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Abstract

A distributed, parallel implementation of the widely-
used Modular Semi-Automated Forces (ModSAF) Dis-
tributed Interactive Simulation (DIS) is presented,
with Scalable Parallel Processors (SPPs) used to simu-
late more than 50,000 individual vehicles. The single-
SPP code is portable and has been used on a variety
of different SPP architectures for simulations with up
to 15,000 vehicles. A general metacomputing frame-
work for DIS on multiple SPPs is discussed and results
are presented for an initial system using explicit Gate-
way processes to manage communications among the
SPPs. These 50K-vehicle simulations utilized 1,904
processors at six sites across seven time zones, includ-
ing platforms from three manufacturers. Ongoing ac-
tivities to both simplify and enhance the metacomput-
ing system using Globus are described.

1 The Large-Scale DIS Problem
Over the past few years, Distributed Interactive

Simulation (DIS) [1] has become an increasingly essen-
tial tool for training, system acquisition, test and eval-
uation within the Department of Defense. Key compo-
nents of DIS include: high fidelity computer simulated
individual entities (tanks, trucks, aircraft, . . . ); inter-
actions among entities hosted on different computers
through network messages; and support for Human In
Loop (HIL) interactions. Using DIS, it is possible to
create large scale virtual representations of real oper-
ational environments which are inexpensive enough to
be used repeatedly.

ModSAF is a particularly important example of
DIS which is routinely used for cost-effective training
throughout the armed forces. It is generally run us-
ing an ensemble of workstations communicating over a

network, typically a LAN. Each workstation is respon-
sible for simulating some modest number (30–100) of
entities. These computer generated Semi-Automated
Forces (SAF) are intended to realistically mimic the
behaviors of opposing or support forces within an ex-
ercise. The entity and environment models are accord-
ingly quite detailed.

Individual simulators (workstations) interact
through the exchange of data messages called PDUs
(Protocol Data Units)[2]. These PDUs are used in
ModSAF to describe the state of individual enti-
ties, weapons firing, detonations, environmental phe-
nomenon, command and control orders, etc. In stan-
dard ModSAF, the PDUs are sent as UDP datagrams.
Due to this unreliable message delivery mechanism,
each entity state PDU typically contains a complete
summary of the vehicle’s current state, and PDUs are
(re)transmitted at a frequent, regular ‘heartbeat’ in-
tervals to compensate for dropped data packets.

Independent of the nature of the PDU communi-
cations mechanism, this simplest picture of ModSAF
is not scalable in that it (implicitly) assumes each sim-
ulator receives and responds to all PDUs from all other
simulators—a model which clearly fails as the number
of simulators and simulated entities increases. More-
over, in many realistic large scale simulations, it is
invariably the case that most system-wide PDU traf-
fic is irrelevant for the limited set of entities hosted on
an individual simulator (e.g., tanks separated by tens
of kilometers generally don’t interact).

The DIS community ran into these issues in their
STOW-E exercise (Synthetic Theater of War-Europe
[3]) and ED-1A Engineering Demonstration [4], where
ModSAF was used to simulate 5,371 vehicles hosted
at twelve separate sites in the USA and in Europe.



Increasing the simulated entity count could not be
achieved by simply adding more workstations to the
network. Addition of a PDU screening mechanism
(‘Interest Management’) helped but did not eliminate
all scaling hurdles.

This paper describes a new approach to truly
large-scale DIS, using multiple Scalable Parallel Pro-
cessors (SPPs) to solve the scaling problems observed
in STOW-E. After a short summary of project goals
and accomplishments in Sections 1.1 and 1.2, Section
2 presents the general method used to port ModSAF
to run on an SPP. Sections 3-5 contain, respectively, a
(long term) vision for an effective STOW metacomput-
ing model, an analysis of initial multi-SPP ModSAF
accomplishments, and an overview of ongoing activi-
ties to enhance and extend the existing software us-
ing elements from the Globus metacomputing toolkit
[7][8].

1.1 The Synthetic Forces Express Project
The Synthetic Forces Express project (SF Ex-

press) [9] began in 1996 to explore the utility of
Scalable Parallel Processors (SPPs) as a solution
to the communications bottlenecks of conventional
ModSAF. The SF Express team consists of person-
nel from the California Institute of Technology (Cal-
tech), the Jet Propulsion Laboratory (JPL), and the
Space and Naval Warfare Systems Center San Diego
(SPAWARSYSCEN, formerly known as NRaD). The
SF Express charter was to demonstrate a scalable com-
munications architecture simulating 50K vehicles on
multiple SPPs—an order of magnitude increase over
the size the STOW-E simulation.

