
Using Run-Time Predictions to Estimate Queue Wait Times and Improve

Scheduler Performance

Warren Smith�y Valerie Taylory Ian Foster�

fwsmith, fosterg@mcs.anl.gov
taylor@ece.nwu.edu

�Mathematics and Computer Science Division
Argonne National Laboratory

Argonne, IL 60439
http://www.mcs.anl.gov

yElectrical and Computer Engineering Department
Northwestern University
Evanston, IL 60208

http://www.ece.nwu.edu

Abstract

On many computers, a request to run a job is not ser-

viced immediately but instead is placed in a queue and ser-

viced only when resources are released by preceding jobs.

In this paper, we build on run-time prediction techniques

that we developed in previous research to explore two prob-

lems. The �rst problem is to predict how long applications

will wait in a queue until they receive resources. We show

that run-time estimates can be used for this and that using

our run-time estimates result in more accurate wait-time

predictions than when the run-time prediction techniques

of other researches are used. The second problem we in-

vestigate is improving scheduling performance. We use

run-time predictions to improve the performance of the

least work �rst and back�ll scheduling algorithms. We �nd

that using our run-time predictor results in lower mean

wait times for the workloads with higher o�ered loads when

compared to alternative run-time predictors.

1 Introduction

On many high-performance computers, a request to exe-
cute an application is not serviced immediately but instead
is placed in a queue and serviced only when resources are
released by running applications. We examine two sepa-
rate problems in this environment. First, we predict how
long applications will wait until they execute. These esti-
mates of queue wait times are useful to guide resource

selection when several systems are available [7], to co-
allocate resources from multiple systems [2], to schedule
other activities, etc. Our technique for predicting queue
wait times is to use predictions of application execution
times along with the scheduling algorithms to simulate
the actions made by a scheduler and determine when ap-
plications will begin to execute.

We perform queue wait time prediction and scheduling
experiments using four workloads and three scheduling al-
gorithms. The workloads were recorded from an IBM SP
at Argonne National Laboratory, an IBM SP at the Cor-
nell Theory Center, and an Intel Paragon at the San Diego
Supercomputing Center. The scheduling algorithms are
�rst-come �rst-served (FCFS), least work �rst (LWF) and
back�ll. We �nd that there is a built-in error when predict-
ing wait times of the LWF algorithm of 34 to 43 percent
and a smaller built-in error (3 to 4%) for the back�ll algo-
rithm. This error is due to the fact that jobs that have not
been enqueued yet can signi�cantly impact the schedul-
ing of applications when using the LWF algorithm. We
also �nd that more accurate run time predictions result
in more accurate wait time predictions. Using our run-
time prediction technique instead of maximum run times
or the run-time prediction techniques of Gibbons [8] or
Downey [3] improves run-time prediction error by 39 to 92
percent. This improves wait-time prediction performance
by 13 to 87 percent.

Our second problem is to improve the performance of
the least work �rst and back�ll scheduling algorithms by



using our run-time predictions. These algorithms use run-
time predictions when making scheduling decisions and we
therefore expect that more accurate run-time predictions
will improve scheduling performance. We use the same
four workloads to evaluate scheduling performance when
using our run-time predictions. We �nd that the accuracy
of the run-time predictions has a minimal e�ect on the
utilization of the systems we are simulating. We also �nd
that using oury of the run-time predictors result in mean
wait times that are within 22 percent of the mean wait
times that are obtained if the scheduler exactly knows the
run times of all of the applications. When comparing the
di�erent predictors, our run-time predictor results in 2 to
67 percent smaller mean wait times for the ANL workload,
the workload with the highest o�ered load. No prediction
technique clearly outperforms the other techniques when
the o�ered load is low.
The next section summarizes our approach to predict-

ing application run times and the approaches of other re-
searchers. Section 3 describes our queue wait time pre-
diction technique and presents its performance. Section 4
presents the performance of using our run-time predictions
in the LWF and back�ll scheduling algorithms and Sec-
tion 5 presents our conclusions.

2 Predicting Application Run

Times

In previous work [12] we described our technique for pre-
dicting the execution times of parallel applications and
compared our technique to those of Downey [3] and Gib-
bons [8]. This section briey describes our prediction tech-
nique, discusses the scheduling algorithms used with this
work, and describes the run-time prediction techniques of
the other researchers.

2.1 Our Run-Time Prediction Technique

Our general approach to predicting application run times
is to derive run-time predictions from historical informa-
tion of previous \similar" runs. This approach is based on
the observation [12, 3, 5, 8] that similar applications are
more likely to have similar run times than applications
that have nothing in common. We address the issues of
how to de�ne similar and how to generate predictions from
similar past applications.

