
DesigningGrid-based
ProblemSolvingEnvir onmentsand Portals

Gregor vonLaszewski, IanFoster, JarekGawor, PeterLane,Nell Rehn,MikeRussell
ArgonneNationalLaboratory, 9700SouthCassAvenue,Argonne,IL 60439,U.S.A.

gregor@mcs.anl.gov

Abstract

Building ProblemSolvingenvironmentsin theemerging
national-scaleComputationalGrid infrastructure is a chal-
lenging task. AccessingadvancedGrid services,such as
authentication,remoteaccessto computers, resourceman-
agement,and directory services,is usually not a simple
matter for problemsolving environmentdevelopers. The
CommodityGrid project is working to overcomethis dif-
ficulty by creatingwhat we call CommodityGrid Toolkits
(CoG Kits) that definemappingsand interfacesbetween
theGrid andparticular commodityframeworksfamiliar to
problemsolvingenvironmentdevelopers. In this paper, we
explainwhyCoGKits areimportantfor problemsolvingen-
vironmentdevelopers,describethedesignandimplementa-
tion of a JavaCoGKit, anduseexamplesto illustratehow
CoGKits canenablenew approachesto applicationdevel-
opmentbasedon theintegrateduseof commodityandGrid
technologies.

1. Intr oduction

The developmentof next-generationproblem solving
environments(PSEs)[12] is influencedby rapid advances
in the world of commoditycomputingand the emerging
national-scaleComputationalGrid. The explosive growth
of the Internet and of distributed computing in general
has led to significant technology improvementsin sev-
eral domainsthat are important for the developmentof
PSEsaccessinglarge-scalecomputationalresources.In the
world of commoditycomputing,a broadspectrumof dis-
tributedcomputingtechnologies(Webprotocols,Java,JINI,
CORBA, DCOM, etc.)hasemerged,with revolutionaryef-
fectson how we accessandprocessinformation. Simulta-
neously, the high-performancecomputingcommunityhas
taken big stepstoward the creationof so-calledGrids, ad-
vancedinfrastructuresdesignedto enablethe coordinated
useof distributedhigh-endresourcesfor scientificproblem
solving.

Thesetwo worldsof whatwewill call “commodity” and
“Grid” computinghave evolved in parallel,with different
goals leadingto different emphasesand technologysolu-
tions. For example,commoditytechnologiestendto focus
on issuesof scalability, componentcomposition,anddesk-
top presentation,while Grid developersemphasizeend-to-
endperformance,advancednetwork services,andsupport
for uniqueresourcessuchassupercomputers.The results
of this parallelevolution aremultiple technologysetswith
someoverlaps,muchcomplementarity, andsomeobvious
gaps.

In thiscontext, wehaveestablishedtheCommodityGrid
(CoG) project, with the twin goalsof (a) enablingdevel-
opersof PSEsto exploit commoditytechnologieswherever
possibleand(b) exportingGrid technologiesto commodity
computingfor easyintegrationin PSEs.

A first activity beingundertakenwithin theCoGproject
is thedesignanddevelopmentof a setof CommodityGrid
Toolkits(CoGKits), thatdefineandimplementasetof gen-
eral componentsthat map Grid functionality into a com-
modity environment/framework. Hence,we canimaginea
Web/CGI CoG Kit, a Java CoG Kit, a CORBA CoG Kit,
a DCOM CoG Kit, and so on. In eachcase,the bene-
fit of the CoG Kit is that it enablesapplicationdevelopers
to exploit advancedGrid services(resourcemanagement,
security, resourcediscovery)while developinghigher-level
componentsin termsof the familiar andpowerful applica-
tion developmentframeworksprovidedby commoditytech-
nologies.In eachcase,we alsofacethechallengeof devel-
opingappropriateinterfacesbetweenGrid andcommodity
conceptsandtechnologies—and,if similar Grid andcom-
modity servicesare provided, reconciling competingap-
proaches.

As part of theseactivities, we have successfullydevel-
opedaJava-basedCommodityGrid Toolkit (JavaCoGKit)
that definesand implementsa set of generalcomponents
mappingGrid functionality into the Java framework. The
Java CoG Kit is of particularinterestfor PSEdevelopers
becauseit allows them to implementpreinstalledheavy-
weight applicationsto be startedon user-accessiblecom-

1



puteservers,aswell aslightweightWebinterfacesorportals
allowing accessto sophisticatedremotecomputeservices.

The primary goal of our researchis not to build a PSE
that will solve a specificproblemfor a particularapplica-
tion area. Instead,our focus is on developinga software
infrastructureto make it easierto build and deploy pow-
erful PSEs. We have basedour developmentof the Java
CoGkit onourexperienceswith applicationusersin various
problemdomains.Thus,we areconfidentthatthetoolkit is
generalenoughto beusefulfor a largenumberof PSEde-
velopers.

While wehaveintroducedin [17] thegeneralconceptsof
theJavaCoGKit, wewill illustratein thispaperits practical
usein the developmentof problemsolving environments.
Additionally, we introduceherenew componentsandmore
sophisticatedsecurityconceptsthatareof particularinterest
to developersof chemistryproblem-solvingenvironments.

2. Portals to Problem SolvingEnvir onments

For readersto understandthe scopeof this work, we
explain the termsproblemsolvingenvironmentandportal,
sincemultiple definitionsareusedfor bothtermsin thelit-
erature.

