The PORTSO Interface

The PORTS Consortium

Version 0.3
January 27, 1995

The PORTS (POrtable RunTime System) group was established to address
the problems of constructing a common runtime system to be used as a com-
piler target for various task- and data-parallel languages. One result of this
group’s efforts is the definition of an applications programming interface, the
PORTS level-zero interface (PORTS0). This interface comprises lightweight

thread functions and a core set of reentrant library routines. This report de-

scribes the PORTSO0 interface.

Contents

1 Introduction

2.1

3.1

3.2

3.3

Initialization and Shutdown

portsO_init()
2.2 portsO_shutdown().

3.1.1
3.1.2
3.1.3
3.1.4
3.1.5
3.1.6
3.1.7
3.1.8
3.1.9
3.1.10

Thread-specific Data

3.2.1

Mutual Exclusion and Synchronization

3.3.1
3.3.2
3.3.3
3.3.4
3.3.5
3.3.6
3.3.7
3.3.8
3.3.9
3.3.10
3.3.11
3.3.12
3.3.13
3.3.14

Thread Management
Thread Control
portsO_threadattr_init ()

portsO_threadattr destroy()
portsO_threadattr setstacksize()

portsO_threadattr getstacksize()

ports0O_thread create()
portsO_thread exit() . .
portsO_thread yield() .
portsO_thread self() . .
portsO_thread equal() .
ports0O_thread once() . .

portsO_thread key create()
3.2.2 portsO_thread key delete()
3.2.3 portsO_thread setspecific()
3.2.4 portsO_thread getspecific()

portsOmutexattr_init ()

portsOmutexattr destroy()

portsOmutex init() . .
ports0 mutex destroy()
portsOmutex lock() . .
portsO mutex trylock()
portsOmutex unlock() .
portsO_condattr init ()

portsO_condattr destroy()

portsO_cond_init() . . .
ports0_cond destroy() .
portsO_cond wait() . . .
portsO_cond signal() . .
ports0_cond broadcast()

i

O — e

NN

CUOCUH = W W ww

Sy O O Ot

jop)

NeliNeolNelNoENoR0 N0 sHN0 sIN0 oaNe oJNe oIE-N (IEN IIEN|

4 Reentrant Library

4.1 portsOmalloc()
4.2 portsOrealloc()
4.3 portsOcalloc()
4.4 portsOfree()
4.5 portsOopen()
4.6 portsOclose(). o i
4.7 portsOread()
4.8 portsOwrite()
4.9 portsOlseek()
4.10 portsOfstat()
4.11 portsO reentrant lock()

4.12 portsO_reentrant unlock()

i1

10
10
10
10
10
11
11
11
11
11
12
12
12

1 Introduction

The PORTS level-zero interface (called PORTS0) comprises a set of functions
for lightweight thread management and for reentrant memory management
and file I/O. The thread management routines are modeled after a subset of
the POSIX thread interface, while the reentrant functions are modeled after
standard C library routines. This set of functions is the first set of functions to
be agreed upon by the PORTS (POrtable RunTime System) group as necessary
parts of a complete runtime system for parallel languages and tools.

This document briefly describes the PORTSO interface. More informa-
tion on the PORTS group can be found on the World Wide Web at URL
http://www.cs.uoregon.edu/paracomp/ports. An implementation of the
PORTSO interface, which was jointly developed at Argonne National Labo-
ratory and California Institute of Technology, is available by anonymous ftp
from ftp://ftp.mcs.anl.gov/pub/ports.

2 Initialization and Shutdown

PORTSO provides an initialization and a shutdown routine. These functions
should be called before and after any other PORTS0 routines are used, respec-
tively.

Any program that uses PORTS0 functions must include the file “ports0.h”.
This file contains functions prototypes and symbol definitions for the PORTS0
interface.

2.1 ports0_init()

int portsO_init(int *argc,
char **argvl[],
char *package_id)

Initialize the PORTSO library. This function must be called before any
other PORTSO0 functions are called.

The value zero is returned if initialization is successful, and nonzero is
returned if initialization fails.

The arguments in argc and argv are scanned by ports_init(), and any
arguments that are recognized by PORTS0 will be removed by modifying argc
and argv.

The package_id string is used as a prefix to all PORTS0 arguments. For
example, if package_id is “foo”, then each PORTS arguments either will begin
with “-foo_” or will be positioned between “-foo” and “-foo_end” arguments.

Hence, an argument to specify the default stack size can be specified either as
“foo_stack 1024”7 or “-foo -stack 1024 -foo_end”.

