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Abstract

Applications designed to execute on “computational
grids” frequently require the simultaneousco-allocationof
multiple resources in order to meet performance require-
ments. For example, several computers and network el-
ements may be required in order to achieve real-time re-
construction of experimental data, while a large numeri-
cal simulation may require simultaneous access to multi-
ple supercomputers. Motivated by these concerns, we have
developed a general resource management architecture for
Grid environments, in which resource co-allocation is an
integral component. In this paper, we examine the co-
allocation problem in detail and present mechanisms that
allow an application to guide resource selection during the
co-allocation process; these mechanisms address issues re-
lating to the allocation, monitoring, control, and configu-
ration of distributed computations. We describe the imple-
mentation of co-allocators based on these mechanisms and
present the results of microbenchmark studies and large-
scale application experiments that provide insights into the
costs and practical utility of our techniques.

1. Introduction

Advances in networking infrastructure have led to the
development of a new type of “computational grid” in-
frastructure that provides predictable, consistent and uni-
form access to geographically distributed resources such
as computers, data repositories, scientific instruments, and
advanced display devices [12]. Such Grid environments
are being used to construct sophisticated, performance-
sensitive applications in such areas as supercomputer-
enhanced instruments, desktop supercomputing, tele-
immersive environments, and distributed supercomput-
ing [4, 3, 22, 19, 23, 7].
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A common characteristic of many of these applications
is a need to allocate multiple resources simultaneously. For
example, one recent record-setting simulation employed 13
parallel supercomputers containing a total of over 1300
processors [3]. In another recent experiment, a scientific
instrument, five computers, and multiple display devices
were used for collaborative real-time reconstruction of X-
ray source data [27]. While such simultaneous allocation
can in principle be achieved manually, in general we require
a resource management infrastructure that supports not just
the management of individual resources but the coordinated
management of multiple resources.

In a previous paper [6], we presented a general resource
management architecture for Grid environments and intro-
duced the concept ofresource co-allocationas a necessary
function in this architecture. The co-allocation problem has
not previously received attention in the high-performance
distributed computing community. While co-allocation is-
sues arise in other situations (for example, co-allocation
of processors and memory [20], co-allocation of CPU and
networks [25, 24], setup of reservations along network
paths [28, 10, 8, 16, 2]), the dynamic nature of the Grid
environment poses special challenges including the poten-
tial for failure and the heterogenous nature of the underlying
resource set.

In this paper, we propose a layered co-allocation ar-
chitecture that addresses the challenges of Grid environ-
ments by providing a flexible set of basic co-allocation
mechanisms that can be used to construct a wide range of
application-specific co-allocation strategies. These mech-
anisms allow for the dynamic construction, configuration,
and control of collections of separately administered and
controlled resources, while providing an application with a
single abstraction for monitoring and controlling those re-
sources. An important aspect of our approach is that it has
been designed to facilitate collective resource allocation in
the face of the diverse failure modes that can occur in the
Grid environment.

The main contributions of this paper are that we:

• define the co-allocation problem for computational
grids and identify the general requirements that a co-
allocation service should meet,



• define a basic set of mechanisms by which a variety
of application-specific co-allocation strategies can be
constructed, and

• use both microbenchmark experiments and large-scale
application studies to obtain data on the effectiveness
of these mechanisms in realistic settings.

The rest of the paper is as follows. In Section 2, we in-
troduce the co-allocation problem and illustrate why it is
important to Grid applications. In Section 3, we describe a
general co-allocation architecture and define basic mecha-
nisms that can be used to construct application-specific co-
allocation solutions. In Section 4, we describe an imple-
mentation of our proposed co-allocation mechanisms, and
examine their performance in a networked environment. We
then discuss the use of these mechanisms in a range of Grid
applications. Finally, we summarize our results and discuss
future work in Section 5.