SPPs provide a natural, attractive alternative to
networked workstations for large-scale ModSAF runs.
Most of the processors on an SPP can be devoted to
independent executions of ‘SAFSim’, the basic Mod-
SAF simulator code. The reliable high-speed commu-
nications fabric between processors on an SPP pro-
vides significantly increased bandwidth over standard
dataflows among networked workstations. Construc-
tion of a scalable communications scheme was done in
three main steps:

Interest Specification Procedures: Individual
data messages were associated with specific inter-
est class indices, and procedures were developed
for evaluating the total interest state of an indi-
vidual simulation processor.

Intra-SPP Communications: Within an individ-
ual SPP, a selectable number of processes were
designated as message routers. These processes
receive and store interest declarations from the

simulator nodes and move simulation data pack-
ets according to the interest declarations.

Inter-SPP Communications: Additional interest-
restricted data exchange procedures were devel-
oped to support SF Express execution across mul-
tiple SPPs.

The primary technical challenge in porting Mod-
SAF to run efficiently on SPPs comes in the construc-
tion of a suitable network of message passing router
nodes/processors. SF Express uses point-to-point SPP
communications (implemented using the MPI Message
Passing Interface [10]) to replace the UDP socket calls
of standard ModSAF. The network of routers man-
ages these messages, effecting interest-restricted com-
munications among simulator nodes. There is con-
siderable freedom available in the construction of the
router node network. This paper describes a model
based on fixed communication channels among spe-
cific subsets of processors within an SPP. This Router
Network Architecture (RNA) was developed at Cal-
tech [11],[12].

As the simulation problem size increases beyond
the capabilities of any single SPP, additional interest-
restricted communications procedures are needed to
enable ‘Metacomputed ModSAF’ runs on multiple
SPPs. A number of options were considered, and the
first implementation used dedicated Gateway proces-
sors to manage inter-SPP communications.

1.2 50K+ Simulated Vehicles

On 11 August 1997, the SF Express project per-
formed two separate simulation runs, each with more
than 50,000 individually simulated vehicles. The runs
used three different types of Scalable Parallel Proces-
sors (SPPs) at six separate sites spanning seven time
zones, as shown in Fig.(1). These sites were linked by
a variety of wide area networks. Specifics for each site
are listed in Table 1. The majority of the SPPs used
the RNA communications scheme, while NASA Ames
and CEWES used an alternative approach developed
at JPL [13].

The N(P ) entries in the table give the number of
processors used at each site. The N(V )j columns in-
dicate the number of locally simulated vehicles in each
of the two runs. The 50K-vehicle simulation scenar-
ios were created by the ExInit software [14] and fea-
tured immediate intense interactions among the sim-
ulated entities, causing high communications levels
both within and among SPPs.



Figure 1: SPP Sites and Message Rates in the 50K SF Express Runs

Table 1: Participating Sites and Simulated Entity Counts for the 50,000 Vehicle SF Express Runs.

Site Hardware N(P) N(V )1 N(V )2
Caltech, Pasadena CA HP Exemplar 256 13,095 12,182
ORNL, Oak Ridge TN Intel Paragon 1024 16,695 15,996
NASA Ames CA IBM SP2 139 5,464 5,637
CEWES, Vicksburg MS IBM SP2 229 9,739 9,607
MHPCC, Maui HI IBM SP2 128 5,056 7,027
HP/Convex, Richardson TX HP Exemplar 128 5,348 6,733
Total 1,904 55,397 57,182
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Figure 2: Schematic illustration of a networked ModSAF simulator and notional mapping of the simulator tasks
onto an SPP.



2 Porting ModSAF to a Scalable Par-
allel Processor
The basic strategy used in porting ModSAF to

an SPP is a heterogeneous assignment of tasks to pro-
cessors, as illustrated in Fig.(2). The processors are
divided into three classes:

Entity Simulators/SAFSims: Most of the SPP’s
processors execute a minimally modified version
of ‘SAFSim’, the standard simulator code.

Simulation/Data Servers: A small number of
nodes read and store the simulation data and for-
ward it to the SAFSim nodes through SPP mes-
sages.

