
FeBRuARY 2012 | VoL. 55 | No. 2 | coMMunicaTions of The acM 81

in performing them for terabyte or
larger datasets (increasingly common
across scientific disciplines) are quite
different from those that applied

when data volumes were measured
in kilobytes. The result is a computa-
tional crisis in many laboratories and
a growing need for far more powerful
data-management tools, yet the typi-
cal researcher lacks the resources and
expertise to operate these tools.

The answer may be to deliver re-
search data-management capabili-
ties to users as hosted “software as a
service,” or SaaS,18 a software-delivery
model in which software is hosted
centrally and accessed by users using
a thin client (such as a Web browser)
over the Internet. As demonstrated in
many business and consumer tools,
SaaS leverages intuitive Web 2.0 in-

aS Big Data emerges as a force in science,2,3 so, too,
do new, onerous tasks for researchers. Data from
specialized instrumentation, numerical simulations,
and downstream manipulations must be collected,
indexed, archived, shared, replicated, and analyzed.
These tasks are not new, but the complexities involved

software as
a service
for Data
scientists

Doi:10.1145/2076450.2076468

Globus Online manages fire-and-forget file
transfers for big-data, high-performance
scientific collaborations.

By BRyce aLLen, John BResnahan,
Lisa chiLDeRs, ian fosTeR, GoPi KanDasWaMy,
RaJ KeTTiMuThu, JacK KoRDas, MiKe LinK,
sTuaRT MaRTin, KaRL PicKeTT, anD sTeVen TuecKe

 key insights

����The costs of research data life-cycle
management are growing dramatically as
data becomes larger and more complex.

����saas approaches are a promising
solution, outsourcing time-consuming
research data management tasks to
third-party services.

����Globus online demonstrates the potential
of saas for research data management,
simplifying data movement for research-
ers and research facilities alike.

82 coMMunicaTions of The acM | FeBRuARY 2012 | VoL. 55 | No. 2

contributed�articles

terfaces, deep domain knowledge,
and economies of scale to deliver ca-
pabilities that are easier to use, more
capable, and/or more cost-effective
than software accessed through other
means. The opportunity for continu-
ous improvement via dynamic deploy-
ment of new features and bug fixes
is also significant, as is the potential
for expert operators to intervene and
troubleshoot on the user’s behalf.

We report here on a research data-
management system called Globus
Online, or GO, that adopts this ap-
proach, focusing on GO’s data-move-
ment functions (“GO-Transfer”). We
describe how GO leverages modern
Web 2.0 technologies to provide in-
tuitive interfaces for fire-and-forget
file transfers between GridFTP end-
points1 while leveraging hosting for
automatic fault recovery, high per-
formance, simplified security con-
figuration, and no client software in-
stallation. We also describe a novel
approach for providing a command-
line interface (CLI) to SaaS without
distributing client software and Glo-
bus Connect to simplify installation
of a personal GridFTP server for use
with GO. Our experiments show low
overhead for small transfers and high
performance for large transfers, rela-
tive to conventional tools.

Adoption of this new service has
been notable. One year after product
launch, November 2010, more than
3,000 registered users had in aggre-
gate moved more than two petabytes
(2×1015B) and 150 million files; nu-
merous high-performance comput-
ing (HPC) facilities and experimental
facilities recommend GO to their us-
ers; and several “science gateways”
are integrating GO as a data upload/
download solution. GO has also been
adopted as a foundational element
of the National Science Foundation’s
new (as of 2011) Extreme Science and
Engineering Discovery Environment
(XSEDE) supercomputer network
(http://www.xsede.org/).

Data Movement
Researchers often must copy many
files with potentially large aggregate
size among two or more network-
connected locations, or “endpoints,”
that may or may not include the com-
puter from which the transfer com-

mand is issued; that is, third-party
transfers may be (indeed, frequently
are) involved. Our goal in designing
GO is a solution that provides extreme
ease-of-use without compromising
reliability, speed, or security. A 2008
report by Childers et al.5 of Argonne
National Laboratory makes clear the
importance of usability. In particu-
lar, failure recovery is often a human-
intensive process, as reported by
Childers et al.5: “The tools that we use
to move files typically are the standard
Unix tools included with ssh… it’s just
painful. Painful in the sense of having
to manage the transfers by hand, re-
starting transfers when they fail—all
of this is done by hand.”