2. The Co-Allocation Problem

For the purposes of this discussion, we model the suc-
cessful execution of a computer program as comprising
an allocation phase, in which required computational re-
sources are acquired and various computational objects cre-
ated; aconfigurationphase, in which the application is ini-
tialized; and a subsequentmonitoring/controlphase during
which the program executes. In Grid environments, we de-
fine the co-allocation problem as the provision of allocation,
configuration, and monitoring/control functions for there-
source ensemblerequired by a single application. While in
this paper we focus on computational resources, in general,
we define resources to include all devices that an applica-
tion might require, including networks, memory, storage,
rendering hardware, and display devices.

Grid applications typically operate on ensembles of re-
sources that span administrative domains of control, with
resources in the ensemble being independently operated.
Furthermore, access to resources is in general unreliable,
due to either competing demands for the resource or out-
right failure. These two features of Grids complicate the
co-allocation process, rendering ineffective existing ap-
proaches based on centralized control and a strategy of
aborting on the failure of any resource request.

The following application scenario illustrates some of
the difficulties that may be encountered:

A large distributed simulation requires 400
processors in order to achieve a specified level of
fidelity and speed. Five computers are identified
that can collectively provide the required 400 pro-
cessors at the desired time. The allocation process
is started, but one of the computers turns out to be

unavailable due to a system crash. This failure is
handled by dropping that computer from the en-
semble and adding another, located dynamically.
The application starts on these five systems and
400 processors.

The next step in the co-allocation procedure
is initialization of the simulation system. Here,
another problem arises. Four of the five systems
complete initialization within a few minutes and
rendezvous at an initial barrier, but after five min-
utes the fifth system has not joined them. Later
investigation will reveal that this delay occurred
because that system was overloaded with other
work, but at this moment all that is known is that
the startup deadline is compromised. The solu-
tion adopted in this case is to drop the “faulty”
system from the ensemble, and proceed with just
four systems, at a decreased level of simulation
fidelity, but with the same completion time.

This example illustrates three important points concerning
co-allocation:

• The failure of individual components is a common oc-
currence.

• There are numerous possible failure modes that evi-
dence themselves in different ways, ranging from an
error report to lack of progress.

• The definition of “failure” may be application-
dependent. In the example, unexpectedly slow execu-
tion was viewed as failure; in other contexts, an ap-
plication might reject a resource as unacceptable at
runtime because of network interface performance, nu-
merical accuracy of system libraries, or cost.

Analysis of Grid application scenarios such as that just
described leads us to conclude that no single co-allocation
strategy can be effective for all purposes. For example, an
atomic transaction capability that ensures that an applica-
tion starts either on all required systems, or on none, is in-
adequate for the scenario above, where first of all a failed
resource is replaced by an alternative, and later a nonre-
sponsive resource is discarded altogether. We argue instead
for mechanisms that can be used to implement a variety
of application-specific co-allocation strategies. We present
such a set of mechanisms in the next section.

2.1 Related Work

The techniques required to implement co-allocation
within a uniprocessor or parallel computer are well under-
stood. Resource managers for parallel computers, such as
LoadLeveler [18] coallocate homogeneous collections of



resources (processors) to applications, while more general
resource managers such as NQE [1] and PBS [17] allow the
co-allocation of heterogeneous resource sets: for example,
processors and memory. Co-allocation of networked com-
putational resources is supported by a number of resource
management systems, including LSF [29], and Codine [15];
however, these systems assume that they are in total control
of all resources, which may not be the case in Grid envi-
ronments. Furthermore, these systems provide only limited
application level control. For example, LSF terminates an
entire application if any resource in the co-allocation set is
determined to have failed.

Legion, a distributed object-oriented system with goals
similar to the Grid systems described here, supports the no-
tion of resource co-allocation via an entity called anEnac-
tor [5]. An Enactor provides a co-allocation mechanism
similar to the the atomic transaction strategy discussed in
Section 3, and consequently will suffer from the same limi-
tations as this approach. Legion also relies on the ability to
reserve resources in advance of allocating them, with lim-
ited recourse if the underlying resource management system
does not support reservation. Finally, we note that access
to Legion co-allocation methods can only be obtained from
applications that can access the Legion object-oriented pro-
gramming model.