2.1. ProblemSolving Envir onment

Our understandingof a PSEfollows approximatelythe
definitiongivenin [7]: “A problemsolvingenvironmentis
a computationalsystemthat providesa completeandcon-
venientsetof high level tools for solvingproblemsfrom a
specificdomain.ThePSEallows usersto defineandmod-
ify problems,choosesolutionstrategies, interactwith and
manageappropriatehardware and software resources,vi-
sualizeandanalyzeresults,andrecordandcoordinateex-
tendedproblemsolving tasks. A usercommunicateswith
a PSEin the languageof the problem,not in the language
of aparticularoperatingsystem,programminglanguage,or
network protocol.”

For ourresearchfocusweassumethattheproblemsmust
accessremoteresources,potentially in a securefashion,
andmayrequirea largeamountof computeand/ordatare-
sources.The processof solving the problemis steeredby
thescientist,andits progressmaybemonitoredthroughIn-
ternetbrowsersor special-purposeapplication-monitoring
programs.

2.2. Requirementsfor PSEPortals

We identifieda list of characteristicsthat influencedour
PSEtoolkit design[1]:

Problem-oriented. ThePSEshouldallow specialiststo
concentrateon their discipline,without having to become

expertsin computerscienceissues,suchasnetworks,paral-
lel computing,or theWorld WideWeb.

Integrated. Many problemsand their solution strate-
giesareextremelyheterogeneous:in models,codes,appli-
cations,andmachines.A PSEmustbedesignedto manage
this heterogeneityin an integratedway, so that the useris
presentedwith a predictableandconsistentPSE.

Collaborati ve. Most scienceandengineeringprojects
are performedin collaborative modewith physically dis-
tributed participants. A PSE must include the ability to
foster collaborative solution strategies. We assumethat a
general-purposevideo conferencingtool can be provided
with commonoff-the-shelftoolsdevelopedby commercial
companies.Nevertheless,it may be necessaryto develop
special-purposecollaborativetoolsthatarenot providedby
third parties.

Distrib uted. Besidestheneedto supportdistributedcol-
laborationbetweenscientists,many problemswehavebeen
dealingwith (suchasGrandChallenges)canbesolvedonly
while accessinglarge distributed resources(suchas stor-
ageandcomputeresources)in conjunctionwith eachother.
A PSEmustbe able to accessthesedistributed resources
seamlesslyandin collaboration.

Persistent. Sincedevelopinga solution for a problem
mayrequiresignificanttime,it is desirableto provideaper-
sistentenvironmentthatallowstheresearcherto resumethe
solutionprocessat a later time at a potentiallydifferentlo-
cation. Thus, it is necessaryto be able to checkpointnot
only thestateof thecalculationbut alsothestateof thePSE
userinterface.Thepersistenceof a PSEcouldbeenhanced
with preferencesthat are eithersetby the useror are de-
tectedautomaticallyby the PSE.Suchfunctionality could
be achievedwith the integrationof what is calledan elec-
tronicnotebook.

Open,flexible, adaptive. Problemstrategiesrequirebe-
ing ableto integratenovel ideas.A sophisticatedPSEbuild-
ing tool must be able to tailor or add new functionality
within its existentbase.

Graphical, visual. Theuseof graphicsandvisualscan
enhancetheusabilityof thePSE,for example,throughani-
matedtablesanddirectedgraphsto visualizethestateof the
application. Furthermore,it mustbe possibleto integrate
custom-designedgraphicalandvisualinputsandoutputs.

2.3. Portal for ProblemSolvingEnvir onments

A “Web portal” is commonlydefinedasan entry point
or startingsite for theWorld Wide Web,combininga mix-
tureof contentandservicesthatattemptsto provide a per-
sonalized"homebase"for it’s audience.Featuresinclude
customizablestartpagesto guideuserseasily throughthe
servicesprovidedby the portal. Suchservicesincludefil-
terablee-mail, chat rooms and messageboards,person-



Problem Solving Environment Portal

Clients

Servers

XUL,
XML

XML,
HTTP,
SOAP,
(Globus)

Supercomputer Workstation
Cluster

Storage
Servers

Figure 1. A computing por tal interfaces
clients with Grid resour ces suc h as stor -
age servers, super computer s, and worksta-
tion cluster s.

alized news, gamingchannels,shoppingcapabilities,ad-
vancedsearchengines,andpersonalhomepageconstruction
kits. Examplesfor consumer-orientedportalsareprovided
by AOL andYahoo.

In this spirit, we suggestthata convenientway of inter-
facingwith aPSEis to designportalsfor ascientificdomain
or a particularproblemstrategy. Besidesproviding collab-
orative, interactive, and informationservices,suchportals
includealsoservicesthatareuniquefor thedomainbut are
typically not providedby consumer-orientedportals.These
servicesinclude interfacesbetweenusersof the PSEwith
the help of clients rangingfrom graphicsworkstationsto
palmpilots to theresourcesavailableaspartof thecompu-
tationalGrid (Figure1). Naturally, not all capabilitiesof a
portalmaybeexposedby lesscapableaccessdevicessuch
aspalmpilots. Nevertheless,theability to sendamessageto
a beeper, palmpilot, or cell phoneaddssignificantvalueto
thePSEfunctionalityby notifying theuserof theexistence
of a collaborative sessionor the completionof a problem
solution. Hence,theability to accessa portalwith various
(evenlesscapable)devicesis anintegralpartof ourdesign.