While all PORTS arguments will have a package_id prefix, this does not
imply that all arguments prefixed by package_id are PORTS0 arguments.
Some of them may be for the system that is using PORTS0. Therefore, not
all arguments with a package_id prefix will necessarily be removed from argc
and argv when ports0_init () returns. Only those arguments that are actu-
ally recognized by PORTS0 will be removed. The package_id simply allows
PORTS0 and the system using it to have consistent argument naming.

2.2 portsO_shutdown()

int portsO_start()

Shut down the PORTS0 library. This function must be called before the
program using PORTS0 terminates. No other PORTSO0 functions may be
called after ports0O_shutdown().

Return zero if shutdown is successtul, otherwise nonzero.

3 Thread Management

PORTSO0 threads are modeled after a subset of POSIX threads (IEEE standard
P1003.4a draft 8). The semantics of the PORTSO0 routines are identical to the
corresponding POSIX thread routines, unless otherwise noted. This section
briefly describes each of the PORTS0 thread routines. Please refer to the
POSIX thread standard for more details.

3.1 Thread Control
PORTSO0 provides the following functions for basic thread control:

e portsO_threadattr_init: initialize a thread attribute
e portsO_threadattr destory: destroy a thread attribute

e portsO_threadattr setstacksize: set the stack size in a thread at-
tribute

e portsO_threadattr getstacksize: get the stack size from a thread
attribute

e portsO_thread create: create a thread

e portsO_thread exit: terminate the current thread

2

ports0O_thread yield: yield the processor to another thread

ports0O_thread_self: return the thread ID of the calling thread

portsO_thread equal: compare two thread 1Ds

ports0_thread once: for dynamic module initialization

3.1.1 portsO_threadattr init()

int portsO_threadattr_init(portsO_threadattr_t *attr)

Initialize attr to have the default thread attributes.
Return zero upon successful completion, otherwise nonzero.
3.1.2 portsO_threadattr destroy()

int portsO_threadattr_destroy (portsO_threadattr_t *attr)

Destroy the thread attributes object, attr.
Return zero upon successful completion, otherwise nonzero.
3.1.3 portsO_threadattr setstacksize()

int portsO_threadattr_setstacksize(portsO_threadattr_t *xattr,
size_t stacksize)

Set the stack size value in the thread attributes object, attr.
Return zero upon successful completion, otherwise nonzero.

3.1.4 portsO_threadattr getstacksize()

int portsO_threadattr_getstacksize(portsO_threadattr_t *xattr,
size_t *stacksize)

Get the stack size value from the thread attributes object, attr, and place
it into the address pointed to by stacksize.
Return zero upon successful completion, otherwise nonzero.

3.1.5 portsO_thread create()

typedef void *(*portsO_thread_func_t)(void *user_arg);

int portsO_thread_create(portsO_thread_t *thread,
portsO_threadattr_t *attr,

void *(*func) (void *),
void *user_arg)

Create a new thread that invokes the supplied function func with one
argument user_arg. The thread ID for the newly created thread is placed in
thread. The attr argument specifies the attributes for the thread. Default
attributes will be used if attr is NULL.

Return zero if successful, otherwise nonzero.

Note: There is no equivalent to pthread_join() in PORTS0. All PORTSO0
threads are automatically detached when they are created. This is a departure
from POSIX thread semantics.

3.1.6 portsO_thread exit()

void portsO_thread_exit(void *status)

Terminate the calling thread. Returning from the user thread function will
implicitly terminate the thread.

Note: The status argument is not used, since PORTS0 does not support
an equivalent to pthread_join().

3.1.7 portsO_thread yield()

void portsO_thread_yield()

Yield the processor to another thread.

3.1.8 portsO_thread self()

portsO_thread_t portsO_thread_self()

Return the thread ID of the calling thread.

3.1.9 portsO_thread equal()

int portsO_thread_equal (portsO_thread_t t1,
portsO_thread_t t2)

Compare the two thread IDs t1 and t2.
Return nonzero if the threads are the same, otherwise zero.

4

3.1.10 ports0O_thread once()

portsO_thread_once_t once_control = PORTSO_THREAD_ONCE_INIT;

int portsO_thread_once(portsO_thread_once_t *once_control,
void (*init_routine)())

The first call to portsO_thread once() by any thread in a process, with
a given once_control, will result in a call to the supplied init _routine()
with no arguments. Subsequent calls to ports0O_thread once() will not call
the init routine(). On return of ports0_thread once() it is guaranteed
that init_routine() has completed. The once_control parameter is used to
determine whether the associated initialization routine has been called.
Return zero upon successful completion, otherwise nonzero.