Within the networking community, various protocols
have been proposed and are being investigated for co-
allocating network resources along a route [28, 10, 8, 16, 2].
Also relevant to the co-allocation problem is multimedia
system research concerned with identifying the appropri-
ate mix of resources required to provide desired end-to-end
QoS. Multimedia applications have motivated the develop-
ment of techniques for allocating both memory and CPU
for channel handlers [20] and of CPU, bandwidth, and other
resources for video streams [25, 24]. However, these tech-
niques are specific to particular mixes of resources and do
not extend easily to other resource types.

2.2 Scheduling and Advance Reservation

We make some brief comments on the role that schedul-
ing and advance reservations can play in co-allocation.

A co-allocation request typically requires that each of a
set of resources be able to deliver a specified level of service
at a specified time. Yet even if a resource is physically capa-
ble of meeting a service requirement, competing demands
from other computations may lead to a particular request
being handled incorrectly:

• If the resource offers simply “best effort” service, such
as is often the case with network bandwidth, disk ac-
cess and CPU access on timesharing systems, a request
for a resource may be granted, but with an inadequate
service level.

• If access to the resource is managed by a resource man-
agement system, then the request for the resource may
be denied or may block awaiting resource availability.

Hence, depending on the capabilities of the management
system associated with the resource in question,schedul-
ing conflictsmay result in a particular request suspending,
failing, or proceeding with degraded functionality.

We argue that in a Grid environment, it is not reasonable
to assume a centralized “global scheduler” that resolves
such scheduling conflicts. However, a number of other tech-
niques can be used to improve co-allocation effectiveness.
One approach is to enhance the local resource management
system. For example, by incorporatingadvance reservation
capabilities into a local resource manager, a co-allocator
can obtain guarantees that a resource will deliver a required
level of service when required. This approach is discussed
further in [13].

Alternatively, the resource management system can pub-
lish information about the current queue contents and
scheduling policy, or publish forecasts (based, for exam-
ple, on queue time prediction algorithms [9, 26]) of ex-
pected future resource availability. This information can be
used to improve the success of co-allocation by construct-
ing co-allocation requests that arelikely to succeed. For ex-
ample, the co-allocator may use information published by
local managers to select from among alternative candidate
resources, or it may attempt to allocate more resources than
it really needs. Simulation studies have shown that this ap-
proach can be effective if there is a minimum period of time
over which load information remains valid [14].

3. A Co-Allocation Architecture

We now describe our approach to the co-allocation prob-
lem. The basic idea is to define a set of mechanisms
that can be used to implement a variety of different co-
allocation strategies. These mechanisms permit consider-
able application-level flexibility in how failure is handled,
for example:

• Advance reservations and/or forecasts or other infor-
mation can be used to reduce the probability of re-
source unavailability, but are not required;

• A user can specify whether desired resources are es-
sential, disposable, or should trigger callbacks if not
available;

• A user can define “failure” and how to respond to it;

• A user can control the order in which resources are
allocated, so as to reduce the cost of failure; and

• A user can similarly control the configuration of com-
putations once resources are acquired.



In the following, we first talk briefly about some archi-
tectural assumptions and then describe the mechanisms that
we have developed to support the allocation, configuration,
and monitoring/control phases of a computation.

3.1 Architectural Overview

We assume a distributed resource management architec-
ture that comprises three distinct components:

• A resource managementcomponent provides mecha-
nisms for managing individual resources. In the fol-
lowing discussion, we assume the use of the Globus
Resource Management Architecture [6], which defines
a modular infrastructure with distinct information, re-
source management, security, and other components.

• A co-allocation mechanismcomponent, layered on
top of the single-resource management component,
provides the mechanisms required to implement co-
allocation strategies.

• Co-allocation agentsuse co-allocation mechanisms
to implement application-specific strategies for the
collective allocation, configuration, and monitor-
ing/control of ensembles of resources.