Communications/Routers: Data movement
among the SAFSim nodes is managed by a num-
ber of dedicated router nodes. The broadcast or
multicast socket calls of standard ModSAF are re-
placed by point-to-point communications directed
by this router network.

Neither side of Fig.(2) is scalable without the
imposition of additional interest management logic,
which limits the number of incoming data for an indi-
vidual SAFSim. Since interest management is an ac-
tive research area, it is important that the SPP imple-
mentation not depend on specifics of any one interest
management scheme. RNA makes only two minimal
assumptions in this regard: each PDU can be associ-
ated with an interest value (an “interest class”), and
each SAFSim can compute its own interest state ( the
set of all relevant interest values for locally simulated
vehicles). The communications network must deliver
to the SAFSim only those PDUs which overlap the
SAFSim’s declared interest state.

2.1 The Router Network Architecture
The basic building block of Router Network Ar-

chitecture is a fixed set of SAFSim nodes communicat-
ing with single “Primary Router” node, as illustrated
in Fig.(3). There are only two essential modifications
to the standard ModSAF code, as run of the SAFSim
nodes of Fig.(3):

1. The usual (broadcast) network reads and writes in
the ModSAF network communications library are
replaced by SPP communications with the router
node.

2. Each SAFSim node periodically recomputes its
collective interest state (union of interest states
for all locally simulated vehicles) and sends this
information to its router.

The Primary Router in Fig.(3) receives and (tem-
porarily) stores PDUs and interest declarations from
the attached SAFSims and subsequently forwards
those PDUs that match the SAFSim interest states.
These tasks are implemented using three straightfor-
ward constructs:

1. A large circular buffer to store active data ele-
ments.

2. A client list that maintains the current interest
declaration of the individual attached SAFSims
and pointers to the next outgoing PDU for each
client.

3. A simple interest assessment function that deter-
mines whether a PDU matches a client’s declared
interest.

The Primary Router in Fig.(3) is a pure data server
that waits for and processes requests from the SAF-
Sim clients. For efficiency, the actual data messages
exchanged between the SAFSims and Router are bun-
dles of PDUs.

It has been found that a single Primary Router
can comfortably manage the communications for a set
of client SAFSims in Fig.(3) simulating 1K-2K total
vehicles. Multiple replicas of the Primary Router Clus-
ter are required once the overall simulation size ex-
ceeds this limit. In such cases, the basic unit of Fig.(3)
is first augmented by the addition of two new Router
nodes (referred to as “Pop-Up” and “Pull Down”).
This enhanced routing “triad” is replicated, and ad-
ditional communications links between Pop-Up and
Pull-Down routers are enabled, giving rise to the full
router network shown in Fig(4).

Communications within the full architecture of
Fig(4) are straightforward. In addition to its nor-
mal communications with the SAFSim nodes, each
Primary Router forwards all SAFSim PDUs to its as-
sociated Pop-Up Router and also sends its collective
interest state (the union of the SAFSim interest states)
to its Pull-Down Router. Each Pull-Down router sub-
sequently collects interest-filtered PDUs from the full
Pop-Up layer, and delivers these data to the Primary.
Message passing within the router network follows a
strict set of hierarchical rules. In particular, all data
exchanges are flow-controlled, being initiated by small
request packets sent from one node to a router in a
higher layer within Fig(4). This approach is used to
prevent both communications deadlocks and the ar-
rival of large unanticipated messages that could exceed
available system buffer space.

The Pop-Up layer in Fig(4) provides a distributed
repository for all active data messages within the sim-
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ulation (this makes the Pop-Ups a perfect place to
attach data loggers for subsequent replays or statistics
gathering). Note that the data collection activities of
the Pull-Down routers occur in parallel with the Pri-
mary SAFSim communications. This parallelism min-
imizes the additional time delays for PDUs that must
travel through the full router network.

2.2 Performance of the Single-SPP Mod-
SAF Implementation

Detailed studies of the RNA model are contained
in Refs.[11],[12]. Highlights of these analyses are as
follows:

1. The RNA approach has been run successfully on
a variety of SPP architectures, including the Intel
Paragon, the IBM SP2, the HP Exemplar, the
Silicon Graphics Origin 2000 and the “Beowulf”
PC Cluster SPP [15].