2.4. Usersand UsageModesof PSEPortals

Portaldevelopmentfor PSEsfirst requiresdetermining
which customergroupwill beusingthe portal. We distin-
guishthreetargetgroups:

1. Novicescienceor problemsolvingenvironmentusers,
that is, casualor novice usersusing readily available
solutionsto problems. The problemstrategy is non-
transparentto noviceusers.

2. Expertscienceor problemsolvingenvironmentusers,
that is, usersin the domain for which the portal is

developed. Such usersare able to extend the por-
tal while providing solutionstrategiesasusedby the
noviceusersor themselves.

3. Developerof applicationor problemsolving environ-
ments,providinggeneral-purposecomponentsusedby
expertsor noviceusers.

In addition, we distinguishbetweeninteractive and batch
modein which jobs aresubmittedfrom the problemsolv-
ing environmentto the backendsystemsby the users.We
have to be able to supportthe useof computeresources
throughfine-grainedparallelprograms,typically provided
throughMPI message-passingparallelprograms,or coarse-
grainparallelprogramsthroughjob dependenciesbetween
jobs submittedto the batchprocessingsystemsor a fork
jobmanager. Thetoolkit we describein this papersupports
theseusagemodes.

3. Ar chitecture

Becauseof thediversifieduseof aPSEportal,thearchi-
tectureof suchanenvironmentmustbeflexible. Thus,it is
not feasibleto developapointsolutionfor asingleproblem.
Neededinsteadis a portal toolkit that includesa setof ser-
vicesexposedvia APIs thatcanbeusedto assembleapoint
solutionfor aproblem.Figure2 andTable1 outlinethevar-
ious groupsof servicesthat we initially focuson andthat
mustbeintegratedinto aportaltoolkit. Eachportalcompo-
nentmayhaveseveralsubcomponentsthatsupportthetasks
performedaspartof thecomputingportalfor problemsolv-
ing environments.The componentsin bold text of Figure
2 aredevelopedaspartof theCoGKit. Othercomponents
areprovidedeitherby commoditysoftwareor theapplica-
tion programmers.The flexible designmakes it possible
to integratenew componentsinto theframework or replace
existingmodules.

3.1. Grid CoreServices

The scientific problem-solving infrastructure of the
twenty-firstcenturywill supportthecoordinateduseof nu-
merousdistributed heterogeneouscomponents,including
advancednetworks,computers,storagedevices,displayde-
vices,andscientific instruments.The term “The Grid” is
often usedto refer to this emerging infrastructure[5][6].
NASA’s InformationPower Grid andtheNCSA Alliance’s
National TechnologyGrid are two contemporaryprojects
prototypingGrid systems;both build on a rangeof tech-
nologies,includingmany providedby theGlobusprojectin
which we areinvolved. In designingPSEportals,we make
extensive useof thesetechnologies,including Globus ser-
vices,suchas



Portal
Display Components

Science
Components

Collaboration
Components

Compute Resource
Components

Design
Components

Administration
Components

Monitoring
Components

PSE/
Computing

Portal

p-flow

p-installer

p-monitor

p-debug

p-brokerp-trader

c-ticker

a-snb

c-video

p-renderer

Security
Components

p-crypt

c-bean c-jsp

p-authenticate

Figure 2. A computing por tal is built with
the help of a variety of por tal components
ranging from specializ ed application- spe-
cific por tal components to components for
using distrib uted compute resour ces or other
Grid infrastructure .

Table 1. Por tal Components
Portal Com-

ponent

Sub Compo-

nent

Function

Collaboration c-video Video collaboration (e.g.

netmeeting)

c-ticker newsserver

Design p-bean Java IDE (e.g. VisualJava,

Forte, ..)

p-jsp JavaIDE

Science a-snb Application specific pro-

videdby scientists

Compute Re-

source

p-trader locatescomputeresources

p-broker schedulesjobs

p-flow dependenciesbetweenjobs

p-debug debugsjob execution

gram Globusjob submission

Security p-crypt sendssecuremessages

p-

authenticate

authenticatesto thesystem

gsi Grid SecurityInfrastructure

Administration p-installer installssoftwareon client

Monitoring p-monitor monitorsthestate

mds Globus MetacomputingDi-

rectoryService

Display p-renderer displays information from

XML

� theinformationservice(MDS),whichenablesuniform
accessto informationaboutthe structureandstateof
Grid resources;

� an authenticationand authorization service (GSI),
which providesmechanismsfor establishing,identify-
ing, andcreatingdelegatablecredentials;and

� a uniform job submissionserviceacrossdistributed
schedulingsystems(GRAM).

TheseGrid servicesareoften termed“middleware”: they
typically involve a distributedstateandcan be viewed as
a naturalevolution of the servicesprovidedby today’s In-
ternet. They build the basisfor developing a Grid-based
problemsolving environmentbecausemany of the portal
componentsusetheir services.

3.2. Job Submissionand Execution

Oneof the main servicesa PSEportal mustprovide is
to job submissionto remoteresources.This mustbe done
in seamlessfashionfrom thedesktopwith a singlesign-on
authentication.Computersmustbelocatedandthecompu-
tationmustbestartedontheselectedsystems.It is essential
to monitor theprogressof thejob executionandobtainthe
resultsof thecalculationthrough,for example,outputfiles
thatmaybemanipulatedlocally ontheclientside(thecom-
puterfrom which thejob wasinitiated).Weareableto sup-
port suchuniform job submissionwhile using the Globus
metacomputingtoolkit to accessGrid resourcessecurely.