In principle, application programmers could implement co-
allocation strategies via direct calls to the underlying re-
source management infrastructure. However, we believe
that there are significant advantages to defining an inter-
mediate co-allocation mechanism component that bridges
the gap between, on the one hand, applications (or resource
brokers acting on their behalf) that require collections of re-
sources; and, on the other hand, local resource managers
that manage a single resource. This set of common co-
allocation mechanisms simplifies the design and implemen-
tation of co-allocation agents; promotes interoperability be-
tween various co-allocation agents; and enables the devel-
opment of sophisticated co-allocation schemes, for example
by nested or hierarchical co-allocators.

We conclude this subsection with a note concerning par-
allel computers. An abstract view of co-allocation is that
it involves the creation ofN processes onN distinct re-
sources, each under the control of a local resource man-
ager; if some subsetK of thoseN processes and resources
happen to be part of a logical unit called a “parallel com-
puter” (or “network of workstations” etc.), that fact does
not change the co-allocation problem. Yet in practice there
can be significant performance advantages to treating such
“subjobs” as collective units, creating them via a single call
(rather thanK calls) to the appropriate resource manager,
and also monitoring and controlling their execution via sim-
ilar collective calls. Hence, our techniques and mechanisms
allow for this possibility.

3.2 Allocation Mechanisms

We now proceed to describe the co-allocation mecha-
nisms that we have developed, looking first at allocation
and then (in subsequent subsections) at configuration and
monitoring/control.

We define the allocation phase of a computation to com-
prise those actions performed between the issuance of a
resource co-allocation request and the point when the pro-
gram on the co-allocated resources can be viewed as being
successfully started. In effect, these actions are concerned
with mapping a description of the ensemble of required re-
sources into a representation of the acquired resources that
can later be used for monitoring and control. The critical
questions are how the resource ensemble is specified and
the methods used to go from this specification to a initial-
ized application.

An important concern during this process is dealing ef-
fectively with the various types of failure noted above. Ex-
perience with a range of applications leads us to believe
that failure (and hence “successful start”) is an application-
dependent concept. Hence, when spawning a process on a
remote computer, it is not sufficient that the local operat-
ing system (or scheduler) on that computer tell us that the
process has “started” successfully; we need to hear from
the application itself, which may wish to perform various
checks (e.g., relating to the numerical accuracy of local li-
braries, amount of free disk space, etc.) before announcing
a successful start.

These considerations lead us to manage the allocation
process via a distributed two-phase commit protocol, as fol-
lows:

1. A co-allocation agent issues requests to the local re-
source managers for the resources on which processes
are to be created;

2. Either failure is signalled, or processes are started;
once started, a process performs any local status
checks and then reports either successful or unsuccess-
ful startup and then enters a barrier, awaiting a commu-
nication from the co-allocation agent.

3. The co-allocation agent decides whether to proceed
with allocation or not, on the basis of status messages
received; if the decision is to “commit” then the wait-
ing processes are instructed to proceed.

Notice that this approach requires minor modifications to
the participating application program, which must call the
“barrier” function prior to proceeding with computation.

We have developed mechanisms to support two variants
of this basic strategy: one simple set supports what we
term theatomic transactionstrategy, and a more complex
set supports a more flexibleinteractive transactionstrategy.
We describe both in the following.



Atomic Transaction Mechanisms and Strategy. The
most straightforward co-allocation strategy is what we term
anatomic transactionapproach. All required resources are
specified at the time the request is made. The request suc-
ceeds if all resources required by the application are al-
located. Otherwise, the request fails and none of the re-
sources are acquired. (The possibility of indefinite delay
can be avoided by using timeouts on individual requests.)
The mechanisms provided to support this strategy comprise
anallocation function on the client side, which returns
success or failure, and abarrier function for use within
the application.