3.2 Thread-specific Data
PORTSO0 provides the following functions for thread-specific data:

e portsO_thread key create: create a thread-specific data key
e portsO_thread key delete: delete a thread-specific data key

e portsO_thread setspecific: associate a value with a thread-specific
data key

e portsO_thread getspecific: retrieve the value associated with a thread-
specific data key

3.2.1 portsO_thread key create()

typedef void (*portsO_thread_key_destructor_func_t) (void *value);

int portsO_thread_key_create(
portsO_thread_key_t *key,
void (*destructor_func) (voidx))

Create a thread-specific data key that is visible to all threads in the process,
and place that key in the key argument.

Although the same key may be used by different threads, the values bound
to the key by ports0_thread setspecific() are maintained on a per-thread
basis. The value associated with a new key is NULL in all active threads and
will be initialized to NULL in all threads that are subsequently created. If
destructor_func is not NULL, then upon termination of the thread if the

value for this key is not NULL, the function pointed to by destructor func is
called with the current value for the key as its argument.
Return zero upon successful completion, otherwise nonzero. A return of

EAGAIN indicates that the key name space is exhausted.
3.2.2 portsO_thread key delete()

int portsO_thread_key_delete(portsO_thread_key_t key)

Delete the thread-specific data key.

The destructor fuction associated with this key is not called. Subsequent
use of this key will result in undefined behavior.

Return zero upon successful completion, otherwise nonzero.

3.2.3 portsO_thread setspecific()

int portsO_thread_setspecific(portsO_thread_key_t key,
void *value)

Set the value associated with the thread-specific data key to value.
Different threads may bind different values to the same key.
Return zero upon successful completion, otherwise nonzero.

3.2.4 portsO_thread_getspecific()

int portsO_thread_getspecific(portsO_thread_key_t key,
void **value)

Get the thread-specific data value associated with key, and return it in the
value argument.
Return zero upon successful completion, otherwise nonzero.

3.3 Mutual Exclusion and Synchronization

Mutual exclusion and synchronization between threads are provided by the
following operations:

e portsOmutexattr_ init: initialize a mutex attribute

e portsOmutexattr destroy: destroy a mutex attribute

portsOmutex_init: initialize a mutual exclusion lock
e portsOmutex destroy: destroy a lock

e portsOmutex lock: obtain a mutually exclusive access to lock

e portsOmutex_trylock: attempt to obtain a mutually exclusive access
to lock

e portsOmutex unlock: release a lock

e portsO_condattr_init: initialize a condition attribute

e portsO_condattr_destroy: destroy a condition attribute
e portsO_cond_init: initialize a condition variable

e portsO_cond destroy: destroy a condition variable

e portsO_cond wait: wait for a condition

e portsO_cond_signal: signal a condition

e portsO_cond broadcast: signal to all waiting for a condition

3.3.1 portsOmutexattr_init()

int portsO_mutexattr_init(portsO_mutexattr_t *attr)

Initialize attr to have the default mutex attributes.
Return zero upon successful completion, otherwise nonzero.

3.3.2 portsOmutexattr destroy()

int portsO_mutexattr_destroy (port sO_mutexattr_t *attr)

Destroy the mutex attributes object, attr.
Return zero upon successful completion, otherwise nonzero.

3.3.3 portsOmutex_init()

int portsO_muteX_init(portsO_muteX_t *mutex,
portsO_mutexattr_t *attr)

Initialize the mutual exclusion lock, mutex.

The attributes for the mutex are specified by attr. Default attributes
will be used if attr is NULL. The result of calling ports0 mutex lock() or
portsOmutex unlock() on a mutex that has not been initialized is undefined.

Return zero upon successful completion, otherwise nonzero.

3.3.4 portsOmutex destroy()
int portsO_muteX_destroy(portsO_muteX_t *mutex)

Destroy the mutex that was initialized with ports0 mutex_init().
The result of calling ports0 mutex lock() or portsOmutex unlock() on
a mutex that has been destroyed is undefined.
Return zero upon successful completion, otherwise nonzero.
3.3.5 portsOmutex lock()
int portsO_mutex_lock(portsO_mutex_t *mutex)
Block until the mutual exclusion lock, mutex, is acquired.
Return zero upon successful completion, otherwise nonzero.
3.3.6 portsOmutex trylock()

int portsO_mutex_trylock(portsO_mutex_t *mutex)

Attempt to acquire the mutual exclusion lock, mutex.