Authentication Thefirst stepof the job submissionis to
authenticatewith the system. Authenticationis the pro-
cessto verify the identity of an entity. Although the cryp-
tographic algorithms that form the basis of most secu-
rity systems–suchaspublickey cryptography–arerelatively
simple, it is a challengingtask to usethesealgorithmsto
meetdiversesecuritygoalsin complex, dynamicproblem
solving environments,with potentially large anddynamic
setsof usersandresourcesandfluid relationshipsbetween
usersandresources.Authenticationsolutionsfor problem
solvingenvironmentsin a ComputationalGridsmustsolve
two problemsnotcommonlyaddressedby standardauthen-
ticationtechnologies.

Thefirst problemis supportfor localheterogeneity. The
resourcesavailable in the Grid are operatedby a diverse
rangeof entities, eachdefining a different administrative
domain.

The secondproblem support for N-way security con-
texts. In traditional client-server applications,authentica-
tion involves just a single client and a single server. In
contrast,a Grid-basedPSEmay requireand dynamically



maintainedresources.Thus, it mustbe possibleto estab-
lish a securityrelationshipbetweenany two processesin
thecomputationusedto solve theproblemevenif they are
in differentadministrative domains. To simplify our task
weusetheGrid securityinfrastructure(GSI) thatdealswith
the authentication. GSI policy allows a userto authenti-
catejust onceper computation,at which time a credential
is generatedthat allows processescreatedon behalfof the
userto acquireresources,andsono,withoutadditionaluser
intervention. Local heterogeneityis handledby mapping
a user’s Grid identity into local useridentitiesat eachre-
source.In summary, theGSIsecuritymodelprovidesPSEs
the following advantages:singlesign-onfor all resources,
noneedfor userto keeptrackof accountsandpasswordsat
multiplesites,andno plaintext passwords.

Protocol-basedJob Submission Recently, Globus has
beenenhancedto includean HTTP-basedprotocolfor job
submission.Thus, job submissioncanbe initiated from a
client on which no otherGlobuscomponentsareinstalled.
Figure3 shows theGlobuscomponentsthatareinvolvedin
sucha job submission.First, onehasto authenticatewith
the system,which is donewith the help of public key in-
frastructureanda proxydelegationwhile generatinga tem-
porarykey. Jobsaresubmittedfrom theclient sidethrough
API calls known as gram-submitand gram-request. The
gatekeeperontheGlobus-enabledresourceverifieswhether
theuseris allowedto submita job to it andcheckstheavail-
ability of theuser’spublickey in agrid mapfile local to the
resource.Oncea job hasbeensuccessfullysubmittedto the
system,it is startedwith the help of the job manager, and
its stateis monitoredwith the help of the reporter. Dur-
ing startupof a job ausercanregistercallbackhandlersthat
providejob statusupdates.In ourJavaCoGKit wehaveim-
plementedall componentsandservicesresponsiblefor the
proxy initialization and the job submission. Furthermore
we have replacedtheC-basedcallbackservicewith a Java-
basedeventservice.Thus,all componentsto submita job
areavailablein pureJava, allowing even Windows clients
to submitjobsto Globusservers.

3.3. Additional Security Issues

In the precedingsectionswe addressedsecurity issues
relatedto authenticationandauthorizationwhile usingthe
securitypolicy suggestedby Globus. The authorizationto
usea particularGrid resourcecanbecontrolledvia a grid-
mapfile andappropriatelyspecifiedgrouppermissionscon-
trolledby thelocal systemadministrators.

Nevertheless,we still have to addressissuessuchasthe
securecommunicationbetweenprograms. To guarantee
privacy, weusethesecuritymechanismsprovidedby secure
socketconnections,whichwecanobtainthroughGlobusIO.

gram-submit Gatekeeper

job-managercallback handler

grid-proxy-init

authentication

proxy-delegation

job-requestregister callback

status

client side server side

reporter

private key

temporary key

challenge
grid-map

Figure 3. The components of the Glob us se-
curity infrastructure used during job submis-
sion. All client side components are availab le
within the CoG Kit as pure Java components.

Thisallowsusto sendmessagesanddatain asecurefashion
betweencomputeresources.

4. Java CoG Kit

In theremainderof this paperwe focusour attentionon
our Java CoGKit prototype,which enablesus to build the
componentslistedin Table1 andusedaspartof aPSE.Be-
causeof thelargenumberof packagesandclassesrequired
to exposethenecessaryfunctionalityof theGlobustoolkit,
we focus in this paperon a subsetof the classesthat we
deemmostuseful for the developmentof PSE-basedGrid
applications.Thedesignof theJava CoGKit is intendedto
facilitatethe developmentof future componentsasa com-
munityproject.To supportaniterativeprocessof definition,
development,andapplicationof a Java CoGKit in collab-
oration with other teams,we classify componentsin four
layers. This categorizationprovides the necessarysubdi-
visions to coordinatesucha challengingopencommunity
softwareengineeringtask.

Low-Level Grid Interface Components provide map-
pingsto commonlyusedGrid services:for example,
the Grid information service(the Globus Metacom-
puting Directory Service, MDS), which provides
Lightweight Directory AccessProtocol (LDAP) [9]
accessto informationaboutthe structureandstateof
Grid resourcesand services; resource management
services, which support the allocation and manage-
ment of computationaland other resources(via the
Globus GRAM and DUROC services); and data
accessservices, for example, via the Globus GASS
service[3].