In addition, datasets may have
nested structures and contain many
files of different size (see the side-
bar “Other Approaches”). Source and
destination may have different se-
curity requirements and authentica-
tion interfaces. Networks and storage
servers may suffer transient failures.
Transfers must be tuned to exploit
high-speed research networks. Direc-
tories may have to be mirrored across
multiple sites, but only some files dif-
fer between source and destination.
Firewalls, Network Address Transla-
tion, and other network complexities
may have to be addressed. For these
and other reasons, it is not unusual to
hear of even modest-scale wide-area
data transfers requiring days of care-
ful “babysitting” or of being aban-
doned for high-bandwidth but high-
latency (frequently labor-intensive
and error-prone) “sneakernet.”11

Why Move Data at all?
Why not just leave data where it is
created? Such an option is certainly
preferred when possible, and we may
hope that over time moving computa-
tion to data rather than the other way
round will be more common. How-
ever, in practice, data scientists often
find data is “in the wrong place” and
thus must be moved for a variety of
reasons. Data may be produced at a
location (such as a telescope or sen-
sor array) where large-scale storage
cannot be located easily. It may be
desirable to collocate data from many
sources to facilitate analysis—a com-
mon requirement in, say, genomics.
Remote copies may be required for

a common question
about Go is whether
data can be moved
more effectively
through the
physical movement
of media rather
than through
communication
over networks.

contributed�articles

FeBRuARY 2012 | VoL. 55 | No. 2 | coMMunicaTions of The acM 83

disaster recovery. Data analysis may
require computing power or special-
ized computing systems not avail-
able locally. Policy or sociology may
require replication of data sets in
distinct geographical regions; for ex-
ample, in high-energy physics, all data
produced at the Large Hadron Col-
lider, Geneva, Switzerland, must es-
sentially be replicated in the U.S. and
elsewhere for independent analysis.
It is also frequently the case that the
aggregate data-analysis requirements
of a community exceed the analysis
capacity of a data provider, in which
case data must be downloaded for lo-
cal analysis. This is the case in, for ex-
ample, the Earth System Grid, which
delivers climate simulation output to
its 25,000 users worldwide.

Another common question about
GO is whether data can be moved
more effectively through the physi-
cal movement of media rather than
through communication over net-
works. After all, no network can ex-
ceed the bandwidth of a FedEx truck.
The answer is, again, that while physi-
cal shipment has its place (and may
be much cheaper if the alternative is
to pay for a high-speed network con-
nection), it is not suitable in all situ-
ations. Latency is high, and so is the
human overhead associated with
loading and unloading media, as well
as with keeping track of what has been
shipped. Nevertheless, it could be fea-
sible to integrate into GO methods
for orchestrating physical shipment
when it is determined to be faster
and/or more cost-effective—as with
Cho’s and Gupta’s Pandora (“People
and networks moving data around”)
system.6

Different interfaces for
Different users
The Computation Institute at the
University of Chicago and Argonne
National Laboratory operates GO as
a highly available service (http://www.
globusonline.org/) to which users
submit data-movement and synchro-
nization requests. A typical transfer
request proceeds as follows: A user
authenticates with GO and submits a
request. GO records the request into
its state database, inspects the re-
quest to determine what endpoints
are involved, and if necessary prompts

the user to provide credentials GO can
use to interact with those endpoints
on the user’s behalf. GO then estab-
lishes authenticated GridFTP control
channels with each endpoint and is-
sues the appropriate GridFTP com-

mands to transfer the requested files
directly between the endpoints. GO
monitors the transfer progress and
updates transfer state in the state da-
tabase. This information can be used
to restart transfers after faults and re-

One alternative for data movement involves running tools on the user’s computer;
for example, rsync,20 scp, file transfer program (FtP), secure FtP, and bbftp13 are all
used to move data between a client computer and a remote location. Other software
(such as globus-url-copy, reliable File transfer, File transfer Service, and Lightweight
Data replicator) can each manage large numbers of transfers. however, the need to
download, install, and run software is a significant barrier to use. Users spend much time
configuring, operating, and updating such tools though rarely have the it and networking
knowledge necessary to fix things when they do not “just work,” which is all too often.

Some big-science projects have developed specialized solutions to the problem; for
example, the PheDex high-throughput data-transfer-management system9 manages
data movement among sites participating in the Compact Muon Solenoid experiment
at Cern, and the Laser interferometer gravitational wave Observatory (LigO) project
developed the LigO Data replicator.4 these centrally managed systems allow users
to hand off data-movement tasks to a third-party service that performs them on their
behalf. however, these services require professional operators functioning only among
carefully controlled endpoints within these communities.

Managed services (such as YouSendit and DropBox) also provide data-management
solutions but do not address researchers’ need for high-performance movement of
large quantities of data. Bittorrent8 and Content Distribution networks21 are good at
distributing a relatively stable set of large files (such as movies) but do not address data
scientists’ need for many frequently updated files managed in directory hierarchies.
the integrated rule-Oriented Data System17 is often run in hosted configurations,
but, though it performs some data-transfer operations (such as for data import), data
transfer is not its primary function or focus.

the Kangaroo,19 Stork,14 and CatCh15 systems all manage data movement over
wide-area networks using intermediate storage systems where appropriate to optimize
end-to-end reliability and/or performance. they are not designed as SaaS data-
movement solutions, but their methods could be incorporated into gO.

web and reSt interfaces to centrally operated services are conventional in
business, underpinning such services as Salesforce.com (customer relationship
management), google Docs, Facebook, and twitter—an approach not yet common in
science. two exceptions are the PheDex Data Service,9 with both reSt and CLis, and
the national energy research Supercomputing Center, or nerSC, web toolkit called
newt7 that enables reStful operations against hPC center resources.