2.1.1 De�ning Similarity

A di�culty in developing prediction techniques based on
similarity is that two jobs can be compared in many
ways. For example, we can compare the application name,
submitting user name, executable arguments, submission
time, and number of nodes requested. In this work, we

are restricted to those values recorded in workload traces
obtained from various supercomputer centers. However,
because the techniques that we propose are based on the
automatic discovery of e�cient similarity criteria, we be-
lieve that they will apply even if quite di�erent information
is available.
The workload traces that we consider are described in

Table 1; they originate from Argonne National Laboratory
(ANL), the Cornell Theory Center (CTC), and the San
Diego Supercomputer Center (SDSC). Table 2 summarizes
the information provided in these traces. Text in a �eld
indicates that a particular trace contains the information
in question; in the case of \Type," \Queue," or \Class"
the text speci�es the categories in question.
The general approach to de�ning similarity taken by

ourselves, Downey, and Gibbons is to use characteristics
such as those presented in Table 2 to de�ne templates that
identify a set of categories to which jobs can be assigned.
For example, the template (q,u) speci�es that jobs are to
be partitioned by queue and user; on the SDSC Paragon,
this template generates categories such as (q16m,wsmith),
(q64l,wsmith), and (q16m,foster).
We �nd that using discrete characteristics 1{6 of Ta-

ble 2 in the manner just described works reasonably well.
On the other hand, the number of nodes is an essentially
continuous parameter, and so we prefer to introduce an
additional parameter into our templates, namely, a \node
range size" that de�nes what ranges of requested num-
ber of nodes are used to decide whether applications are
similar. For example, the template (u, n=4) speci�es a
node range size of 4 and generates categories (wsmith,

1-4 nodes) and (wsmith, 5-8 nodes).
Once a set of templates has been de�ned (using a search

process described later), we can categorize a set of appli-
cations (e.g., the workloads of Table 1) by assigning each
application to those categories that match its characteris-
tics. Categories need not be disjoint, and hence the same
job can occur in several categories. If two jobs fall into the
same category, they are judged similar; those that do not
coincide in any category are judged dissimilar.

2.1.2 Generating Predictions

We now consider the question of how we generate run-
time predictions. The input to this process is a set of tem-
plates and a workload for which run-time predictions are
required. In addition to the characteristics described in
the preceding section, a running time, maximum history,
type of data to store, and prediction type are also de�ned
for each template. The running time is how long an appli-
cation has been running when a prediction is made. Sim-

1Because of an error when the trace was recorded, the ANL trace

does not include one-third of the requests actually made to the sys-

tem. To compensate, we reduced the number of nodes on the ma-

chine from 120 to 80 when performing simulations.



Table 1: Characteristics of the trace data used in our studies.

Mean
Workload Number of Number of Run Time
Name System Nodes Location When Requests (minutes)

ANL 1 IBM SP2 120 ANL 3 months of 1996 7994 97.75
CTC IBM SP2 512 CTC 2 months of 1996 13217 171.14

SDSC95 Intel Paragon 400 SDSC 12 months of 1995 22885 108.21
SDSC96 Intel Paragon 400 SDSC 12 months of 1996 22337 166.98

Table 2: Characteristics recorded in workloads. The column \Abbr" indicates abbreviations used in subsequent
discussion.

Abbr Characteristic Argonne Cornell SDSC
batch, serial,

1 t Type interactive parallel,
pvm3

2 q Queue 29 to
35 queues

3 c Class DSI/PIOFS
4 u User Y Y Y
5 s Loadleveler script Y
6 e Executable Y
7 a Arguments Y
8 na Network adaptor Y
9 n Number of nodes Y Y Y
10 Maximum run time Y Y
11 Submission time Y Y Y
12 Start time Y Y Y
13 Run time Y Y Y



ilarly to the number of nodes, we specify a range size for
running time. The maximum history indicates the max-
imum number of data points to store in each category
generated from a template. The type of data is either an
actual run time or a relative run time. A relative run time
incorporates information about user-supplied run time es-
timates by storing the ratio of the actual run time to the
user-supplied estimate (the maximum run times provided
by the ANL and CTC workloads). The prediction type de-
termines how a run-time prediction is made from the data
in each category generated from a template. We consid-
ered four prediction types in our previous work: a mean,
a linear regression, an inverse regression, or a logarithmic
regression [13, 4]. We found that the mean is the single
best predictor so this work only uses means to form pre-
dictions.
The output from this process is a set of run-time pre-

dictions and associated con�dence intervals. (A con�dence
interval is an interval centered on the run-time prediction
within which the actual run time is expected to appear
some speci�ed percentage of the time.) The basic algo-
rithm is described below and comprises three phases: ini-
tialization, prediction, and incorporation of historical in-
formation.

1. De�ne T , the set of templates to be used, and initial-
ize C, the (initially empty) set of categories.

2. At the time each application a begins to execute:

(a) Apply the templates in T to the characteristics
of a to identify the categories Ca into which the
application may fall.

(b) Eliminate from Ca all categories that are not in
C or that cannot provide a valid prediction (i.e.,
do not have enough data points).

(c) For each category remaining in Ca, compute a
run-time estimate and a con�dence interval for
the estimate.

(d) If Ca is not empty, select the estimate with the
smallest con�dence interval as the run-time pre-
diction for the application.

3. At the time each application a completes execution:

(a) Identify the set Ca of categories into which the
application falls. These categories may or may
not exist in C.

(b) For each category ci 2 Ca

i. If ci 62 C, create ci in C.

ii. If jcij = maximum history(ci), remove the
oldest point in ci.

iii. Insert a into ci.

Note that steps 2 and 3 operate asynchronously, since
historical information for a job cannot be incorporated un-
til the job �nishes. Hence, our algorithm su�ers from an
initial ramp-up phase during which there is insu�cient in-
formation in C to make predictions. This de�ciency could
be corrected by using a training set to initialize C.