2. These single-SPP runs have included simulations
with up to 18,000 vehicles.

3. The scaling behavior of RNA with increasing
problem size is well-understood, with ‘theoreti-
cal’ expectations validated by the measured per-
formance results.

4. The effective inter-processor communications
within an SPP lead to a significant reduction in
PDU communication overhead for an individual
SAFSim (relative to standard ModSAF perfor-
mance on a LAN/WAN network).

3 Anatomy of a DIS Metacomputer
“Metacomputing” can be defined as the concur-

rent use of a multiple network-linked resources for
solving very large computational problems. However,
computing in networked environments has both ad-
vantages and drawbacks. The state and structure of
networked resources are often dynamic and quite het-
erogeneous. Performance and portability can be com-
promised when trying to deal with either heterogene-
ity. Alternatively, linking large numbers of diverse re-
sources allows access to processing power and unique
capabilities beyond the resources at any one site. It
also enables applications to be solved with a mix of
systems, assigning appropriate and available assets to
specific parts of the overall problem.

For many classes of large distributed applications,
the aggregate computational power in a collection of
SPPs is only part of the metacomputing solution. A
full system should link computational engines, storage
systems, scientific instruments, advanced display de-
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vices, and human resources, as illustrated in Fig.(5),
with “HIL” representing some sort of ‘Human In Loop’
interface and “Idesk” (“Immersa-desk”) representing a
typical advanced display device. Data could be gath-
ered from a remote source (for example, a satellite
downlink) and streamed into a collection of SPPs for
real-time simulation processing. During the course of
the simulation, mechanisms for logging, filtering or
compressing data could be employed for subsequent
post-processing (e.g., visualization, querying and per-
sistent storage).

Distributed heterogeneous computing immedi-
ately implies diversity in terms of hardware architec-
tures and performance, operating systems, administra-
tive domains, network protocols, and so on. As the size
and complexity of the distributed system increases, op-
erational issues (resource scheduling, allocation, data
staging, etc.) become increasingly important compo-
nents of the metacomputing model.

The next two sections describe two initial steps to-
wards the seamless metacomputing picture of Fig.(5).
Section 4 presents the Gateway model used in the ini-
tial 50K-vehicle runs in Table 1. Section 5 describes
subsequent multi-SPP experiments to integrate parts
of the Globus metacomputing toolkit [7][8] in order
to remove many operational difficulties encountered
in the initial large simulations.

4 SF Express on Multiple SPPs using
Explicit Gateways
For large runs on multiple SPPs, some portions

of the entity state information from each SPP will,
in general, be relevant for entities simulated on other
SPPs. Extensions of the single-SPP architecture
must effect interest-restricted PDU exchanges among
the SPPs. Dedicated Gateway processors provide a
straightforward mechanism for this task.

The Gateway processors are generalizations of the

intra-SPP routers from Section 2.1, and can be viewed
as communications servers for two distinct classes of
clients:

Local Clients: Router nodes on the same SPP as the
Gateway that hold the continually changing col-
lective PDU and Interest State of the local SPP.
These local clients send (internal) interest decla-
rations and simulation data to the Gateway for
subsequent delivery to remote resources.

External Clients: Processes on remote machines
that receive and process interest declarations and
PDU bundles from the local SPP. An external
client could be a standard ModSAF workstation
or GUI. For inter-SPP links, an External Client is
essentially a mirror image of a Local Client which
resides on the external SPP.

Gateways manage interest-selected data flow in
two directions by way of four basic operations:

1. The collective interest state of the Local SPP is
sent out to each of the external SPPs.

2. The corresponding interest declarations are re-
ceived from the remote SPPs, defining standard
client interests. The union of these external inter-
est states defines the collective (external) gateway
interest, which is sent up to the local attached
routers.

3. The Gateway receives interest screened data from
the local routers in the usual manner, and for-
wards these to the appropriate external hosts.

4. The Gateway receives data from the external
SPPs and sends it the attached local routers for
subsequent distribution within the local SPP.



Aside from the fact that a Gateway node has two im-
portant global interest states (the attached SPP and
the external world), the overall operation of Gateways
is extremely similar to that of the router nodes from
Section 2.1.

4.1 Gateway Specifics for the Initial 50K-
Vehicle Runs

The first metacomputing experiments within the
SF Express project involved a number of simplify-
ing assumptions and restrictions on the nature of the
Gateway processes. In particular,

1. The communications network among the partici-
pating SPPs is implemented as a fully-connected
set of links between pairs of SPPs, with each SPP
dedicating a Gateway processor for each external
SPP.