Low-Level Utility Components are utility functions de-
signedto bereusedby many users.Examplesarecom-



// Step0. Initialization

MDS mds=new MDS("www.globus.org","389","o=Grid");
//Step1. Search for an availablemachine

result= mds.search
("(objectclass=GridComputeResource)(freenodes=64))",
"contact");

// Step1.a)Selecta machine
machineContact= <selectthemachinewith minimal

executiontimefromthecontactsthatare returnedin result>
// Step2. Preparethedatafor theexperiment
// Step2.a)Search for thedataandreturn
// the attributes:server,port,directory,file

dn= mds.search
("(objectclass=MoleculeStructureData)(name=cholera)",
"dn", MDS.SubtreeScope);
result= mds.lookup(dn,"server,port,directory,file");

// Step2.b)downloadthedatato themachine
url = result.get("server")+":"+ result.get("port")+":"

+ result.get("directory")+"/"+result.get("file");
data= server.fetch(url, machineContact);

// Step3. Preparea descriptionfor runningthemodel
RSLrsl = new RSL("(executable=snb)(processors=64)

(arguments=-outsnb.out)
(arguments=-in" + data.filename+")");

// Step4. Submittheprogram
GramJobjob = new GramJob();
job.addJobListener(new GramJobListener(){

public void stateChanged(GramJobjob) {
// reactto job statechanges

}
});
try{

job.request(machineContact,rsl);
} catch(GramExceptione) {

// problemsubmittingthejob
}

Figure 4. This sample script demonstrates
how we access basic Grid services with the
help of the Java CoG Kit. Here data for a
structural biology code called SnB are lo-
cated, an appr opriate machine is selected,
and the calculation is executed on that ma-
chine .

ponentsthatuseinformationservicefunctionsto find
all computeresourcesthat a usercansubmit to, that
prepareand validatea job specificationwhile using
the extendedmarkuplanguage(XML) or the Globus
job submissionlanguage(RSL), that locatethe geo-
graphicalcoordinatesof a computeresourceandthat
testwhetheramachineis alive.

Low-Level GUI Components provide a basic graphical
componentsthatcanbereusedby applicationdevelop-
ers.ExamplesareLDAPattributeeditors,RSLeditors,
LDAP browsers,andsearchcomponents.

Application-specificGUI Components simplify the
bridge betweenapplicationsand the basic CoG Kit
components.Examplesare a stock market monitor,
a graphical climate data display component,or a
specializedsearchenginefor climatedata.

Figure4 shows how a small setof servicesprovidedby
the Java CoG Kit may be usedin practice. This Java pro-
gramskeletondemonstrateshow simpleit is to build portal-
specificserviceswhenaccessingavarietyof basicGrid ser-
vicesthroughtheJava CoGKit. In this example,anappro-
priatemachineis selectedfor execution,datafor aninstanti-
ationof aproblemspecificalgorithmis determined,andthe
job is executedon thatmachine,resultingin thegeneration
of anoutputfile.

4.1. Low-Level Grid Interface Components

We describeherea subsetof packagesthat provide the
interfaceto the low-level Grid servicesandapplicationin-
terfaces.Thesepackagesareusedby many usersto develop
Java-basedprogramsin theGrid. Wedescribeonly thegen-
eral functionalityof thesepackages.A completelist of the
classesandmethodsaccompaniesthedistribution [18].

RSL The packageorg.globus.rsl provides methodsfor
creating,manipulating,andcheckingthevalidity of theRe-
sourceSpecificationLanguage(RSL) expressionsusedin
Globus [8] to expressresourcerequirements.As shown in
Step3 of Figure4, theargumentsto a new call includepa-
rametersthatspecifybothcharacteristicsof therequiredre-
sourcesandpropertiesof thecomputation.

GRAM The packageorg.globus.gram provides a map-
ping to theGlobusResourceAllocation Manager(GRAM)
services[8], which allow usersto scheduleandmanagere-
mote computations.The classesand methodsdistributed
allow usersto submitjobs,bind to alreadysubmittedjobs,
andcanceljobsonremotecomputers.Othermethodsallow
usersto determinewhetherthey cansubmit jobs to a spe-
cific resource(throughaGlobusgatekeeper)andto monitor
thejobstatus(pending, active, failed,done, andsuspended).

As shown in Step4 of Figure4 the classGramis used
to createa job with anRSL stringdescribingthe job anda
machinecontactthatdetermineson which machinethejob
is requestedfor execution. Our Java mappingdiffers from
thatprovidedin Globusfor C throughtheintroductionof a
formal job object,aswell as the availability of a sophisti-
catedeventmodelin Java. Our implementationutilizesthis
event modeland transfersthe C callbacksinto equivalent
Java events. In Java onecannow usethreadsin order to
“listen” to aparticulareventthatcantriggerfurtheractions.
A Java interfaceGramJobListener that containsthe
methodstateChanged(GramJob job) can be used
to definecustomizedjob listenersthatcanbeaddedwith the
GramJobmethodaddListener(GramJobListener
listener).



MDS The packageorg.globus.mdssimplifies accessto
the MetacomputingDirectory Service(MDS) [15], which
is an importantpartof the Globus informationservice. Its
functionsinclude(a) establishinga connectionto anMDS
server, (b) queryingMDS contents,(c) printing,and(d) dis-
connectingfrom the MDS server. The packageprovides
anintermediateapplicationlayerthatcanbeeasilyadapted
to differentLDAP [9] client libraries,includingJNDI [10],
NetscapeSDK [11], andMicrosoftSDK [13].