The use of maximum histories in step 3(b) of our al-
gorithm allows us to control the amount of historical in-
formation used when making predictions and the amount
of storage space needed to store historical information. A
small maximum history means that less historical infor-
mation is stored, and hence only more recent events are
used to make predictions.

2.1.3 Template De�nition and Search

We use search techniques to identify good templates for
a particular workload; this is in contrast to Gibbons and
Downey who use a �xed set of templates. While the num-
ber of application characteristics included in our traces is
relatively small, the fact that e�ective template sets may
contain many templates means that an exhaustive search
is impractical. Our previous work compared greedy and
genetic algorithm searches and found that genetic algo-
rithm searches outperform greedy searches. Therefore, we
only use genetic algorithm searches in this work.

Genetic algorithms are a probabilistic technique for ex-
ploring large search spaces, in which the concept of cross-
over from biology is used to improve e�ciency relative to
purely random search [10]. A genetic algorithm evolves
individuals over a series of generations. The process for
each generation consists of evaluating the �tness of each
individual in the population, selecting which individuals
will be mated to produce the next generation, mating the
individuals, and mutating the resulting individuals to pro-
duce the next generation. The process then repeats until a
stopping condition is met. The stopping condition we use
is that a �xed number of generations have been processed.
There are many di�erent variations to this process, and
we will next describe the variations we used.

Our individuals represent template sets. Each template
set consists of between 1 and 10 templates, and we encode
the following information in binary form for each template:

1. Whether a mean or one of the three regressions is used
to produce a prediction.

2. Whether absolute or relative run times are used.

3. Whether each of the binary characteristics associated
with the workload in question is enabled.

4. Whether node information should be used and, if so,
the range size from 1 to 512 in powers of 2.



5. Whether the running time of an application should be
used and, if so, the range from 64 to 65536 seconds in
powers of 2.

6. Whether the amount of history stored in each cate-
gory should be limited and, if so, the limit between 2
and 65536 in powers of 2.

A �tness function is used to compute the �tness of each
individual and therefore its chance to reproduce. The �t-
ness function should be selected so that the most desirable
individuals have higher �tness and produce more o�spring,
but the diversity of the population must be maintained by
not giving the best individuals overwhelming representa-
tion in succeeding generations. In our genetic algorithm,
we wish to minimize the prediction error and maintain
a range of individual �tnesses regardless of whether the
range in errors is large or small. The �tness function we
use to accomplish this goal is

Fmin +
Emax�E

Emax�Emin
� (Fmax � Fmin),

where E is the error of the individual (template set), Emin

and Emax are the minimum and maximum errors of indi-
viduals in the generation, and Fmin and Fmax are the de-
sired minimum and maximum �tnesses desired. We chose
Fmax = 4Fmin.
We use a common technique called stochiastic sampling

with replacement to select which individuals will mate to
produce the next generation. In this technique, each par-
ent is selected from the individuals by selecting individual
i with probability FiP

F
.

The mating or crossover process is accomplished by ran-
domly selecting pairs of individuals to mate and replacing
each pair by their children in the new population. The
crossover of two individuals proceeds in a slightly nonstan-
dard way because our chromosomes are not �xed length
but a multiple of the number of bits used to represent each
template. Two children are produced from each crossover
by randomly selecting a template i and a position p in
the template from the �rst individual T1 = t1;1; : : : ; t1;n
and randomly selecting a template j in the second indi-
vidual T2 = t2;1; : : : ; t2;m so that the resulting individuals
will not have more than 10 templates. The new individ-
uals are then ~T1 = t1;1; : : : ; t1;i�1; n1; t2;j+1; : : : ; t2;m and
~T2 = t2;1 : : : t2;j�1; n2; t1;i+1; : : : ; ti;n. If there are b bits
used to represent each template, n1 is the �rst p bits of
t1;i concatenated with the last b� p bits of t2;j, and n2 is
the �rst p bits of t2;j concatenated with the last b� p bits
of t1;i.
In addition to using crossover to produce the individuals

of the next generation, we also use a process called elitism
whereby the best individuals in each generation survive
unmutated to the next generation. We use crossover to
produce all but 2 individuals for each new generation and

use elitism to select the last 2 individuals for each new gen-
eration. The individuals resulting from the crossover pro-
cess are mutated to help maintain a diversity in the pop-
ulation. Each bit representing the individuals is ipped
with a probability of 0.01.

2.1.4 Run-Time Prediction Experiments

We wish to use run time predictions to predict queue wait
times and improve the performance of scheduling algo-
rithms. Therefore, we need to determine what workloads
to search over to �nd the best template sets to use. We
have already described four sets of trace data that were
recorded from supercomputers. Next, we will describe the
three scheduling algorithms we consider.

We use the �rst-come �rst-served (FCFS), least work
�rst (LWF), and back�ll scheduling algorithms in this
work. In the FCFS algorithm, applications are given re-
sources in the order in which they arrive. The applica-
tion at the head of the queue runs whenever enough nodes
become free. The LWF algorithm also tries to execute
applications in order, but the applications are ordered in
increasing order using estimates of the amount of work
(number of nodes multiplied by estimated wallclock exe-
cution time) the application will perform.