This strategy is effective when the desired resource en-
semble is known when the co-allocation request is issued
and when the likelihood that a resource fails between the
construction of the request and program startup is low. Note
that the contents of a co-allocation request can be con-
structed incrementally, but may not be changed once the
request has been initiated. Thus, the only way of dealing
with a request failure is to formulate and resubmit a revised
co-allocation request, based on more current information.

Initially, we did not believe these constraints were too
restrictive. However, experience with several large appli-
cations proved that the static approach did not work well
in practice. Especially problematic was that application
startup and initialization on large computers can take tens
of minutes and in many cases failure is due to issues other
then failure of the underlying resource: for example, slow
system performance or application failure. Consequently,
failures in a resource often could not be detected until after
the application had been started.

Interactive Transaction Strategy and Mechanisms.
The interactive transactionapproach was developed to
overcome problems observed in the atomic transaction
strategy. Basically, we generalize the two-phase commit
structure used in the atomic transaction model to enable
greater application-level control.

In the interactive approach, the contents of a co-
allocation request can be modified—via editing operations
add, delete, andsubstitute— until the commit op-
eration. To further facilitate the reconfiguration of a re-
source set under a variety of failure conditions, we classify
each element of the resource set into one of three categories:

• required: Failure or timeout of a required resource
causes the entire computation to be terminated, regard-
less of whether a commit has been issued or not. This
behavior is as in an atomic transaction co-allocator; it
is intended for resources without which a computation
cannot proceed.

• interactive: Failure or timeout of an interactive
resource results in a callback to the application, which

can then delete the resource from its resource set or
substitute other resources. This behavior is intended
for resources that are nonessential, or for which it may
be feasible to find replacements.

• optional: Optional resources do not participate in
the commitment procedure: failure or timeout is ig-
nored. This behavior is intended for resources that do
not have to be coordinated within the overall applica-
tion structure.

These basic mechanisms can be used to construct a
wide variety of application-specific behaviors. For exam-
ple,interactive resources allow an application (or co-
allocation agent acting on its behalf) to replace slow or
failed elements of a request if an alternative resource can be
found. Alternatively, one may be able to decrease allocation
time by requesting several alternative resources simultane-
ously and committing to the first that becomes available.
Finally, the order of resource acquisition can be controlled
via interactive modification of the resource specification:
for example acquiring all required resources first and then
adding interactive resources to the set.

3.3 Configuration Mechanisms

Successful completion of a co-allocation request results
in the creation of a set of application processes on the re-
sources in the specified resource set. The further configura-
tion or initialization of these processes frequently requires
that these processes discover and communicate with one an-
other. For example, if the newly created processes are to
participate in a Message Passing Interface (MPI) compu-
tation, then each process must determine the total number
of processes, determine its own name (in this case, an in-
teger “rank” within the set of processes), and establish a
(virtual or physical) all-to-all communication structure that
allows it to communicate with any other process. In other
situations, other naming and communication structures may
be appropriate: for example, on machines with networks or
disks attached to a specific node, it may be advantageous
for this node to always be assigned a specific rank. In more
dynamic applications designed to tolerate failure, a linear
ordering of resources and an all-to-all communication struc-
ture may not be appropriate.

In order to accommodate a wide range of configura-
tion possibilities, we identify a basic set of operations
from which alternative approaches to configurations imple-
mented. These mechanisms take into account the presence
of subjobs, as noted above, and include the following func-
tions:

• determine the number of subjobs in a resource set;



• determine the size (i.e., number of processors) of a spe-
cific subjob;

• communicate between at least one node in a subjob
and every other node in the subjob,

• for at least one node in a subjob, be able to communi-
cate with at least one node in every other subjob.

3.4 Monitoring and Control Mechanisms

The allocation and configuration phases of the co-
allocation process result in the creation of a set of processes
executing on a set of resources. During the program’s ex-
ecution, it is desirable that we be able to monitor and con-
trol the ensemble as a collective unit, rather than being re-
quired to treat its constituent components independently.
The monitoring and control operations that we defined have
this property.