As shown in Step1 of Figure4, theparametersto initial-
ize the MDS classare the DNS nameof the MDS server,
the port numberfor the connection,andthe distinguished
name(DN) thatspecifiestheroot for a searchin thedirec-
tory tree.A searchis performedin Step2a;thefirst param-
eterspecifiesthetop level of thetreein which thesearchis
performed,thesecondparameterspecifiestheLDAP query,
andthethird parameterspecifiesthescope,that is, for how
many levels in the treethe searchshouldcontinue(in our
case,only thenext level). Searchresultscanalsobestored
in a NamingEnumerationprovidedby JNDI.

GASS TheGlobalAccessto SecondaryStorage(GASS)
service[3] simplifies the porting and running of applica-
tionsthatusefile I/O, eliminatingtheneedto manuallylog
ontositesandftp files or to install a distributedfile system.
The packageorg.globus.gassprovides an essentialsubset
of GASSservicesto supportthe copying of files between
computerson which the Grid Servicesare installed. The
methodget(Stringfrom,Stringto) copiesa remotefile to a
local file, andthemethodput(Stringfrom,Stringto) copies
a local file to a remotelocation. The fetch methodusedin
our example(Figure4) providesa convenientwrapperand
usesinternallythepreviouslymentionedget method.

4.2. Low-Level Utilities

Thelow-levelutility classescurrentlydefinedin theCoG
Kit provideanabstractdatatyperepresentingacyclic graphs
andbasicXML parsingroutines. The graphclassis used,
for example,to accessdependenciesbetweenjobs,a major
requirementfor PSEs. The XML classesareusedto pro-
vide transformationsbetweendifferentdataformats.Using
XML hasthe advantagethat a DocumentType Definition
(DTD) that is definedfor thesedataformatscanbeusedto
verify whetherarecordto betransmittedis well formedbe-
fore it is sentto a server. Thusthe load on serverscanbe
dramaticallyreduced.Theavailability of a dependency be-
tweenjobs is a significantextensionto theexisting Globus
low-levelapplicationinterface.In addition,wehavedefined
a generalconceptof a machine and job broker interface.
Thisenablesaprogrammerto defineacustomizedselection
of machinesandjobs dependenton his demand.We have
usedthis technologyas part of a high-throughputbroker

scheduling
policy

machines jobs

broker

access
policy

Figure 5. A broker interface allo ws us to
specify an easy way to develop compatib le
components relying on this interface . Jobs
and machines are selected based on a pre-
defined access/security polic y as well as a
scheduling polic y. The policies may be gen-
erated dynamicall y based on other system in-
formation.

that is implementedin Java but canalsoexposedthrough
CORBA objects. The GECCOapplicationintroducedin
Section4.4usestheJava-basedmachineandjob brokers.

The broker is a good exampleof a universally useful
componentfor PSEdevelopers,aswell asGrid users.Here
a setof jobs andmachinesis storedin two tables.Depen-
dent on a schedulingand accesspolicy, a machineis se-
lectedanda job is scheduledfor theexecutionon this ma-
chine (seeFigure 5). We have defineda simple interface
outlinedin Figure6. Thisinterfaceallowsustoaddjobsand
machinesto thesetssothatit is possibleto administerthem
dynamically. With thehelpof thisinterfacewehavedefined
multiple schedulingpoliciessuchasfirst-come-first-served
andloadbalancingbasedon resourcecharacteristics.Cur-
rently we areinvestigatingthe useof economymodelsfor
schedulingjobsto machines.

4.3. Low-Level GUI Components

The Java CoG Kit low-level GUI componentsprovide
basicgraphicalcomponentsthatcanbeusedto build more
advancedGUI-basedapplications. Thesecomponentsin-
cludetext panelsthatformatRSLstrings,tablesthatdisplay
resultsof MDS searchqueries[17], treesthatdisplaythedi-
rectoryinformationtreeof the MDS, andtablesto display
HBM andnetwork performancedata.Eachcomponentcan
be customizedand is availableasJavaBean. In future re-
leasesof theJavaCoGKit it will bepossibleto integratethe
beanin aJava-basedGUI compositiontool suchasJBuilder
or VisualCafe.



interfacebroker ... {
addJob(JobDescriptionjob)
deleteJob(JobDescriptionjob)
addMachine(MachineDescription machine)
deleteMachine(MachineDescription machine)
setAccessPolicy(BrokerAccessPolicy policy)
setSchedulingPolicy(BrokerSchedulingPolicy policy)

...
MachineDescriptiongetMachine()
JobDescriptiongetJob()

...
}

Figure 6. This code fragment sho ws the ele-
mentar y methods of the broker. Jobs and ma-
chines can be added. The job and machine
returned by the get methods are defined by
the policies and the algorithms defined by an
object instantiation of the interface .

4.4. PSEApplication Level Utilities and GUI Com-
ponents

High-level graphicalapplicationscombinea variety of
CoGKit componentsto deliver a singleapplicationor ap-
plet. Theseapplicationscanbe combinedto provide even
greaterfunctionality. The usershouldselectthe tools that
seemappropriatefor thetask. To demonstratetherangeof
applications,we have includeda setof screendumpsthat
highlight the look andfeel of someapplicationsdeveloped
to date.

GECCO The Graph Enabled Console COmponent
(GECCO)is a graphicaltool for specifyingandmonitoring
the executionof setsof taskswith dependenciesbetween
them[16][14]. Specificallyit allowsoneto

1. specifythe jobsandtheir dependenciesgraphicallyor
with thehelpof anXML-basedconfigurationfile;

2. debugthespecificationin orderto find erroneousspec-
ificationstringsbeforethejob is submitted;and

3. executeandmonitor the job graphicallyandwith the
helpof a log file.