2. Messages between SPPs are sent as UDP/IP data-
grams.

3. Interest declaration messages are retransmitted at
regular intervals (“heartbeats”), to accommodate
the unreliable nature of the UDP messages.

A schematic diagram of the multi-SPP environment
is given in Fig.(6), illustrating the dedicated Gateway
links.

The Gateways in Fig.(6) operate as pure commu-
nications servers, whose task it is to manage the flow
of requested PDUs and interest states between SPPs.
Details can be found in Ref. [12]. Timing results for
Gateway operations in the 50K-vehicle runs are exam-
ined in Section 4.4.

The complete connectivity among Gateways in SF
Express (as in Fig(6)) should be viewed as a provi-
sional expediency on the road to a 50K-vehicle simula-
tion. With one exception noted below, this model eas-
ily handled the inter-SPP traffic, at rates up to 1,000
PDUs/sec. However, this initial model does not scale
well as the number of sites in Fig.(6) increases, and
has the additional defect that Gateway processors as-
sociated with low activity links are a wasted resource.
Movement towards an architecture linking individual
SPPs by some form of multicasting (possibly ATM)
network should be explored.

4.2 The 50K-Vehicle Scenarios
The scenarios used by SF Express involve Blue

and Red forces laid down on the 300 km by 350 km
SAKI (Saudi Arabia, Kuwait, Iraq) terrain database.
The full complement of vehicles is organized into a
number of opposing force groups. The relative pop-
ulations of vehicles types (tanks, trucks, helicopters,
...) and the actual laydowns of units and vehicles were

designed according to standard military doctrine [16]
including, for example, a roughly 2:1 superiority in
numbers for the attacking Blue forces.

Figure(7) presents a schematic of the force deploy-
ments in one of the two scenarios used in the 50K-
vehicle runs. This ‘Version 2.1’ laydown has about
42K Blue Vehicles and 21K Red Vehicles. Most of
the vehicles (about 85%) are trucks, as is realistic for
many actual military campaigns.

The large boxed areas in Fig.(7) show the assign-
ments of scenario elements to SPP platforms. The
evolution of the scenario over time is fairly simple: all
Blue forces move east and attack while the Red forces
sit and defend. This gives rise to intense interactions
along the dashed ‘Front Line’ in Fig.(7). For the given
Force⇔SPP assignments, this yields significant data
exchanges between the Ames and CEWES SP2’s and
among the four 64-processor components of the Cal-
tech HP/Exemplar. Additional non-fighting interac-
tions occur between some sets of adjacent Blue force
groups.

4.3 Porting and Practical Issues
ModSAF was initially ported to the Intel

Paragons at Caltech. Extensive single-node runs were
required to understand and optimize the very large
ModSAF code base, and to identify and assess the
key communications libraries. Numerous problems
were encountered (system call assumptions, inade-
quate bounds checking, . . . ). Solutions developed
during the single-node Paragon work simplified subse-
quent ports to other platforms, although OS-specific
assumptions, awkward build procedures, and occa-
sional cross-compilation issues required case-by-case
treatments.

Once the RNA code had matured to the point
that simulations with 1K-10K vehicles were becoming
routine, initial heterogeneous multi-SPP tests were be-
gun. Coordination and synchronization of the simula-
tion start was quickly identified as a key issue, along
with management of the extensive scenario data files.
A number of moderate runs, with 20K-30K simulated
vehicles at two or three sites, were critical first steps.

The large, 50K-vehicle runs with six SPPs spread
across the country involved substantial coordination
issues. Various sites had different disk policies, ac-
counting mechanisms, usage models and schedulers.
Ultimately, the success of the large runs resulted from
moderate to significant system administration inter-
ventions, competent system support personnel, and
numerous phone calls. While this was acceptable for
a demonstration, it is clearly inadequate for a pro-
duction model. Many of the initial Globus activities
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described in Section 5 focus on these operational is-
sues.

4.4 Inter-SPP Highlights Of The 50K
Runs

The performance issues for the metacomputing
model of Fig.(6) center on data movement through
the Gateway nodes. The results presented in this sec-
tion will show that communications levels were easily
managed with one, essentially expected Paragon ex-
ception.