Other Approaches

Principal Globus online data-transfer commands.

class name Description

Create
Transfer

ls List files and directories on an endpoint.

transfer Request data transfer of one or more files or directories between end-
points; support recursive directory transfer and rsync-like synchronization.

scp Request data transfer of a single file or directory; syntax and semantics
based on secure copy utility to facilitate retargeting to go of scripts using
scp for data movement.

Monitor
Transfers

status List transfers initiated by requesting user, along with summary information
(such as status, start time, and completion time).

details Provide details on a transfer (such as number of files transferred
and number of faults).

events List events associated with a specified transfer: start, stop,
performance, faults.

Control
Transfers

cancel Terminate specified transfer or individual file in a transfer.

wait Wait for specified transfer to complete; show progress bar.

Alter deadline for a transfer.

84 coMMunicaTions of The acM | FeBRuARY 2012 | VoL. 55 | No. 2

contributed�articles

port progress to the user. GO keeps at-
tempting a failed request periodically
until the task deadline is reached or
the user cancels the request. When
the transfer completes or an unrecov-
erable fault is encountered the user is
notified via email.

GO supports a friendly, intuitive
Web GUI for ad hoc and less-technical
users; a CLI for use by more advanced
users and for scripting; and a Rep-
resentational State Transfer (REST)
application programming interface
(API) facilitating integration for sys-
tem builders that also supports the
GO Web interface. The table here lists
GO’s primary transfer-management
functions. Additional endpoint-man-
agement functions provide for the
creation, deletion, configuration, ac-
tivation, and deactivation of logical
endpoints. Other functions support
administrative tasks (such as listing
available commands, reviewing com-
mand history, and obtaining com-
mand help).

The REST interface uses HTTP
geT, PuT, PoST, and deLeTe opera-
tions against a defined set of URLs
representing GO resources. Thus, to
create a transfer task, a user issues a
PoST to https://transfer.api.globuson-
line.org/v0.10/transfer with a docu-
ment describing the transfer request,
including, for example, source and
destination endpoints and file paths
and options; to access the status of a
task, the user issues a geT request to
https://transfer.api.globusonline.org/
v0.10/task/<task_id>; the system then
returns a document with the status
information. The REST interface is
versioned, so GO can evolve its REST
interface without breaking existing
clients. Documents passed to and
from HTTP requests can be format-
ted using JavaScript Object Nota-
tion (JSON) and Extensible Markup
Language (XML). Supported security
mechanisms include HTTPS mutual
authentication with an X.509 client
certificate and (for Web browsers)
HTTPS server authentication with
cookie-based client authentication.

The Web interface builds on the
REST interface using standard Asyn-
chronous JavaScript (AJAX) and XML
techniques. A GO Web page contains
standard HTML, CSS, and JavaScript,
interacting with the REST interface

through standard-session cookie-
based client authentication. The
Web GUI supports browsing remote
file systems, as well as submitting,
monitoring, and cancelling transfer
requests.

A CLI supports client-side script-
ing; for example, a script that, each
evening, transfers new files created
during the day to a remote reposi-
tory or that automatically moves out-
put from an analysis job back to a lo-
cal machine. A CLI typically requires
installation of client-side libraries,
though it is counter to the key SaaS
tenet of not requiring client software
installation to use the service. To obvi-
ate having to install software, the GO
system provides all GO users with a re-
stricted shell, to which they can ssh to
execute commands. Thus, a user, Joe,
can write

ssh joe@cli.globusonline.org \
 scp alcf#dtn:~/myfile nersc#dtn:~/
myfile

to copy myfile from source alcf#dtn to
destination nersc#dtn. The boldface
text invokes the GO scp, or secure
copy, command, mirroring the syntax
of the popular scp. It supports many
regular scp options, plus some addi-
tional features, and is much faster be-
cause it invokes GridFTP transfers. Al-
ternatively, Joe can first ssh to http://
cli.globusonline.org/, then issue a se-
ries of commands directly:

joe$ ssh cli.globusonline.org
Welcome to globusonline.org, ian.
 $ scp alcf#dtn:~/myfile nersc#dtn:~/
myfile
Contacting ‘gs1.intrepid.alcf.anl.gov’...
enter MyProxy pass phrase: ********