As shown in Figure7, eachjob is representedasa nodein
thegraph.A job is executedassoonasits predecessorsare
reportedto have successfullycompleted.Thestateof a job
is animatedwith colors.It is possibleto modify thespecifi-
cationof thejob while clicking onthenode:A specification
window popsup allowing the userto edit the RSL, the la-
bel, andotherparameters.Editing canalsobe performed
duringruntime(job execution),henceproviding for simple
computationalsteering.

Figure 7. The Grid Enabled Console COmpo-
nent (GECCO) allo ws the user to specify de-
pendencies between tasks that are to be exe-
cuted in the Grid envir onment.

High-Thr oughput Broker We have developeda proto-
type of a high-throughputbroker to testwhetherthe inter-
facesand classesallow one to easily generatehigh-level
componentsthatsimplify job maintenancetasksfor certain
problem-solvingstrategies. Oneof the tasksthat hasbeen
identifiedandis commonto many solutionstrategiesis to
performa parameterstudy[2][4]. That is, an algorithmis
repeatedlyexecutedwith a varietyof parameters.Our sys-
temis basedon theinterfaceof a brokerandthusallowsus
to clearlyseparatetheGUI presentationfrom thefunction-
ality (Figure8). Theprototypelooksfor computeresources
availablein a pool of machinesformedby a Grid informa-
tion servicewith the help of the Globus MDS. From this
pool we selectthoseresourcesthat are idle andareavail-
ablefor calculation.If a resourceis not ableto fulfill a job
(becauseof connectiontimeout or excessive time needed
to completethejob), theresourceis automaticallyremoved
from the setof viable candidates.The setof resourcesas
well as thoseremoved from the list can be manipulated
throughan interactive shell. A similar interfaceexists for
the jobs. Specialattentionhasto be placedon the imple-
mentationof suchabroker. Althoughit is possibleto spawn
for eachjob andmachinea threadthatmaintainstheappro-
priateobject,we have chosento maintainthejobsandma-
chinesin lists to avoid theoverheadassociatedwith threads
and the expectedresourcelimitations on the machineon
which the systemis running. Thus,we areableto handle
submissionsthatmaintain10,000or morejobs,a taskthat
wouldotherwisebeimpossible.

5. Installation and Upgrading

An importantfunction that mustbe provided by a PSE
is to install andupgradethesoftwarethataccessesthevar-
iousservicesexposedaspartof its design.UsingJava will
provideuswith severaloptionsfor deployingourclientsoft-



Figure 8. A high thr oughput broker allo ws the
submission of many jobs as par t of a prob-
lem. After all jobs are completed a solution of
the problem can be obtained. The progress
of the calculation is monitored with a GUI.

ware.In additionto traditionalmethodsof deliveringclient
softwareto be installedandconfiguredprior to its use,we
candevelopthin-clientsoftware,whichcanbedynamically
installedor updatedaswell asloadedat timeof use.

Preinstallationof the software in the form of a stand
aloneapplicationor a library is convenientfor applications
thatwould take too long to be installedvia a network con-
nection(Figure 9). This strategy is today usedby many
commercialportalsaspartof their accesssoftwareenabled
with the help of so-calledbrowserplug-ins. Nevertheless,
we recognizethe fact that it is sometimesnot possibleto
installany softwareon theclientcomputerbecausetheuser
doesnot have sufficient accessto it. This requires,at the
costof additionaldownloadtime, downloadingthe appro-
priate jar files from a well-definedURL. In both casesit
will be possibleto augmentthe jar files with authentica-
tion measuresin the form of certificates.Thesewill allow
clientsto identify thesourceof thecodeupondownloading
our softwareandto verify that it canbe trustedfor useon
their systems.

6. Summary

Commoditydistributed-computingtechnologiesenable
the rapid constructionof sophisticatedclient-server appli-
cations. Grid technologiesprovide advancednetwork ser-

Renderer Display

XML

Java CoG Kit

X11PalmOs

Renderer

Portal

Palm CoG Kit

Java CoG KitPalm CoG Kit

local install local install

Pages

Figure 9. The installation of the CoG Kit onto
a client can be done prior to the star t of the
application as a standalone application or
the installation of a librar y or during an on-
demand execution.

vicesfor large-scale,widearea,multi-institutionalenviron-
mentsandfor applicationsthat requirethecoordinateduse
of multiple resources.In the CommodityGrid project,we
seekto bridge thesetwo worlds so as to enableadvanced
applicationsthat can benefitfrom both Grid servicesand
sophisticatedcommoditydevelopmentenvironments.

TheJava CommodityGrid Toolkit (CoGKit) described
in this paperrepresentsa first attemptat creatingof sucha
bridge. Building on experiencegainedover the pastthree
yearswith the useof Java in Grid environments,we have
defineda setof classesthat provide the Java programmer
with accessto basicGrid services,enhancedservicessuit-
ablefor thedefinitionof desktopproblemsolvingenviron-
ments,and a rangeof GUI elements. Initial experiences
with thesecomponentshave beenpositive. It hasproven
possibleto recastmajorGrid servicesin Java termswithout
compromisingonfunctionality. SomesubstantialJavaCoG
Kit applicationshave beendeveloped,and reactionsfrom
usershavebeenpositive.