The back�ll algorithm is a variant of the FCFS algo-
rithm. The di�erence is that the back�ll algorithm allows
an application to run before it would in FCFS order if it
will not delay the execution of applications ahead of it in
the queue (those that arrived before it). When the back-
�ll algorithm tries to schedule applications, it examines
every application in the queue, in order of arrival time. If
an application can run (there are enough free nodes and
running the application will not delay the starting times
of applications ahead of it in the queue), it is started. If
an application cannot run, nodes are \reserved" for it at
the earliest possible time. This reservation is only to make
sure that applications behind it in the queue do not delay
it; the application may actually start before the reserva-
tion time.

Each scheduling algorithm predicts application run
times at di�erent times when predicting queue wait times
for the jobs in each trace. To try to �nd the optimal
template set to use to predict execution times, we use a
workload for each algorithm/trace pair and search over
each of these 12 workloads separately. When predicting
queue wait times, we predict the wait time of an appli-
cation when it is submitted. A wait-time prediction in
this case requires run-time predictions of all applications
in the system so the run-time prediction workload con-
tains predictions for all running and queued jobs every
time an application is submitted. We insert data points
for an application into our historical database as soon as
each application completes.



When using run-time predictions while scheduling, run-
time predictions are once again made at di�erent times
for each algorithm/trace pair and we attempt to �nd the
optimal template sets to use for each pair. Only the LWF
and back�ll scheduling algorithms use run-time predic-
tions when making scheduling predictions. The FCFS al-
gorithm does not, so there is no possibility to improve
the performance of this algorithm by using more accurate
run-time predictions. For the LWF algorithm, all waiting
applications are predicted whenever the scheduling algo-
rithm attempts to start an application (when any applica-
tion is enqueued or �nishes). This occurs because the LWF
algorithm needs to �nd the waiting application that will
use the least work. For the back�ll algorithm, run-time
predictions are made for all running and waiting applica-
tions whenever the scheduling algorithm attempts to start
an application (whenever an application is enqueued or
�nishes).

We generate our run-time prediction workloads by us-
ing maximum run times as run-time predictions during
scheduling and generate the prediction events described in
the last paragraph. Insertion events are once again gen-
erated whenever an application completes. One di�culty
is that the LWF and back�ll scheduling algorithms use
run-time predictions when making scheduling decisions.
Therefore, the predictions and insertions made when us-
ing maximumrun times as the run time predictions will be
slightly di�erent than those if a di�erent run-time predic-
tor is used. These run-time prediction workloads should
be representative of the predictions and insertions that will
be made when scheduling using other run-time predictors.

2.2 Related Work

Gibbons [8, 9] also uses historical information to predict
the run times of parallel applications. His technique di�ers
from ours principally in that he uses a �xed set of tem-
plates and di�erent characteristics to de�ne templates. He
uses the six templates/predictor combinations listed in Ta-
ble 3. The running time (rtime) characteristic indicates
how long an application has been executing when a predic-
tion is made for the application. Gibbons produces predic-
tions by examining categories derived from the templates
listed in Table 3, in the order listed, until a category that
can provide a valid prediction is found. This prediction is
then used as the run-time prediction.

The set of templates listed in Table 3 results because
Gibbons uses templates of (u,e), (e), and () with sub-
templates in each template. The subtemplates add the
characteristics n and rtime. Gibbons also uses the re-
quested number of nodes slightly di�erently from the way
we do: rather than having equal-sized ranges speci�ed by a
parameter, as we do, he de�nes the �xed set of exponential
ranges 1, 2-3, 4-7, 8-15, and so on.

Table 3: Templates used by Gibbons for run-time predic-
tion.

Number Template Predictor

1 (u,e,n,rtime) mean
2 (u,e) linear regression
3 (e,n,rtime) mean
4 (e) linear regression
5 (n,rtime) mean
6 () linear regression

Another di�erence between Gibbons's technique and
ours is how he performs a linear regression on the data
in the categories (u,e), (e), and (). These categories
are used only if one of their subcategories cannot provide
a valid prediction. A weighted linear regression is per-
formed on the mean number of nodes and the mean run
time of each subcategory that contains data, with each
pair weighted by the inverse of the variance of the run
times in their subcategory.

Downey [3] uses a di�erent technique to predict the ex-
ecution time of parallel applications. His procedure is to
categorize all applications in the workload, then model
the cumulative distribution functions of the run times in
each category, and �nally use these functions to predict
application run times. Downey categorizes applications
using the queues that applications are submitted to, al-
though he does state that other characteristics can be used
in this categorization. In fact, Downey's prediction tech-
nique within a category can be used with our technique
for �nding the best characteristics to use to categorize ap-
plications.

Downey observed that the cumulative distributions of
the execution times of the jobs in the workloads he ex-
amined can be modeled relatively accurately by using a
logarithmic function: �0 + �1 ln t. Once the distribution
functions are calculated, he uses two di�erent techniques
to produce a run-time prediction. The �rst technique uses
the median lifetime given that an application has executed
for a time units. If one assumes the logarithmic model for
the cumulative distribution, this equation is

q
ae

1:0��0
�1 .

The second technique uses the conditional average lifetime

tmax � a

log tmax � loga

with tmax = e(1:0��0)=�1 .



3 Predicting Queue Wait Times

We use the run time predictions described in the previous
section to predict queue wait times. Our technique is to
perform a scheduling simulation using the predicted run
times as the run times of the applications. This will then
provide predictions of when applications will start to exe-
cute. We simulate the FCFS, LWF, and back�ll scheduling
algorithms and predict the wait time for each application
when the application is submitted to the scheduler. The
accuracy of using various run-time predictors is shown in
Table 4 through Table 9.