This example command also illus-
trates how endpoints can define logi-
cal names for physical nodes. For
example, alcf#dtn denotes the data-
transfer nodes running GridFTP serv-
ers at the Argonne Leadership Com-
puting Facility (ALCF: http://www.alcf.
anl.gov/). Sites can define and publish
their own endpoint definitions (such
as alcf#dtn, nersc#dtn); users are able
to define custom endpoint definitions
as well (such as mylaptop, myserver).
More than 300 such endpoint defini-
tions have been defined, incorporat-
ing many major research computing
systems in the U.S. and elsewhere
worldwide.

user Profile and
identity Management
An important GO feature is the abil-
ity to handle transfers across mul-
tiple security domains with multiple
user identities. Unlike many systems,
including most previous Grid file-
transfer services, GO does not require
a single, common security credential
across all transfer endpoints. Rather,
it assumes users have many identities
for use with different service provid-
ers and that GO’s job is to ensure the

figure 1. Globus online architecture.

user

user

user

user

gridFTP
server

gridFTP
server

user
gatewayWorker

Profiles and state

Notification
target

TM

contributed�articles

FeBRuARY 2012 | VoL. 55 | No. 2 | coMMunicaTions of The acM 85

right identities are brought to bear at
the right time for any transfer and do
so in a way that is easy for users to un-
derstand.

To this end, all users have GO ac-
counts where they easily configure
their profile with various identities;
for example, they can register their
MyProxy Certification Authority (CA)16
identities (such as for NERSC and
other computing centers using the ap-
proach), OAuth protocol12 identities
(such as for ALCF, the NSF XSEDE net-
work of supercomputer centers, and
Facebook), OpenID identities (such
as for Google), Shibboleth10 identities
(such as for campus credentials), and
X.509 identities (such as from the U.S.
Department of Energy Grids CA and
International Grid Trust Federation-
certified CA).

Though GO stores identities, it
does not store passwords; rather, it
knows only the user name so it can
prompt for the appropriate informa-
tion when that identity is needed. In
addition, identities can be configured
as “federated identities” the user uses
to authenticate with GO; for example,
users who have already authenticated
their browser session with an OpenID,
OAuth, or Shibboleth identity can use
GO without having to authenticate
further, and X.509 (proxy) identities
can be used to authenticate with the
GO Web site, CLI, and REST API.

GO keeps track of what security cre-
dentials are required by the different
endpoints with which users may wish
to communicate. Then, where possi-
ble, it caches information it can use to
facilitate access. For example, assume
user U must provide X.509 credential
U-A to access endpoint A and X.509
credential U-B to access endpoints
B1 and B2. To perform a file transfer
from A to B1, as requested by the user,
GO requires short-term (typically 12-
hour) X.509 proxy credentials22 it can
use to authenticate the user request
to the GridFTP servers running at
endpoints A and B1. If GO does not
have such credentials, it prompts the
user for them when the user requests
the transfer. Alternatively, a user (or
script) can proactively push X.509
proxy credentials to GO for use with
specific endpoints.

When GO has the needed creden-
tials it proceeds with the transfer,

caching them until they expire or are
explicitly deleted by the user. GO also
uses the same user proxy credential
for endpoints that have the same de-
fault MyProxy server, so users need
not enter the same password multiple
times. If a credential expires before
the transfer completes, GO notifies
the user via email that the user must
re-authenticate. Until such time as
the credential is renewed, the transfer
is suspended.

scalable cloud-based
implementation
SaaS requires reliability and scalabil-
ity, continuing to operate despite the
failure of individual components and
behaves appropriately as usage grows.
To this end, the GO team applies
methods commonly used by SaaS pro-
viders, running GO on a commercial
cloud provider, Amazon Web Services
(AWS). The GO implementation uses a
combination of Amazon Elastic Com-
pute Cloud (EC2), Amazon Elastic
Load Balancing, and Amazon Simple
Storage Service (S3).

The GO implementation involves
platform services, which provide user,
profile, and group-management func-
tions, and the file-transfer service
that implements the data-movement
functionality that is the focus of this
article. The GO team runs the plat-
form services on a collection of EC2
instances across several availability
zones in Amazon’s U.S. East region
(located in Virginia), including Web
server, load balancer, database, and
backup. The file-transfer service runs
on a collection of EC2 instances host-
ed in the U.S. East region, including of

transaction database, transfer agents,
history database, transfer REST API
server, CLI server, and backup. In ad-
dition, the GO team runs two Nagios
servers on EC2 instances, one in the
U.S. East region to monitor all other
instances, the other in the U.S. West
region to monitor the health of the
primary Nagios server. The GO team
also uses the Chef configuration-
management tool for provisioning
all servers. The vast majority of GO is
programmed in Python, running on
Ubuntu Linux servers, with Cassandra
and Postgres databases.

Figure 1 is a somewhat abstracted
view of the GO implementation, show-
ing the user gateway servers support-
ing interaction between users and the
system via Web GUI, CLI, and REST in-
terfaces; the worker processes orches-
trating data transfers and other tasks
(such as notifying users of changes in
state); and the profiles and state da-
tabase storing user profiles, request
state, and endpoint information.