Our futurework will involve theintegrationof moread-
vancedservicesinto the Java CoG Kit andthe creationof
otherCoG Kits, with CORBA, DCOM, andPythonbeing
early priorities. We alsohopeto gain a betterunderstand-
ing of wherechangesto commodityor Grid technologies
canfacilitateinteroperabilityandof wherecommoditytech-
nologiescanbeexploitedin Grid environments.

With the help of the CoG Kits we have prototypeda
portalto a structuralbiology problemsolvingenvironment.
Otherprojectsarecurrentlyinvestigatingtheuseof theCoG
Kit to simplify theaccessto Grid resources.Suchprojects
includetheastrophysicsportalCactus,theNCSA Userpor-
tal, and SDSCHotpage. The requirementsdemandedby
suchprojectshaveinfluencedourpresentdesign,andweare
collaboratingwith projectdevelopersto enhancethe com-
ponentsweprovide in theCoGKit. Most recently, wehave



startedto addressthe integrationof componentsdeveloped
by othercollaborators.

7. Acknowledgments

This work was supportedby the Mathematical,Infor-
mation, and ComputationalScienceDivision subprogram
of the Office of AdvancedScientificComputingResearch,
U.S.Departmentof Energy, underContractW-31-109-Eng-
38. Globus researchand developmentis supportedby
DARPA, DOE,andNSF. WethankGeoffrey C.Fox,Dennis
Gannon,andJasonNovotny for valuablediscussionsduring
the courseof the CoG Kit development.This work would
nothavebeenpossiblewithout thehelpof theGlobusteam.

For up-to-date release notes, and further in-
formation readers should refer to the Web page
http://www.globus.org/cog[18].

References

[1] MarcAbrams,DonaldAllison, DennisKafura,Calvin
Ribbens,Mary Beth Rosson,Clifford Shaffer, and
Layne Watson. PSEResearchat Virginia Tech: An
Overview. Departmentof ComputerScience,Virginia
Tech,Blacksburg, VA 24061,1999.

[2] D. Abramson,R. Sosic,J. Giddy, andB. Hall. Nim-
rod: A tool for performingparameterisedsimulations
using distributed workstations. In Proc. 4th IEEE
Symp.on High PerformanceDistributedComputing.
IEEE ComputerSocietyPress,1995.

[3] JosephBester, Ian Foster, Carl Kesselman,Jean
Tedesco,andSteven Tuecke. GASS: A datamove-
mentandaccessservicefor wide areacomputingsys-
tems.In Proc. IOPADS’99. ACM Press,1999.

[4] D. H. J. Epema,M. Livny, R. vanDantzig,X. Evers,
andJ.Pruyne.A WorldwideFlock of Condors:Load
SharingamongWorkstationClusters.FutureGenera-
tion ComputerSystems, 12,1996.

[5] I. Foster and C. Kesselman,editors. The Grid:
Blueprint for a Future Computing Infrastructure.
Morgan-Kaufmann,1999.

[6] Ian Foster. Building the Grid: An Inte-
grated Services and Toolkit Architecture for
Next Generation Networked Applications.
http://www.gridforum.org/building_the_grid.htm,
July 1999.

[7] E. Gallopoulos,E. Houstis,andJ.R.Rice. Problem-
Solving Environments for ComputationalScience.

IEEE ComputationalScienceandEngineering, 1:11–
23,1994.

[8] TheGlobusGRAM. http://www.globus.org/gram.

[9] Tim HowesandMark Smith. LDAP : Programming
Directory-EnabledApplicationsWith LightweightDi-
rectoryAccessProtocol. TechnologySeries.Macmil-
lanTechnicalPublishing,1997.

[10] JAVA Naming and Directory Interface (JNDI).
http://java.sun.com/products/jndi.Version1.2.

[11] NetscapeDirectory and LDAP Developer Central.
http://developer.netscape.com/tech/directory/index.html.

[12] J. R. Rice and R. F. Boisvert. From scientific soft-
warelibrariesto problem-solvingenvironments.IEEE
ComputationalScienceandEngineering, Fall:44–53,
1996.

[13] RichardSchwartz. Windows2000: ActiveDirectory
SurvivalGuide. JohnWiley andSons,1999.

[14] GregorvonLaszewski. A LooselyCoupledMetacom-
puter: CooperatingJobSubmissionsacrossMultiple
SupercomputingSites. Concurency, Experience, and
Practice, Mar. 2000.

[15] Gregor von Laszewski, S. Fitzgerald, I. Foster,
C. Kesselman,W. Smith, and S. Tuecke. A Direc-
tory Servicefor ConfiguringHigh-PerformanceDis-
tributed Computations. In Proc. 6th IEEE Symp.
on High-PerformanceDistributed Computing, pages
365–375,1997.

[16] GregorvonLaszewski andIanFoster. Grid Infrastruc-
tureto SupportSciencePortalsfor LargeScaleInstru-
ments.In Proc.of theWorkshopDistributedComput-
ing on the Web (DCW). University of Rostock,Ger-
many, June1999.

[17] Gregor von Laszewski, Ian Foster, JarekGawor, War-
renSmith,andSteveTuecke. CoGKits: A Bridgebe-
tweenCommodityDistributedComputingandHigh-
PerformanceGrids. In ACM 2000JavaGrandeCon-
ference, San Francisco,California, June3-4, 2000.
http://www.extreme.indiana.edu/java00.

[18] Gregor von Laszewski, JarekGawor, andPeterLane.
Java CoG Distribution. http://www.globus.org/cog,
January2000.Version0.8.6.