Table 4 shows the wait-time prediction performance
when actual run times are used during prediction. No
data is shown for the FCFS algorithm because there is no
error when computing wait-time predictors in this case.
There is no error because later arriving jobs do not af-
fect the start times of the jobs that are currently in the
queue. For the LWF and back�ll scheduling algorithms,
wait-time prediction error does occur because jobs that
have not been enqueued yet can a�ect when the jobs cur-
rently in the queue can run. This e�ect larger for the LWF
results where if later arriving jobs wish to perform smaller
amounts of work, they move to the head of the queue. As
you can see in the table, the wait-time prediction error for
the LWF algorithm is between 34 and 43 percent: there
is a very high built-in error when predicting queue wait
times of the LWF algorithm with this technique. There is
also a small error (3-4%) when predicting the wait times
for the back�ll scheduling algorithm. Any error for the
back�ll algorithm seems unexpected at �rst, but errors in
wait-time prediction can occur because scheduling is per-
formed using maximum run times. A job J2 could arrive
in the queue, start ahead of an already queued job J1
because the scheduler does not believe the job J1 can use
those nodes, a running job could �nish unexpectedly early,
and the job J1 could have started except that the job J2
is using nodes that are needed. This example results in a
wait-time prediction error for the job J1 before the job J2
arrives in the queue.

Table 5 shows the wait-time prediction errors while us-
ing maximum run times as run-time predictions. The
wait-time prediction error when using actual run times as
run-time predictors is 59 to 99 better than the wait-time
prediction error of the LWF and Back�ll runs when using
maximum run times as the run-time predictor. Maximum
run times are used to predict run times in scheduling sys-
tems such as EASY [11]. These predictions are provided in
the ANL and CTC workload and are implied in the SDSC
workloads because each of the queues in the two SDSC
workload has maximum limits on resource usage. To de-
rive maximum run times for the SDSC workloads, we �nd
the longest running job in each queue and use that as the
maximum run time for all jobs in that queue. The maxi-

mum run times are provided explicitly or implicitly in the
workloads so they are available for use as run-time predic-
tors and can be considered as an upper bound on run-time
prediction performance.

Table 6 shows that our run-time prediction technique
results in run-time prediction errors that are from 33 to
86 percent of mean application run times and wait-time
prediction errors that are from 34 to 77 percent of mean
wait times. The best wait-time prediction performance oc-
curs for the ANL workload and the worst for the SDSC96
workload. This is the opposite of what we expect from the
run-time prediction errors. The most accurate run-time
predictions are for the SDSC96 workload. This implies
that accurate run-time predictions are not the only factor
that determines the accuracy of wait-time predictions.
The results when using our run-time predictor also show

that the mean wait time prediction error is 19 to 42 per-
cent worse than when predicting wait times for the LWF
algorithm using actual run times. Finally, using our run-
time predictor results in 53 to 86 percent better wait time
predictions than when using maximum run times as the
run-time predictors.
Table 7 shows the wait-time prediction error when us-

ing Gibbons' run time predictor. Our run-time prediction
error is 39% to 68% better than Gibbons' and our wait-
time prediction errors are 13% to 83% better than Gib-
bons'. Table 8 and Table 9 shows the wait-time predic-
tion error when using Downey's conditional average and
conditional median predictors. The wait-time prediction
errors we achieve when using our run-time predictor are
19% to 87% better than these errors and our run-time pre-
diction error is 42% to 92% better. These result and the
previous results show that our run-time predictor is more
accurate than maximum run times, Gibbons' predictor,
or Downey's predictors. The results also show that the
wait-time prediction errors are smaller when our run-time
predictor is used. This shows that there is a correlation be-
tween wait-time prediction error and run-time prediction
error.

4 Improving Scheduler Perfor-

mance

Our second application of run-time predictions is to im-
prove the performance of the LWF and Back�ll schedul-
ing algorithms. Table 10 shows the performance of the
scheduling algorithms when the actual run times are used
as run-time predictors. This is the best performance we
can expect in each case and serves as an upper bound on
scheduling performance.
Table 11 shows the performance of using maximum run

times as run time predictions in terms of average utiliza-
tion and mean wait time. The scheduling performance



Table 4: Wait-time prediction performance using actual run times.

Wait-Time Prediction
Scheduling Mean Error Percent of

Workload Algorithm (minutes) Mean Wait Time
ANL LWF 37.14 43
ANL Back�ll 5.84 3
CTC LWF 4.05 39
CTC Back�ll 2.62 10

SDSC95 LWF 5.83 39
SDSC95 Back�ll 1.12 4
SDSC96 LWF 3.32 42
SDSC96 Back�ll 0.30 3

Table 5: Wait-time prediction performance using maximum run times.

Run-Time Prediction Wait-Time Prediction
Scheduling Mean Error Percent of Mean Error Percent of

Workload Algorithm (minutes) Mean Run Time (minutes) Mean Wait Time
ANL FCFS 99.23 102 996.67 186
ANL LWF 203.53 208 97.12 112
ANL Back�ll 134.82 138 429.05 242
CTC FCFS 243.97 143 125.36 128
CTC LWF 254.57 149 9.86 94
CTC Back�ll 264.36 154 51.16 190

SDSC95 FCFS 393.31 363 162.72 295
SDSC95 LWF 356.50 329 28.56 191
SDSC95 Back�ll 377.50 349 93.81 333
SDSC96 FCFS 394.66 236 47.83 288
SDSC96 LWF 397.30 238 14.19 180
SDSC96 Back�ll 397.58 238 39.66 350

Table 6: Wait-time prediction performance using our run time predictor.

