Resources in this specification, it is nonetheless used by all of the other WS-
Resource framework specifications to bring consistency to the faults returned by the
operations in these specifications, including consistent reporting of faults relating to
WS-Resource definition and use.

8 Notification
A separate family of specifications, called WS-Notification, defines a general, topic-
based Web service system for publish and subscribe (pub/sub) interactions that
builds on the WS-Resource framework. The basic approach taken is to define
mechanisms and interfaces that allow clients to subscribe to topics of interest, such
as resource property value changes for a WS-Resource. From the perspective of WS-
Notification, the WS-Resource framework thus provides useful building blocks for
representing and structuring notifications. From the perspective of the WS-Resource
framework, the WS-Notification family of specifications extends the utility of WS-
Resources by allowing requestors to ask to be asynchronously notified of changes to
resource property values.

One WS-Notification specification, WS-BaseNotification, describes the basic roles,
concepts, and patterns required to allow a subscriber to register interest in receiving

The WS-Resource Framework 16

notification messages from a notification producer. An notification can concern
anything, a change in the value of a resource property, some other internal change
in the state of the notification producer, or some other “situation” within the
environment. A subscriber registers interest in receiving notification messages on
one or more topics by issuing a “subscribe” message. In response, the subscriber
receives a WS-Resource-qualified endpoint reference to a “subscription” WS-
Resource. The subscription WS-Resource models this relationship between the
subscriber and the producer, and it uses WS-ResourceProperties and WS-
ResourceLifetime to help manage this relationship.

The second WS-Notification specification, WS-Topics, presents an XML description of
topics and associated meta data. Topics are a mechanism for organizing notification
messages so that subscribers can conveniently understand what types of notification
are available for subscription. Topics can be organized hierarchically; one topic can
be further decomposed with child topics. Topics are also scoped by namespace,
much as XML types and elements are scoped by XML namespaces.

The third WS-Notification specification, WS-BrokeredNotification, defines the
interface to a NotificationBroker that implements an intermediary service to manage
subscriptions for other entities in the system that produce notification messages.

9 Conclusions
We have presented the WS-Resource framework, a set of Web service specifications
and conventions designed to standardize representation of, and access to, stateful
resources in a distributed environment. This framework identifies and standardizes
the patterns by which state is represented and manipulated, so that a Web service
can describe the stateful resources to which it provides access, and a service
requestor can discover the type of this pairing of Web service and stateful resource
(“WS-Resource”) and use standardized operations to read, update, and query values
of its state, and to manage its lifecycle.

The definition of the WS-Resource framework facilitates the construction and use of
interoperable services, by making it possible for different service providers and
service consumers to describe, access, and manage their stateful resources in
standard ways. Equally importantly, the framework introduces support for stateful
resources without compromising the ability to implement Web services as stateless
message processors. The framework also addresses issues of renewable references,
grouping, notification, and fault reporting.

Separate specification documents, summarized in Table 1, provide the normative
definition of the concepts presented here.

10 Acknowledgements
This paper has been developed as a result of joint work with many individuals and
teams. The authors wish to acknowledge contributions from many people, including:

Nick Butler, Christine Draper, Sonny Fulkerson, Rob High, Jim Knutson, Frank
Leymann, Tom Maguire, Susan Malaika, Martin Nally, Jeff Nick, Chris Sharp, Tony
Storey, Jay Unger, and Sanjiva Weerawarana. We also acknowledge those with
whom we have discussed issues addressed in this paper, including Malcolm Atkinson,
Carl Kesselman, and Savas Parastatidis.

The WS-Resource Framework 17

11 References
[Design Patterns]

Gamma, E., Helm, R., Johnson, R., Vlissides, J., Design Patterns © 1995,
Addison Wesley.

[OGSI-Refactor]

Czajkowski, K., Ferguson, D., Foster, I., Frey, J., Graham, S., Snelling, D.,
Tuecke, S., From Open Grid Services Infrastructure to Web Services Resource
Framework: Refactoring and Evolution, 2004.
http://www-106.ibm.com/developerworks/webservices/library/ws-resource/gr-
ogsitowsrf.html

[OGSI-Spec]

Open Grid Services Infrastructure (OGSI) V1.0
http://forge.gridforum.org/projects/ggf-editor/document/draft-ogsi-service-
1/en/1

[Physiology]

Foster, I., Kesselman, C., Nick, J., Tuecke, S., The Physiology of the Grid: An
Open Grid Services Architecture for Distributed Systems Integration, Globus
Project, 2002. Available at http://www.globus.org/research/papers/ogsa.pdf

[WS-Addressing]

WS-Addressing, an XML serialization and standard SOAP binding for representing
network wide “pointers” to services.
http://www.ibm.com/developerworks/webservices/library/ws-add/

[WS-BaseFaults]

This specification defines a base fault type for use when returning faults in a Web
services message exchange. It can be used when reporting faults relating to WS-
Resource definition and use. This specification is a work in progress.

[WS-BaseNotification]

This specification describes the interfaces to basic notification within the WS-
Notification family of specifications. It defines the interfaces for the notification
producer, notification consumer roles and an interface to manage subscription
stateful resources.

ftp://www6.software.ibm.com/software/developer/library/ws-notification/WS-
BaseN.pdf

[WS-BrokeredNotification]

This specification describes the interface to a notification broker intermediary that
rounds out the WS-Notification family of specifications.

ftp://www6.software.ibm.com/software/developer/library/ws-notification/WS-
BrokeredN.pdf

[WS-MetaDataExchange]

The WS-Resource Framework 18

WS-MetadataExchange is a set of Web service mechanisms to exchange policies,
WSDL, schema and other metadata between two or more parties. This
specification is part of the Web services roadmap for WS-Federation. This
specification is a work in progress.

[WS-Notification]

This whitepaper describes the concepts, patterns and terminology used in the
WS-Notification family of specifications (WS-BaseNotification, WS-Topics and WS-
BrokeredNotification).

http://www-106.ibm.com/developerworks/library/ws-pubsub/WS-PubSub.pdf

[WS-RenewableReferences]

This specification describes how a WS-Addressing endpoint reference can be
decorated with information on how a new version of an endpoint reference can be
retrieved by a requestor when an endpoint reference becomes invalid. This
specification is a work in progress.

[WS-Resource]

Modeling Stateful Resources in Web Services. http://www-
106.ibm.com/developerworks/library/ws-resource/ws-modelingresources.pdf

[WS-ResourceProperties]

This specification describes how elements of publicly visible properties of a
resource can be described, retrieved, changed and deleted. http://www-
106.ibm.com/developerworks/library/ws-resource/ws-resourceproperties.pdf

[WS-ResourceLifetime]

This specification describes a collection of message exchanges that allow a
requestor to destroy a resource either immediately or by using a scheduled
expiration mechanism. http://www-106.ibm.com/developerworks/library/ws-
resource/ws-resourcelifetime.pdf

[WS-ServiceGroup]

This specification describes a means of representing and managing
heterogeneous by-reference collections of Web services or WS-Resources. This
specification is a work in progress.

[WS-Topics]

This specification describes an XML model for topics and topic spaces within the
WS-Notification family of specifications.

ftp://www6.software.ibm.com/software/developer/library/ws-notification/WS-
Topics.pdf