The authors’ current thinking on
availability is that that the research
community needs between three and
four 9s (99.9%–99.99%), correspond-
ing to between one and 10 minutes
downtime per week. Longer than 10
minutes lack of availability can be
problematic for users employing GO
as part of time-critical work processes
(such as in astronomy data-process-
ing pipelines). This requirement is
a primary reason the GO team hosts
GO on AWS rather than on a research
computing facility, which, in our expe-
rience, provides closer to two-9s avail-
ability when occasional maintenance
shutdowns are taken into account.

figure 2. Globus connect architecture.

user
(2) user makes request to

globus online: e.g., “transfer
data from Mydesktop to SiteA”

(4) globus Connect establishes data channel
connection to SiteA and transfers data

(3) globus
online forwards

requests to
globus Connect

(1) globus Connect
registers with
globus online

Globus
online

“MyDesktop”

gridFTP
server
“SiteA”

globus
Connect

TM

86 coMMunicaTions of The acM | FeBRuARY 2012 | VoL. 55 | No. 2

contributed�articles

Globus connect (Multi-user)
GO users need not install software
to request transfers between remote
GridFTP servers. However, software
installation is required if a source or
destination computer does not have
GridFTP installed, as when, for exam-
ple, transferring data to/from a user’s
computer.

To address this need, we introduced
in early 2011 Globus Connect, a one-
click download-and-install applica-
tion for Linux, MacOS, and Windows.
Globus Connect consists of a GridFTP
server that runs as the user (rather
than root from inetd like a typical
GridFTP server) and a GSI-OpenSSH
client configured to establish an au-
thenticated connection to a GO relay
server, so as to tunnel GridFTP con-
trol channel requests from GO. This
Globus Connect GridFTP server uses
only outbound data-channel connec-
tions. GO can direct transfer requests

to/from a Globus Connect instance
via the control-channel tunnel. Thus,
to request a transfer to/from the com-
puter on which they have installed
Globus Connect, users interact with
GO just as they would request any
other transfer (see Figure 2). GO re-
lays the request via the tunnel to the
Globus Connect server, which then
executes the transfer.

Globus Connect establishes only
outbound connections and thus can
work behind a firewall or other net-
work interface device that does not
allow for inbound connections. The
Globus Connect server is stateless
and thus can be started and stopped
at will; all state associated with trans-
fers is maintained by GO. Autoupdate
means the user need not maintain the
software over time.

The GO team also streamlined the
process of standing up a GridFTP serv-
er as a shared resource by introducing

Globus Connect Multi-User (GCMU),
simplifying the process of connecting
a shared server or cluster to GO. With
GCMU a resource owner can quickly
set up a GO endpoint on any server
that can then be accessed by multi-
ple users for remote data movement.
GCMU packages a GridFTP server,
MyProxy server, and MyProxy Online
CA pre-configured for GO use, requir-
ing only a few steps to install and use.
A growing number of research facili-
ties users (such as the University of
Colorado, University of Michigan,
Oak Ridge National Laboratory, and
Advanced Photon Source) use GCMU
to make their resources accessible to
remote users.

Globus Connect also incorporates
user-friendly methods for automat-
ing the process of generating, install-
ing, and configuring the certificate
required for a Globus Connect instal-
lation. It uses an online private CA in-
corporated into GO to generate a new
service certificate when a user adds a
Globus Connect endpoint. Users copy
a secret “setup key” from the GO Web
site to the Globus Connect setup win-
dow to securely pair it with their new
endpoint definition. Globus Connect
uses the setup key as a one-time-use
token to download the certificate, pri-
vate key, and GridFTP gridmap con-
figuration over a secure GSI-OpenSSH
connection. GO can then authenticate
to the Globus Connect instance and
be sure it is talking to the correct one.

optimized file Transfers for all
GridFTP client interfaces allow us-
ers to optimize transfer performance
by setting parameters (such as TCP
buffer size, number of outstanding
requests, or “pipelining,” number of
concurrent control channel connec-
tions, or “concurrency,” and number
of TCP channels used for data move-
ment, or “parallelism”). However, few
users have the experience and time
needed to apply these settings effec-
tively.

GO obviates the need for user tun-
ing by applying heuristics to set pa-
rameters based on the number and
size of files in a transfer. Upon arrival
of a recursive transfer request, GO
crawls the directory to find the files
to transfer, determining file size in
the process. It then sorts them by size

figure 4. Data-transfer performance between two ec2 instances.

10,000

1,000

100

10

1

1.e+03

R
at

e
(M

b
it

s/
se

c)

file size (bytes)

1.e+04 1.e+05 1.e+06 1.e+07 1.e+08 1.e+09

 scp guc tuned-guc go

figure 3. Data-transfer performance between aLcf and neRsc.