A word on the configuration of the HP Exemplar
machines is in order here. The Caltech machine was
available only as four independent 64-processor ma-
chines (labelled ‘HP/Cj’ below) when the 50K runs
were done (it is now a single 256-processor system).
In contrast, the 128-processor Exemplar at the Con-
vex site (‘HP/Tx’) was configured as a single system
image.

4.4.1 Results From The Version 2.1 Scenarios

Table 2 summarizes inter-SPP data rates for the V2.1
scenario run. The rows and columns are labelled by
SPP site, and entries are in Kbytes/sec. Links with
less than 0.5 Kbytes/sec are left blank.

Many of the RNA⇔RNA communication links
have no appreciable activity. This is due to the ge-
ographic separation of the Force groups in Fig.(7)
and additional restrictions on broadcast PDUs, as dis-
cussed in Refs.[11],[12]. The communication model
running on Ames and CEWES retains a significant
level of simulation-wide broadcast PDUs, giving rise
to the constant “background” data rates evident in
the bottom two rows of Table 2. The values in Table
2 give the rates at which data are sent from the ‘Row
SPP’ to the ‘Column SPP’. Due to dropped packets,
these are not the same as the rate at which data are
received by the Column SPPs, but they are generally
close. The exceptions involved links to ORNL, where
packet loss was often severe. In the worst case,

MHPCC Sends 63.9 Kbytes/sec To ORNL
ORNL Receives 7.9 Kbytes/sec From MHPCC

With the exception of communications to ORNL, the
number of dropped UDP packets within the Version
2.1 runs is small, and well within the tolerable range
for ModSAF.

Table 3 contains a detailed look at three of the
more active inter-SPP links from Table 2:

HP/Tx ⇔ MHPCC: Successful, moder-
ately high bandwidth communications
between machines on a Wide Area Net-
work.

MHPCC ⇔ ORNL: Saturated/Failed
communications between machines on a
Wide Area Network.

HP/C1 ⇔ HP/C2: Successful communi-
cations between machines on a Local
Area Network.

The ‘PDU Busy’ rows list the fraction of (wall clock)
time spent in PDU communications within the SPP
and through the Gateway to the remote SPP. The last
two rows give the mean times for PDU bundle com-
munications across the network. The UDP-ethernet
reads and writes on the ORNL Paragon are about 30
times slower than on the other platforms, leading to an
overwhelmed Gateway and the significant data losses
noted above.

It should be stressed that no attempts were made
to optimize network communications in these initial
50K runs. Networks used included ESnet, LosNettos,
NREN, DREN, ANSnet, and commodity providers.
Fig.(8) shows a partial network map of communica-
tions links to the Caltech site, with shaded ellipses for
the various network domains. A message from Cal-
tech to MHPCC visits 14 routers, while a return mes-
sage travels through 12. Clearly, the SF Express 50K-
vehicle runs did not use an overly optimized network.

The results in Tables 2,3 indicate that something
more aggressive than simple UDP/IP ethernet will be
needed to successfully use the ORNL Paragon in a
large scale, distributed simulation. As was noted in
Section 4.1, the RNA Gateway strategy can accom-
modate various transport mechanisms.

5 An Integrated Metacomputing Envi-
ronment Using Globus
The Globus Project [7][8] is developing a basic

software infrastructure to support applications which
need and/or are capable of using geographically dis-
tributed computational and information resources. A
key element of Globus is the design and implemen-
tation of a distributed supercomputing infrastructure
toolkit that provides an integrated set of services in
five key areas:

1. Communications: The Nexus communications
library provides message delivery services for a va-
riety of communications models in a manner that
is cognizant of network quality of service param-
eters.

2. Information: The Metacomputing Directory
Service (MDS) provides a uniform method for
obtaining real-time information on system status
and structure.



Table 2: Inter-SPP communications rates for the V2.1 scenario large-scale metacomputing runs.

HP/C0 HP/C1 HP/C2 HP/C3 ORNL MHPCC HP/Tx
HP/C0 - 20.7 35.1
HP/C1 23.9 - 15.9 14.8 16.1
HP/C2 64.2 - 15.3
HP/C3 18.4 5.8 -
ORNL - 63.9
MHPCC 22.2 - 67.2
HP/Tx 3.7 21.0 169.0 -
AMES 3.3 3.3 3.3 3.3 3.3 3.3 3.3
CEWES 6.3 6.3 6.3 6.3 17.6 6.3 6.2

Table 3: Details of Gateway performance on three busy links of the V2.1 SF Express run.