Monitoring operations allow a client program to receive
notification when the resource set changes state. In addition
to the obvious global state transitions of failure and termina-
tion, the complex failure modes encountered in Grid appli-
cations lead to a need to support and respond to individual
process state transitions as well. For example, a large dis-
tributed simulation such as [21] might be willing to continue
execution even if a component fails. Hence, the monitoring
interface should allow for state transitions to be signalled to
the monitoring program, which can then act upon this tran-
sition in a manner that is appropriate for the application.

Similarly, control operations allow for the manipulation
of the resource set as a whole. One required control oper-
ation is to “kill” the application; other operations may be
required in the future.

4. Experiences

We have constructed implementations of both the atomic
and interactive transaction co-allocation strategies in the
context of the Globus toolkit and have gathered exten-
sive experience with their use in a range of applications.
Here, we first review briefly on the structure of the co-
allocator implementations and then report on our experi-
ences using the co-allocators in controlled experiments and
in large-scale applications. While the former experiments
are not central to the principal point of this paper, namely
the importance of interactive transactions for effective co-
allocation, the results provide insights into the costs associ-
ated with co-allocation.

4.1 Co-Allocator Implementation

We have constructed two co-allocator implementations.
Experience with the first, an atomic transaction co-allocator

called the Globus Resource Allocation Broker (GRAB) mo-
tivated the design and implementation of the second, an
interactive transaction co-allocator called the Dynamically
Updated Resource Online Co-allocator (DUROC). DUROC
forms a central part of the Globus toolkit and has seen ex-
tensive use both directly in applications and within tools
such as MPICH-G [11], a Grid-enabled implementation of
the Message Passing Interface based on the MPICH system.

Both GRAB and DUROC are implemented as a set of
libraries designed to be linked with application codes. Co-
allocation requests are expressed in terms of an extensible
resource allocation language, or RSL [6].

An example of a DUROC co-allocation RSL expression
for an application that involves a single master process and
several four-processor subjobs (“workers”) is shown in Fig-
ure 1. The master resource is labeled asrequired, while
the worker resources are labeled asinteractive. Dur-
ing co-allocation, the identity of any successful workers is
communicated to the application. If enough worker pro-
cessors cannot be allocated, the application can abort the
computation; once enough resources have been collected, it
can terminate subjobs that have not yet responded to the re-
quest prior to committing the configuration and proceeding.
Alternatively, if the number of workers was not important,
all worker processes might be labeledoptional. In this
case, workers join the computation as and when they be-
come active.

+(&(resourceManagerContact=RM1)
(count=1)(executable=master)
(subjobStartType=required))

(&(resourceManagerContact=RM2)
(count=4)(executable=worker)
(subjobStartType=interactive))

...
(&(resourceManagerContact=RMn)

(count=4)(executable=worker)
(subjobStartType=interactive))

Figure 1. Example of a RSL co-allocation re-
quest for a master/worker computation sub-
mitted to DUROC.

The DUROC libraries consist of acontrol library whose
functions are used within a co-allocation agent to initiate
and control an allocation request, and anapplication side
library, which provides the barrier operation used within
the co-allocated application. A co-allocation agent uses the
control library to:

• create an RSL expression to describe the request;



• monitor the status for the request via DUROC call-
backs, adding or deleting subjobs according to its
needs; and

• commit to a specific configuration and then wait for all
of the subjobs in the final configuration to check into
the barrier or for the allocation to fail.

A process that is to run on a co-allocated node starts as nor-
mal. The first thing it does is perform any non-side effect
producing initialization necessary to determine if the com-
ponent execution can proceed. It then calls the co-allocation
barrier, signalling whether or not it has completed startup
successfully. Depending on how co-allocation proceeds, the
process may or may not return from the barrier (hence the
need to delay any unreversable initialization). If the bar-
rier exits successfully, the application knows that the co-
allocation was successful and it can proceed with normal
initialization and execution.

DUROC also provides an application with a set of library
routines that implement the configuration mechanisms dis-
cussed in Section 3.3.