10,000

1,000

100

10

1

0.1

0.01

1.e+03

R
at

e
(M

b
it

s/
se

c)

file size (bytes)

1.e+04 1.e+05 1.e+06 1.e+07 1.e+08 1.e+09

 go-single-ep scp guc tuned-guc go

contributed�articles

FeBRuARY 2012 | VoL. 55 | No. 2 | coMMunicaTions of The acM 87

and performs the transfer in chunks,
setting parameters for each chunk ac-
cording to the average size of its files.
If a chunk has more than 100 files and
an average file size smaller than 50MB,
GO applies small settings, making use
of pipelining: Specifically, concur-
rency=2 files in transit at once, paral-
lelism=2 sockets per file, and pipelin-
ing=20 requests outstanding at once.
If all files in a chunk are larger then
250MB, GO applies large settings that
use more parallelism and moderate
pipelining: concurrency=2, parallel-
ism=8, and pipelining=5. In all other
cases, the default setting is used: con-
currency=2, parallelism=4, and pipe-
lining=10. When a Globus Connect or
GCMU endpoint is used as the desti-
nation in a GO transfer, then stream
mode (not mode E, which allows for
out-of-order transmission) must be
used, and concurrency is the only op-
timization that can be applied. When
using steam mode, then for small file
chunks, GO sets concurrency=8.

These simple heuristics have
proved effective but can surely be im-
proved; for example, GO could be ex-
tended to manipulate the TCP buffer
size (such as on the basis of round-
trip-time measurements), select alter-
native transport protocols, or reserve
the network.

Performance and scalability
Dispatching requests to a hosted ser-
vice rather than executing them di-
rectly on a user’s computer introduc-
es temporal overhead due to the need
to communicate the request to the GO
user gateway operating on a remote
computer. To evaluate this overhead,
we conducted tests (in 2011), issuing
100 consecutive requests to transfer
a 1B file between two locations, using
scp first, then GO scp dispatched to GO
via SSh. We measured total times of 93
and 273 seconds, respectively, an av-
erage per-request cost of 0.93 seconds
for scp and 2.73 seconds for GO scp.
We concluded that the request-setup
cost associated with the use of GO is
~1.8 seconds. This overhead is accept-
able for many data-transfer applica-
tions, though certainly not for all.
Note that users who want to request
many transfers will normally do so
with a single request. If users want to
perform consecutive small requests,

they may choose to log into the GO
CLI gateway and issue the commands
directly, thus avoiding the per-request
ssh cost.

To evaluate GO’s performance-
optimization logic in practical situ-
ations, we also conducted tests (in
2011) to compare GO performance
when transferring large quantities
of data between pairs of endpoints
with that achieved using scp and the
globus-url-copy (GUC) client. As scp is
known to perform poorly, particularly
over wide-area networks, we included
this option in the test primarily as a
sanity check; if GO is not better than
scp, then something is wrong. GUC, on
the other hand, drives GridFTP trans-
fers and so represents a fairer com-
parison. However, in its default con-
figuration (which, Globus developers
tell us, many users use unchanged)
GUC does not employ optimizations
used by GO; for example, GUC does
not enable concurrency, parallelism,
pipelining, or data channel cach-
ing. This comparison thus permitted
evaluation of the performance gains
many users expect from GO. We also
compared GO against GUC with pa-
rameters tuned by an expert to maxi-
mize performance—tuned-guc in the
results.

Figure 3 charts results of GO-based
data transfer in 2011 over a high-
speed wide-area network—ESNet,
the Energy Sciences Network, http://
www.es.net/—between two high-per-
formance parallel storage systems,
and Figure 4 between local-instance
storage of two EC2 instances within
different Amazon Availability Zones
in a single geographic region to ap-
proximate a transfer over a campus
network. Figure 3 gives results both
between a single data-transfer node
(DTN) at ALCF and NERSC (“go-sin-
gle-ep”) and (the default configura-
tion) using the two DTNs supported
by ALCF and NERSC (“go”). Each DTN
is a fast server with a 10Gb/s network
to ESnet and a fast local connect to
each site’s GPFS parallel file system.
Meanwhile, scp performs poorly for
all data transfers, and GUC, with its
default configuration, performs poor-
ly for all data transfer sizes over the
wide area, as well as for small files in
the local area. (The default configura-
tion clearly requires improvement.)

Though Go stores
identities, it does
not store
passwords;
rather, it knows
only the user name
and how to use it,
so it can prompt
for the appropriate
information
when that identity
is needed.