Run-Time Prediction Wait-Time Prediction
Scheduling Mean Error Percent of Mean Error Percent of

Workload Algorithm (minutes) Mean Run Time (minutes) Mean Wait Time
ANL FCFS 44.25 45 182.42 34
ANL LWF 58.18 60 45.77 53
ANL Back�ll 48.88 50 76.59 43
CTC FCFS 127.09 74 36.60 37
CTC LWF 145.30 85 5.58 53
CTC Back�ll 147.97 86 11.85 44

SDSC95 FCFS 54.77 51 30.70 56
SDSC95 LWF 58.18 54 10.10 68
SDSC95 Back�ll 59.18 55 13.37 47
SDSC96 FCFS 57.69 35 10.75 65
SDSC96 LWF 56.97 34 5.01 64
SDSC96 Back�ll 54.72 33 8.76 77



Table 7: Wait time prediction performance using Gibbons' run time predictor.

Run-Time Prediction Wait-Time Prediction
Scheduling Mean Error Percent of Mean Error Percent of

Workload Algorithm (minutes) Mean Run Time (minutes) Mean Wait Time
ANL FCFS 93.28 95 350.86 66
ANL LWF 180.26 184 76.23 91
ANL Back�ll 130.75 134 94.01 53
CTC FCFS 207.03 121 81.45 83
CTC LWF 245.92 144 32.34 309
CTC Back�ll 242.25 142 13.57 50

SDSC95 FCFS 114.43 106 54.37 99
SDSC95 LWF 127.48 118 11.60 78
SDSC95 Back�ll 123.13 114 20.27 72
SDSC96 FCFS 157.93 95 22.36 135
SDSC96 LWF 158.80 95 6.88 87
SDSC96 Back�ll 159.21 95 17.31 153

Table 8: Wait time prediction performance using Downey's conditional average run time predictor.

Run-Time Prediction Wait-Time Prediction
Scheduling Mean Error Percent of Mean Error Percent of

Workload Algorithm (minutes) Mean Run Time (minutes) Mean Wait Time
ANL FCFS 126.91 130 443.45 83
ANL LWF 253.25 259 232.24 277
ANL Back�ll 178.34 182 339.10 191
CTC FCFS 224.88 131 65.22 66
CTC LWF 255.56 149 14.78 141
CTC Back�ll 253.00 148 17.22 64

SDSC95 FCFS 546.89 505 187.73 340
SDSC95 LWF 688.62 636 35.84 240
SDSC95 Back�ll 629.65 582 62.96 223
SDSC96 FCFS 439.33 263 83.62 503
SDSC96 LWF 453.19 271 28.42 361
SDSC96 Back�ll 446.24 267 47.11 415



Table 9: Wait time prediction performance using Downey's conditional median run time predictor.

Run-Time Prediction Wait-Time Prediction
Scheduling Mean Error Percent of Mean Error Percent of

Workload Algorithm (minutes) Mean Run Time (minutes) Mean Wait Time
ANL FCFS 97.75 100 534.71 100
ANL LWF 251.67 257 254.91 304
ANL Back�ll 170.91 175 410.57 232
CTC FCFS 219.93 129 83.33 85
CTC LWF 260.71 152 15.47 148
CTC Back�ll 258.77 151 19.35 72

SDSC95 FCFS 286.84 265 62.67 114
SDSC95 LWF 363.78 336 18.28 122
SDSC95 Back�ll 331.95 307 27.52 98
SDSC96 FCFS 259.48 155 34.23 206
SDSC96 LWF 265.44 159 12.65 161
SDSC96 Back�ll 262.57 157 20.70 183

Table 10: Scheduling performance using actual run times.

Scheduling
Scheduling Utilization Mean Wait Time

Workload Algorithm (percent) (minutes)
ANL LWF 70.34 61.20
ANL Back�ll 71.04 142.45
CTC LWF 51.28 11.15
CTC Back�ll 51.28 23.75

SDSC95 LWF 41.14 14.48
SDSC95 Back�ll 41.14 21.98
SDSC96 LWF 46.79 6.80
SDSC96 Back�ll 46.79 10.42



when using the maximum run times can once again be
considered an upper bound for comparison. When com-
paring this data to the data in Table 10, you can see that
the maximum run times are an inaccurate predictor but
this does not a�ect the utilization of the simulated paral-
lel computers. Predicting run times with actual run-times
when scheduling results in 3 percent to 27 percent lower
mean wait times, except in one case where using maximum
run times results in 6 percent lower mean wait times. The
e�ect of accurate run-time predictions is highest for the
ANL workload which has the largest o�ered load.

Table 12 shows the performance of using our run-time
prediction technique when scheduling. The run-time pre-
diction error in this case is 23% to 93% of mean run times,
slightly worse than the results when predicting run-times
for wait-time prediction. This worse performance is due
to more predictions being performed. First, more predic-
tions are made of applications before they begin executing.
These predictions do not have information about how long
an application has run which improves prediction perfor-
mance. Second, more predictions are made of long-running
applications, the applications that contribute the largest
errors to the mean errors.