4.2 DUROC Experimental Results

We used a series of microbenchmark studies to evalu-
ate the cost of DUROC co-allocation mechanisms and to
compare these costs with those of basic resource manage-
ment functions provided by the Globus Resource Architec-
ture (GRAM).

Experiments were conducted on an 64-node Silicon
Graphics Origin 2000 shared-memory parallel computer
running the Irix 6.5 operating system. Allocation requests
were submitted from a remote machine. Both the submit-
ting machine and the machine on which resources were al-
located were located on a lightly loaded network with a la-
tency between the two computers of about 2 msec. To elim-
inate any source of queuing delay, GRAM was configured
to respond to allocation requests by immediately “forking”
the requested number of processes.

Baseline measurements from which to evaluate DUROC
performance were obtained by conducted a series of experi-
ments with GRAM alone. A series of GRAM requests were
submitted, varying the number of processes created. For
each request, we measured the time that elapsed from in-
vocation of the allocation command to successful startup of
the processes on the target machine. The results, presented
in Figure 2, show that the cost of a GRAM submission is
largely insensitive to the number of processes created.

A breakdown of where time is spent in a single process
GRAM request is shown in Figure 3. The largest single
contributor to the time required to process a GRAM request
is in “initgroups,” a Unix system call. This call is expen-
sive because it must consult remote group databases (via
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Figure 2. GRAM submission latency for sev-
eral parallel job sizes.
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Figure 3. Breakdown of times spent in pro-
cessing a single-process GRAM request

the Network Information Service). The second major con-
tributor to request execution time is in a call to the Grid
Security Infrastructure (GSI) library that performs a mutual
authentication of the requestor and target machine. These
operations are computationally intensive and also require
network communication. All other costs are an order of
magnitude smaller.

To determine the cost of co-allocation over that of ba-
sic allocation, we timed a series of DUROC co-allocation
requests, varying both the total number of processes cre-
ated and the number of subjobs. We measured time for a
DUROC request by starting a timer in the submitting pro-
gram immediately before calling the co-allocation function
and then stopping this timer on receipt of a message sent
from an application process immediately upon exiting the
co-allocation barrier. Results of this experiment with the
number of processes fixed at 64 is shown in Figure 4. This
graph shows how DUROC submission time changes as the
number of subjobs is varied from 1 to 25, while keeping the
total number of processes created constant.

Our results show that co-allocation time is essentially in-
dependent of the number of processes but varies linearly
with the number of subjobs. The linear relationship be-
tween number of subjobs and total time is to be expected
as each subjob results in a distinct GRAM request, each
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Figure 4. DUROC submission times to a host 2
milliseconds away from the client workstation
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with its inherent authentication and protocol overhead. This
can be seen by examining a timeline of a DUROC submis-
sion, shown in Figure 5, which illustrates that the individ-
ual GRAM requests from which a DUROC request is con-
structed must be submitted sequentially.

time

fork overhead

GSI overhead

OS overhead

job active

startup wait

misc. GRAM overhead

DUROC barrier

GRAM barrier

Figure 5. Timeline of a DUROC submission.

Figure 5, however, also indicates that there is some op-
portunity for overlap in processing a DUROC request once
that basic resource allocation request has been processed.
The slope of lines in Figure 4 indicates that this is indeed
the case. A single subjob takes 2 seconds, and 25 subjobs
take 28 seconds; this is 44% less time for multiple subjobs
than one would expect with zero concurrency.

A more detailed examination of Figure 4 suggests a
model for co-allocation cost. Given our experience that
DUROC costs are essentially constant regardless of the
number of processes in a subjob, we can assume a sim-
plified model where GRAM imposes some per-transaction
latency and then instantaneously starts all processes. Job
processes are therefore started in batches, one subjob at a
time; and all processes must wait until the final batch is ac-
tive. Under this assumption, average process wait time (in

process-seconds) is:

∑M−1
i=0 k N

M i

N
=

k
∑M−1

i=0 i

M
≈ kM

2

whereM is the number of subjobs andk is the latency in-
troduced by theith subjob into thei−1th subjob’s barrier (a
time which is less than an independent GRAM request due
to pipelining of subjob requests). Note that the total job la-
tency iskM under the assumption of uniform GRAM costs.
As the plot shows, our observations verify that the average
barrier wait is approximately one half the total job latency,
in agreement with the simplified analytical model.