88 coMMunicaTions of The acM | FeBRuARY 2012 | VoL. 55 | No. 2

contributed�articles

Fortunately, tuned-guc performs bet-
ter than untuned GUC in almost all
cases. In the wide-area case, it does
less well than GO for smaller files,
probably because GO drives GridFTP
pipelining more aggressively, due to
the improved pipelining support in
GO’s GridFTP client. However, tuned-
guc does better than GO for large
files, though GO performance can be
tuned further. Note, GO transfers to
a two-DTNs vs. a single-DTN are not
substantially different, except for the
largest transfer. We conclude that the
bottleneck is not the DTNs but either
the network or local storage.

conclusion
Exploding data volumes are trans-
forming many researchers into data
scientists, with urgent need for more
capable, efficient data-management
tools. SaaS may represent the means
by which such tools are provided cost-
effectively, with GO as a first step in
that direction. A hosted data-move-
ment service with intuitive interfaces,
automatic fault recovery, high per-
formance, and easy-to-use security,
it has already (since its introduction,
late 2010) won enthusiastic adoption
in the world of big-data science appli-
cations. Many operators of scientific
facilities worldwide recommend GO
to their users. Our experiments show
GO can achieve high performance and
exceptional reliability in a variety of
settings, with low per-transfer over-
head and bandwidth rarely exceeded
in human-tuned transfers.

These positive results have encour-
aged us to expand GO to address other
research data-management prob-
lems. Recognizing that a notable rea-
son for moving data is to share it with
other scientists, the GO development
team is adding data-sharing support
like that provided by DropBox. To sim-
plify the specification of sharing poli-
cies, GO developers have integrated
group management. In turn, these
mechanisms provide a foundation on
which can be built a range of other ca-
pabilities, notably support for collab-
orative tools.

acknowledgments
We thank Vijay Anand, Rachana An-
anthakrishnan, Joshua Boverhof, Kyle
Chard, Ann Chervenak, Paul Davé,

Martin Feller, Daniel Gunter, Thomas
Howe, Lukasz Lacinski, Steven Link,
Ravi Madduri, Daniel Morgan, Mi-
chael Russell, Eugene Sadhu, Mei-Hui
Su, Vas Vasiliadis, Vanamala Venka-
taswamy, and Andrew Zich for their
work on GO, as well as many users for
helpful suggestions. This work was
supported in part by DOE DE-AC02-
06CH11357; NSF OCI-534113; and
NIH NCRR 1 U24 RR025736-01.

References
1. allcock, b., bresnahan, J., kettimuthu, r., link,

m., dumitrescu, c., raicu, i., and foster, i. the
globus striped gridftP framework and server. in
Proceedings of the 2005 ACM/IEEE Conference on
Supercomputing (seattle, nov. 12–18). acm Press,
new york, 2005.

2. bell, g., hey, t., and szalay, a. beyond the data deluge.
Science 323, 5919 (mar. 2009), 1297–1298.

3. berriman, g.b. and groom, s. how will astronomy
archives survive the data tsunami? Commun. ACM 54,
12 (dec. 2011), 52–56.

4. chervenak, a., schuler, r., kesselman, c., koranda, s.
and moe, b. wide-area data replication for scientific
collaborations. in Proceedings of the Sixth IEEE/ACM
International Workshop on Grid Computing (seattle, nov.
13). ieee computer society, washington, d.c., 2005.

5. childers, l., liming, l., and foster, i. Perspectives on
Distributed Computing: 30 People, Four User Types,
and the Distributed Computing User Experience,
Technical Report ANL/MCS/CI-31. argonne national
laboratory, argonne, il, 2008.

6. cho, b. and gupta, i., budget-constrained bulk data
transfer via internet and shipping networks. in
Proceedings of the Eighth ACM international conference
on Autonomic Computing (karlsruhe, germany, June
14–16). acm Press, new york, 2011, 71–80.

7. cholia, s., skinner, d., and boverhof, J. newt: a
restful service for building high-performance
computing web applications. in Proceedings of the
2010 Gateway Computing Environments Workshop
(new orleans, nov. 14). ieee computer society Press,
2010, 1–11.

8. cohen, b. incentives build robustness in bittorrent.
in Proceedings of the First International Workshop on
Economics of P2P Systems (berkeley, ca, June 5–6,
2003).

9. egeland, r., wildishb, t., and huang, c.-h. Phedex
data service. Journal of Physics: Conference Series
219 (2010).

10. erdos, m. and cantor, s. Shibboleth Architecture.
internet 2, may 2, 2002; http://shibboleth.internet2.
edu/docs/draft-internet2-shibboleth-arch-v05.pdf

11. gray, J., chong, w., barclay, t., szalay, a., and
Vandenberg, J. TeraScale SneakerNet: Using
Inexpensive Disks for Backup, Archiving, and Data
Exchange Technical Report MSR-TR 2002-54.
microsoft research, redmond, wa, 2002.