Returen 0 if successful. If mutex has already been acquired, then do not
acquire the lock, and return EBUSY.
3.3.7 portsOmutex unlock()

int portsO_mutex_unlock(portsO_mutex_t *mutex)

Unlock the mutual exclusion lock, mutex, enabling another thread to ac-
quire the mutex.
Fairness in locking is not guaranteed; that is, a thread is not guaranteed to
acquire a lock if other threads are also attempting to acquire the same lock.
Return zero upon successful completion, otherwise nonzero.
3.3.8 portsO_condattr_init()
int portsO_condattr_init(portsO_condattr_t *attr)
Initialize attr to have the default condition attributes.
Return zero upon successful completion, otherwise nonzero.
3.3.9 portsO_condattr destroy()

int portsO_condattr_destroy (portsO_condattr_t *attr)

Destroy the condition attributes object, attr.
Return zero upon successful completion, otherwise nonzero.

3.3.10 portsO_cond init()

int portsO_cond_init (portsO_cond_t *cond,
portsO_condattr_t *attr)

Initialize the condition variable, cond.

The attributes for the condition are specified by attr. Default attributes
will be used if attr is NULL. The result of calling any other ports0_cond_* ()
function on a condition that has not been initialized is undefined.

Return zero upon successful completion, otherwise nonzero.

3.3.11 portsO_cond destroy()
int portsO_cond_destroy(portsO_cond_t *cond)

Destroy the specified condition.
The result of calling any other
portsO_cond *() function on a condition that has been destroyed is unde-

fined.

Return zero upon successful completion, otherwise nonzero.

3.3.12 portsO_cond wait()

int portsO_cond_wait (portsO_cond_t *cond,
portsO_mutex_t *mutex)

Atomically release mutex and wait on cond. When the function returns,
mutex has been reacquired.
If the thread executing the function has not acquired mutex, the result is

undefined.

Return zero upon successful completion, otherwise nonzero.

3.3.13 portsO_cond_signal()
int portsO_cond_signal (portsO_cond_t *cond)

Signal the specified condition, waking up one thread that is suspended on
this condition.

If no threads are suspended on this condition, this call will have no effect.

Return zero upon successful completion, otherwise nonzero.

3.3.14 ports0O_cond broadcast()

void portsO_cond_broadcast(portsO_cond_t *cond)

Unsuspend all threads suspended on the specified condition.
Return zero upon successful completion, otherwise nonzero.

4 Reentrant Library

PORTSO provides a set of functions that mirror standard C library routines.
These routines guarantee the following:

o Reentrancy: Multiple threads can call these routines without interfering
with each other.

o Nonblocking: A thread that calls one of these routines is guaranteed to
not block other threads from executing.

The following sections briefly describe routines that are provided by PORTSO0.
Unless otherwise stated, each is identical to the underlying C library routine
after which the PORTS0 routine is named.

In addition, PORTSO0 exports a lock that may be used to control reentrancy
in non-PORTSO0 routines. This lock is manipulated by the
portsO_reentrant lock() and portsO_reentrant unlock() routines.

4.1 ports0malloc()

void *portsO_malloc(size_t bytes)

Allocate memory, like malloc().

4.2 portsO_realloc()

void *portsO_reallco(void *ptr, size_t bytes)

Reallocate memory, like realloc().

4.3 ports0_calloc()

void *portsO_callco(size_t nobj, size_t bytes)

Allocate memory, like calloc().

4.4 ports0_free()

void portsO_free(void *ptr)

Free memory, like free(). The memory pointed to by ptr must have been
previously allocated by portsOmalloc(), portsOrealloc(), or
portsO_calloc().

10

4.5 ports0_open()

int portsO_open(char *path,
int flags,
int mode)

Open a file descriptor, like open(). All file descriptors that are passed to
other PORTSO0 library routines must be opened using ports0_open().

4.6 ports0_close()

int portsO_close(int fd)

Close a file, like close().

4.7 ports0_read()

int portsO_read(int fd,
char *buf,
int nbytes)

Read from a file, like read ().
Note: Instead of blocking indefinitely, this routine may return an error with

errno set to EINTR.

4.8 portsO write()

int portsO_write(int fd,
char *buf,
int nbytes)

Write to a file, like write().
Note: Instead of blocking indefinitely, this routine may return an error with

errno set to EINTR.

4.9 ports0_lseek()

int ports0O_lseek(int fd,
off_t offset,
int whence)

Move the offset within a file for subsequent reads and writes, like 1seek ().

11

4.10 portsO_fstat()

int portsO_fstat(int fd,
struct stat *buf)

Get information about a file, like fstat ().

4.11 portsO_reentrant lock()

int portsO_reentrant_lock()

Acquire the PORTS0 reentrancy lock.

4.12 portsO_reentrant unlock()

int portsO_reentrant_unlock()

Release the PORTS0 reentrancy lock.

12