Our run-time prediction technique results in mean wait
times that are 5 percent better to 4 percent worse than
when using actual run times as predictions for the least
work �rst algorithm. For the back�ll algorithm, mean
wait times when using our run-time predictor our 11 to
22 percent worse. The above result can be understood by
noticing that the back�ll algorithm requires more accurate
run-time predictions than LWF. LWF just needs to know
if applications are \big" or \small" and small errors do
not greatly a�ect performance. The performance of the
back�ll algorithm depends on accurate run-time predic-
tions because it tries to �t applications into time/space
slots.

When comparing our run-time prediction technique to
using maximum run times, our technique has a minimal
e�ect on the utilization of the systems but it does decrease
the mean wait time in 6 of the 8 experiments. Table 13
through Table 15 show the performance of the scheduling
algorithms when using Gibbons' and Downey's run-time
predictors. The results also indicate that once again, using
our run-time predictor does not produce greater utiliza-
tions. The results also show that our run-time predictor
results in 13 to 50 percent lower mean wait times for the
ANL workload, but there is no clearly better run-time pre-
dictor for the other three workloads. The ANL workload
has much larger mean wait times and higher utilizations
(greater o�ered load) than the other workloads (particu-
larly the SDSC workloads). This may indicate that greater
prediction accuracy of our technique when scheduling be-
comes \hard". To test this hypothesis, we compressed the
interrival time of applications by a factor of two for both

SDSC workloads and then simulated these two new work-
loads. We found that our run time predictor results in
mean wait times that are 8 percent better on average, but
are 43 percent lower to 31 percent higher than mean wait
times than obtained when using Gibbons' or Downey's
techniques.
The results also show that Downey's conditional average

is the worst predictor and Gibbons' predictor is the most
accurate. The results also show that our run-time pre-
dictor is between 2 and 86 percent better than the other
predictors, except for the CTC workload. For this work-
load, our predictor is the worst. This may be explained by
the limited template searches we performed for that work-
load due to time constraints. The accuracy of the run-time
predictions for the CTC workload carriers over to the to
the mean wait times of the scheduling algorithms when us-
ing the various run-time predictors: our mean wait times
are the worst.

5 Conclusions

In this work, we apply predictions of application run times
to two separate scheduling problems. The problems are
predicting how long applications will wait in queues be-
fore executing and improving the performance of schedul-
ing algorithms. Our technique for predicting application
run times is to derive a prediction for an application from
the run times of previous applications judged similar by a
template of key job characteristics. The novelty of our ap-
proach lies in the use of search techniques to �nd the best
templates. For the workloads considered in this work, our
searches found templates that result in run-time predic-
tion errors that are signi�cantly better than those of other
researchers or using user-supplied maximum run times.
We predict queue wait times by using run-time predic-

tions and the algorithms used by schedulers. These two
factors are used to simulate scheduling algorithms and de-
cide when applications will execute. Estimates of queue
wait times are useful to guide resource selection when sev-
eral systems are available, to co-allocate resources from
multiple systems, to schedule other activities, etc. This
technique results in a wait-time prediction error of 34% to
77% of mean wait times when using our run-time predic-
tors. This error is signi�cantly better than when using the
run-time predictors of Gibbons, Downey or user-supplied
maximum run times. We also �nd that even if we predict
application run times with no error, the wait-time predic-
tion error for the least work �rst algorithm is signi�cant
(34 to 43 percent of mean wait times).
We improve the performance of the least work �rst and

back�ll scheduling algorithms by using our run-time pre-
dictions when scheduling. We �nd that the utilization of
the parallel computers we simulate does not vary greatly
when using di�erent run-time predictors. We also �nd



Table 11: Scheduling performance using maximum run times as the run time predictor.

Run-Time Prediction Scheduling
Scheduling Mean Error Percent of Utilization Mean Wait Time

Workload Algorithm (minutes) Mean Run Time (percent) (minutes)
ANL LWF 104.12 107 70.70 83.81
ANL Back�ll 154.86 158 71.04 177.14
CTC LWF 319.82 187 51.28 10.48
CTC Back�ll 75.92 44 51.28 26.86

SDSC95 LWF 411.47 380 41.14 14.95
SDSC95 Back�ll 377.50 349 41.14 28.20
SDSC96 LWF 397.30 238 46.79 7.88
SDSC96 Back�ll 387.64 232 46.79 11.34

Table 12: Scheduling performance using our run time prediction technique.

Run-Time Prediction Scheduling
Scheduling Mean Error Percent of Utilization Mean Wait Time

Workload Algorithm (minutes) Mean Run Time (percent) (minutes)
ANL LWF 60.97 62 70.28 78.22
ANL Back�ll 50.78 52 71.04 148.77
CTC LWF 160.13 98 51.28 13.40
CTC Back�ll 163.61 96 51.28 22.54

SDSC95 LWF 70.69 65 41.14 16.19
SDSC95 Back�ll 88.68 82 41.14 22.17
SDSC96 LWF 72.58 43 46.79 7.79
SDSC96 Back�ll 37.82 23 46.79 10.10

Table 13: Scheduling performance using Gibbons' run time prediction technique.