In addition, we have inspected per-process barrier wait
times for several runs to verify that the raw data occur in
per-subjob blocks. The barrier times do exist in blocks, and
the shortest wait time is always zero (with 10 ms resolu-
tion). Anecdotal data from large distributed runs also indi-
cate that barrier synchronization costs are negligible in the
wide-area compared to local startup delays introduced both
by GRAM and by local scheduler queues (remember that
the above experiments were with fork-based job starts, im-
possible on most production parallel machines).

4.3 Application Experiences

We have been using first GRAB and more recently
DUROC in a wide range of application experiments over
the past 2 years.

Experiences with GRAB. Early experiments demon-
strated the benefits of our co-allocation architecture. For ex-
ample, initial experiments in large-scale distributed interac-
tive simulation described in [21] involved the co-allocation
of up to 7 supercomputers at one time. These experiments
were conducted initially without and then with the help of
GRAB, proving the benefits of co-allocation; the cost of al-
location, monitoring, and control operations was reduced
from literally tens of minutes when performed manually to
a few keystrokes when using GRAB.

These early experiments also convinced us that atomic
transactions were inadequate for Grid environments. On
several occasions, we had actually acquired an acceptable
number of resources, but then had to abort and restart the
simulation due to failure or slowness of a single resource.
As startup and initialization of large simulations on large
parallel computers can take 15 minutes or more, the cost
inherent in such unnecessary restarts is tremendous. These
problems were overcome with the development of DUROC.

Experiences with DUROC. DUROC has been used in a
wide range of settings and has proven to provide an effec-
tive co-allocation service. In one example, DUROC was



used to start the largest distributed interactive simulation
ever performed, starting a computation on 1386 processors
distributed across 13 different parallel supercomputers [3]
and 9 widely distributed sites. In this particular example,
there were difficulties starting some components of the sim-
ulation (including machine, network and application fail-
ure) and DUROC was successfully used to configure around
these failures.

DUROC has also been used to construct of other Globus
components. For example, the Grid-enabled MPICH-G im-
plementation of MPI [11] uses DUROC to start the elements
of an MPI job. In this case, all DUROC calls are hidden in
the MPI library, and an application does not have to make
any modifications to benefit from DUROC co-allocation.
The use of DUROC to initiate MPI is particularly advanta-
geous for large-scale “hero” computations, as we can recon-
figure the MPI job at startup to overcome resource failure.

5. Conclusions and Future Work

Experience shows that the co-allocation of multiple re-
sources is a challenging problem in Grid environments, due
to application requirements for multiple resources and the
inherent unreliability of the resources in question. We have
described two different strategies for dealing with the prob-
lem. The first atomic transaction approach uses a sim-
ple two-phase commit strategy to implement atomic co-
allocation semantics, in which a specified set of resources
is allocated in its entirety or not at all. The innovative in-
teractive transaction approach allows for application-level
guidance of resource selection and failure handling prior
to commitment, hence providing greater flexibility and re-
silience to failure. We have developed implementations of
both strategies in the context of the Globus toolkit and have
demonstrated the utility of both co-allocators in practical
settings. The interactive transaction strategy in particular
has proven its worth in a wide range of applications.

While the co-allocation strategies presented here provide
valuable mechanisms, they do not address the problem of
ensuring that a given co-allocation request will succeed.
For this, we believe that some form of advance reservation
will ultimately be required. We are currently investigating
how the current resource management architecture can be
extended to include reservation, and how the co-allocation
approaches presented in this paper can be applied to co-
reservation as well as co-allocation [13].
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