12. hammer-lahav, e. The OAuth 1.0 Protocol. internet
engineering task force rfc 5849, 2010; http://tools.
ietf.org/html/rfc5849

13. hanushevsky, a., trunov, a., and cottrell, l. Peer-to-
peer computing for secure high-performance data
copying. in Proceedings of the 2001 International
Conference on Computing in High Energy and Nuclear
Physics (beijing, sept. 3–7, 2001).

14. kosar, t. and livny, m. a framework for reliable and
efficient data placement in distributed computing
systems. Journal of Parallel and Distributed
Computing 65, 10 (oct. 2005), 1146–1157.

15. monti, h., butt, a.r., and Vazhkudai, s.s. catch: a
cloud-based adaptive data-transfer service for hPc.
in Proceedings of the 25th IEEE International Parallel
& Distributed Processing Symposium (anchorage,
alaska, may 16–20). ieee computer society, 2011,
1242–1253.

16. novotny, J., tuecke, s., and welch, V. an online
credential repository for the grid: myProxy. in
Proceedings of the 10th IEEE International
Symposium on High-Performance Distributed
Computing (san francisco, aug. 7–9). ieee computer
society Press, washington, d.c., 2001, 104–111.

17. rajasekar, a., moore, r., hou, c.-y., lee, c.a., marciano,

r., de torcy, a., wan, m., schroeder, w., chen, s.-y.,
gilbert, l., tooby, P., and zhu, b. iRODS Primer:
Integrated Rule-Oriented Data System. morgan and
claypool Publishers, 2010.

18. sun, w., zhang, k., chen, s.-k., zhang, X., and liang,
h. software as a service: an integration perspective.
in Proceedings of the Fifth International Conference
on Service-Oriented Computing, b. krämer, k.-J. lin,
and P. narasimhan, eds. (Vienna, austria, sept. 17–20).
springer, berlin/heidelberg, 2007, 558–569.

19. thain, d., basney, J., son, s.-c., and livny, m. the
kangaroo approach to data movement on the grid.
in Proceedings of the 10th IEEE International
Symposium on High-Performance Distributed
Computing (san francisco, aug. 7–9). ieee computer
society Press, washington, d.c., 2001, 325–333.

20. tridgell, a. and mackerras, P. The Rsync Algorithm
TR-CS-96-05. department of computer science,
australian national university, canberra, 1994.

21. wang, l., Park, k.s., Pang, r., Pai, V., and Peterson,
l. reliability and security in the codeen content
distribution network. in Proceedings of the USENIX
Annual Technical Conference (boston, June 27–July
2). useniX association, berkeley, ca, 2004, 171–184.

22. welch, V., foster, i., kesselman, c., mulmo, o.,
Pearlman, l., tuecke, s., gawor, J., meder, s., and
siebenlist, f. X.509 proxy certificates for dynamic
delegation. in Proceedings of the Third Annual Public
Key Infrastructure R&D Workshop (gaithersburg,
md, apr. 12–14), national institute of standards and
technology, gaithersburg, md, 2004.

Bryce Allen (ballen@ci.uchicago.edu) is a software
developer in the computation institute of the university of
chicago and argonne national laboratory, argonne, il.

John Bresnahan (bresnaha@mcs.anl.gov) is a senior
software developer in the mathematics and computer
science division of argonne national laboratory, argonne, il.

Lisa C. Childers (childers@mcs.anl.gov) is a staff
member of the mathematics and computing science
division of argonne national laboratory, argonne, il, and
of the computation institute of the university of chicago.

Ian T. Foster (foster@anl.gov) is an argonne
distinguished fellow, director of the computation
institute, and the arthur holly compton distinguished
service Professor of computer science at argonne
national laboratory, argonne, il, and at the university
of chicago.

Gopi Kandaswamy (gopikandaswamy@gmail.com) is
an associate consultant in tata consultancy services
and former senior research systems developer in the
information sciences institute, los angeles.

Rajkumar Kettimuthu (kettimut@mcs.anl.gov) is a fellow
in the computation institute and principal software
development specialist in the mathematics and computer
science division of argonne national laboratory, argonne,
il, and the university of chicago.

Jack Kordas (kordas@ci.uchicago.edu) is a senior
architect and developer in the computation institute
of the university of chicago and argonne national
laboratory, argonne, il.

Michael Link (mlink@mcs.anl.gov) is a software
developer in the computation institute of the university of
chicago and argonne national laboratory, argonne, il.

Stuart Martin (smartin@mcs.anl.gov) is a manager of
software development in the computation institute of the
university of chicago and argonne national laboratory,
argonne, il, managing software development for the
globus toolkit and portions of globus online.

Karl Pickett (kjp@ci.uchicago.edu) is a programmer in the
computation institute of the university of chicago and
argonne national laboratory, argonne, il.

Steven Tuecke (tuecke@ci.uchicago.edu) is deputy
director of the computation institute of the university of
chicago and argonne national laboratory, argonne, il,
leading the globus online project.

© 2012 acm 0001-0782/12/02 $10.00