Run-Time Prediction Scheduling
Scheduling Mean Error Percent of Utilization Mean Wait Time

Workload Algorithm (minutes) Mean Run Time (percent) (minutes)
ANL LWF 92.81 95 70.72 90.36
ANL Back�ll 86.81 89 71.04 181.38
CTC LWF 158.39 93 51.28 11.04
CTC Back�ll 63.17 34 51.28 27.31

SDSC95 LWF 132.45 122 41.14 15.99
SDSC95 Back�ll 91.35 84 41.14 24.83
SDSC96 LWF 178.12 107 46.79 7.51
SDSC96 Back�ll 47.56 28 46.79 10.82



Table 14: Scheduling performance using Downey's conditional average run time predictor.

Run-Time Prediction Scheduling
Scheduling Mean Error Percent of Utilization Mean Wait Time

Workload Algorithm (minutes) Mean Run Time (percent) (minutes)
ANL LWF 74.54 76 71.04 154.76
ANL Back�ll 144.80 148 70.88 246.40
CTC LWF 167.32 98 51.28 9.87
CTC Back�ll 36.19 21 51.28 14.45

SDSC95 LWF 279.04 258 41.14 16.22
SDSC95 Back�ll 648.84 709 41.14 20.37
SDSC96 LWF 278.46 167 46.79 7.88
SDSC96 Back�ll 470.91 282 46.79 8.25

Table 15: Scheduling performance using Downey's conditional median run time predictor.

Run-Time Prediction Scheduling
Scheduling Mean Error Percent of Utilization Mean Wait Time

Workload Algorithm (minutes) Mean Run Time (percent) (minutes)
ANL LWF 62.22 64 71.04 154.76
ANL Back�ll 144.11 147 71.04 207.17
CTC LWF 146.85 86 51.28 11.54
CTC Back�ll 30.06 18 51.28 16.72

SDSC95 LWF 127.97 118 41.14 16.36
SDSC95 Back�ll 347.42 321 41.14 19.56
SDSC96 LWF 138.44 83 46.79 7.80
SDSC96 Back�ll 275.74 165 46.79 8.02



that using our run-time predictions does improve the mean
wait times in general. In particular, our more accurate
run-time predictors have the largest impact on mean wait
time for the ANL workload, which has the highest uti-
lization. In this workload, the mean wait times are 7%
to 67% lower when using our run-time predictions than
when using other run-time predictions. We also �nd that
on average, the mean wait time when using our predic-
tor is within 8 percent of the mean wait time that would
occur if the scheduler knows the exact run times of the
applications. The mean wait time when using our tech-
nique ranges from 5 percent better to 22 percent worse
than when scheduling with the actual run times.
In future work, we will investigate an alternative method

for predicting queue wait times. This method will use the
current state of the scheduling system (number of applica-
tions in each queue, time of day, etc.) and historical infor-
mation on queue wait times during similar past states to
predict queue wait times. We hope this technique will im-
prove wait-time prediction error, particularly for the LWF
algorithm that has a large built-in error using the tech-
nique presented here. Further, we will expand our work in
using run-time prediction techniques for scheduling to the
problem of combining queue based scheduling and reserva-
tions. Reservations are one way to co-allocate resources in
metacomputing systems [1, 6, 2, 7]. Support for resource
co-allocation is crucial to large-scale applications that re-
quire resources from more than one parallel computer.

References

[1] C. Catlett and L. Smarr. Metacomputing. Commu-

nications of the ACM, 35(6):44{52, 1992.

[2] K. Czajkowski, I. Foster, N. Karonis, C. Kesselman,
S. Martin, W. Smith, and S. Tuecke. A Resource
Management Architecture for Metasystems. Lecture

Notes on Computer Science, 1998.

[3] Allen Downey. Predicting Queue Times on Space-
Sharing Parallel Computers. In International Parallel

Processing Symposium, 1997.

[4] N. R. Draper and H. Smith. Applied Regression Anal-

ysis, 2nd Edition. John Wiley and Sons, 1981.

[5] Dror Feitelson and Bill Nitzberg. Job Characteristics
of a Production Parallel Scienti�c Workload on the
NASA Ames iPSC/860. Lecture Notes on Computer

Science, 949:337{360, 1995.

[6] Ian Foster and Carl Kesselman. Globus: A Metacom-
puting Infrastructure Toolkit. International Journal

of Supercomputing Applications, 11(2):115{128, 1997.

[7] Ian Foster and Carl Kesselman, editors. The Grid:

Blueprint for a New Computing Infrastructure. Mor-
gan Kau�mann, 1999.

[8] Richard Gibbons. A Historical Application Pro�ler
for Use by Parallel Scheculers. Lecture Notes on Com-

puter Science, 1297:58{75, 1997.

[9] Richard Gibbons. A Historical Pro�ler for Use by
Parallel Schedulers. Master's thesis, University of
Toronto, 1997.

[10] David E. Goldberg. Genetic Algorithms in Search,

Optimization, and Machine Learning. Addison-
Wesley, 1989.

[11] David A. Lifka. The ANL/IBM SP Scheduling Sys-
tem. Lecture Notes on Computer Science, 949:295{
303, 1995.

[12] Warren Smith, Ian Foster, and Valerie Taylor. Pre-
dicting Application Run Times Using Historical In-
formation. Lecture Notes on Computer Science,
1459:122{142, 1998.

[13] Neil Weiss and Matthew Hassett. Introductory Statis-
tics. Addison-Wesley, 1982.