Local SPP HP/Tx MHPCC ORNL MHPCC HP/C1 HP/C2
Remote SPP MHPCC HP/Tx MHPCC ORNL HP/C2 HP/C1
Local PDU Busy 0.168 0.074 0.041 0.050 0.023 0.014
Remote PDU Busy 0.147 0.080 0.926 0.032 0.031 0.030
Read Time [msec] 0.60 0.63 22.26 0.77 0.61 0.60
Write Time [msec] 0.97 0.28 27.52 0.26 0.45 0.34

Caltech

ORNL

MHPCC
HP/Convex

Ames

NREN

ESnet

Los Nettos

mci.net

ans.net

genuity.net

sprintlink.net

Figure 8: Partial network connectivity map for the 50K-vehicle simulations



3. Resource Location/Allocation: The Global
Resource Allocation Manager (GRAM) provides
mechanisms for declaring application resource re-
quirements, identifying and scheduling appropri-
ate resources, initiating and managing the appli-
cation on these resources (a low-level scheduler
API).

4. Security: The Globus system provides a number
of basic security services (e.g., authentication and
authorization), enabling sophisticated application
specific security mechanisms and single sign-on
functionality.

5. Data Access: Mechanisms are provided for
high-speed remote access to persistent storage.

5.1 Benefits of the Globus Toolkit
The modules within the Globus toolkit directly

address a number of problems uncovered during the
initial, manually operated SF Express metacomputing
runs.

The Nexus library provides a “resource aware”
implementation of communication tasks (e.g., data ex-
changes between the Gateway nodes of Fig(6)), using
the best available communications mechanism (UDP
over IP, HiPPI, ATM, etc.). Simple automatic selec-
tion rules or user-guided directives determine the ap-
propriate communications method, with selections dy-
namically dependent on the status of the available net-
work services. These features are particularly useful
for the communications links between Gateway pro-
cessors, in order to avoid bandwidth saturation, as
was observed in Section 3 for the ORNL⇔MHPCC
link. The communications layer provides efficient im-
plementations of native communication methods, in-
cluding message passing, multicast, distributed shared
memory, remote procedure calls, etc. The selected
method must be aware of Quality of Service (QoS) pa-
rameters, like reliability, bandwidth and latency. In-
telligent, performance based, application configuration
choices can be made to match the “currently available”
execution environment. This enables the user to better
utilize shared resources, and attain higher throughput.

The MDS and GRAM elements of the Globus
toolkit address the broad problem of resource iden-
tification, allocation, and task execution within the
grid of available assets. The MDS provides an au-
tomated, “information-rich” approach to system con-
figuration, enabling intelligent automated resource al-
locations. MDS includes a data model to represent
dynamically changing capabilities of various parallel
computers and networks, so that tools and applica-
tions do not have to rely on stale or programmer-
supplied knowledge (e.g., use a dedicated HiPPI or

ATM node on an Intel Paragon instead of garden va-
riety UDP/IP).

Once the desired distributed assets have been
identified, GRAM provides a simple, uniform interface
to local resource allocations. In essence, GRAM en-
ables the coordinated startup of a metacomputing run
by a single “go” script that drives the participating
SPPs, attached displays, etc. This represents a signif-
icant improvement over the existing environment, in
which the non-static differences in operating systems
and resource schedulers on various platforms are coor-
dinated by hand-crafted scripts (and prayers) based on
detailed knowledge of resource-specific usage models.
Globus services also provides periodic health and sta-
tus information for each job instantiation and allows
application-specific tools to hook into generic health
and status monitor services. This capability would be
an improvement over the existing SF Express method
using separate monitoring tools on each SPP.

Not all start-up and job management concerns are
addressed with the use of a single script which starts
program execution on all resources. Determining and
staging required datasets is another concern. Staging
of data automatically and efficiently just prior to sim-
ulation time avoids a number of headaches associated
with site-specific disk usage policies. For example, the
50K scenario datasets could not permanently reside on
the file systems of the SPPs used in the SF Express
runs, due to various quota limits on assorted high-
speed file systems. This situation necessitated tedious
(and somewhat error prone) hand staging prior to the
large runs.

Simulations to date have involved static assign-
ments of scenarios to SPPs, such that configuration
file preparation and data staging could occur prior
to SPP resource allocation. This approach typically
wastes disk space and does not allow the application
to take best advantage of the resources available. The
Data Access services (remote I/O calls) within Globus
allow high-speed remote access to persistent storage,
such as simulation scenarios and behavior files, po-
tentially saving vast amounts of disk space and fre-
quent user-intervention required to move large data
sets both before and after runs (possibly scheduled
arbitrarily). The more resource-aware an application
can become, the larger the window for adaptive and
optimal choices.

5.2 Initial Experiments With Globus
The coordinated start-up capabilities of Globus

were successfully tested during two live demonstra-
tions at the November 1997 High Performance Net-
working and Computing Conference (SC97) in San
Jose. These experiments involved 824 processors on
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Figure 9: The Version 2.1 Scenario element assignments for the initial tests with Globus.

SPPs at six sites, as shown in Fig.(9), simultaneously
displaying parts of the simulation on an Immersa-desk
in the Argonne National Laboratory booth on the
conference floor. Unlike the fairly conservative force
group assignments of the initial 50K-vehicle simula-
tions, these runs involved a more “interleaved” assign-
ment of scenario files to SPPs, as shown in Fig.(9).
This was done in order to provide more stressing tests
of inter-SPP communications. The overall simula-
tion involved about 40K vehicles (about 50K ModSAF
entities). The important new aspects using GRAM
specifications to drive the simulation were successfully
demonstrated.

6 Accomplishments and Future Direc-
tions
The multi-SPP runs in August 1997 surpassed the

project goal of a 50,000 vehicle simulation on a het-
erogeneous collection of SPPs and validated the overall
SF Express concept. The ExInit team generated a col-
lection of sound military scenarios, featuring intense,
quick interactions (and fighting) within the one-hour
time frame of the runs.

Problem areas in the single-SPP SF Express code
seemed to center, not surprisingly, on the ModSAF
simulation engine itself. Of the hundreds of thousands
of lines of ModSAF source code, less than 5 percent
of libraries were modified to accommodate RNA. The
core simulation engine was purposely left alone, due
not only to project scope, but to decouple performance
of the communications architecture from the driving
simulation engine. Among other issues, simple profil-
ing determined that ModSAF vehicle table manipu-
lations consumed a substantial fraction of total CPU
time. Possible solutions for expensive ordered list op-
erations are noted in Ref.[17].

Problems in the multi-SPP runs of Sec.4 were
largely operational, arising from the differing environ-
ments at the six SPP sites. The Globus experiments
described in Section 5 can be viewed as the first steps
towards a more user-friendly robust system.

An attractive near-term direction involves a
greater exploitation of the unified resource information
services, resource location and allocation services, and
data access modules within Globus to eliminate much
of the configuration file mechanisms within SF Express
and optimize runtime parameters. Using the currently
deployed Globus services, initialization and execution
of a large simulation would proceed roughly as follows:

1. The user specifies the location of the simulation
data and the desired simulation size from a single
place (e.g., console or file).

2. MDS evaluates the request and locates appro-
priate resources (with the MDS databases aug-
mented to understand information on the inher-
ent simulation capabilities of the individual plat-
forms).

3. Once the appropriate computational assets are al-
located, GRAM is used to start the distributed
simulation and to exchange run-time system con-
figuration information among the participants.

4. Using the system configuration information from
GRAM, each SPP takes responsibility for a spe-
cific subset of the simulation scenario files, retriev-
ing these data automatically from the staging area
using the Globus Data Access services.

In this model, user input is largely restricted to
the high-level specification of the problem itself (i.e.,



the simulation scenarios), and Globus manages all
pragmatic issues of resource allocation, data staging,
job management, and network connectivity needed in
order to meet the user specified requirements (which
could well include additional constraints, such as re-
quired network bandwidths).

The construction of this Globus-directed meta-
computing model is a realistic near-term goal. Modi-
fications within the existing RNA codebase of Ref.[12]
would largely involve generalizations of the Gateway
communications procedures to use portable Nexus
routines in place of socket calls. Additional new logic
would be needed within the single-SPP initialization
sequence to support run-time assignments of scenarios
to SPPs, based on configuration data from GRAM.
(Neither of these tasks is seen as being particularly dif-
ficult.) This system would become the next-generation
SF Express proof-of-concept demonstration, with in-
telligent resource allocation, simulation startup and
data management all done in a simple, user-friendly
manner.
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