
From OGSI to WS-Resource Framework: Refactoring and Evolution 1

From Open Grid Services Infrastructure to WS-
Resource Framework: Refactoring & Evolution

Version 1.1

3/05/2004

Authors
Karl Czajkowski (Globus Alliance / USC Information Sciences Institute)

Don Ferguson (IBM)

Ian Foster (Globus Alliance / Argonne National Laboratory)

Jeff Frey (IBM)

Steve Graham (IBM)

Tom Maguire (IBM)

David Snelling (Fujitsu Laboratories of Europe)

Steve Tuecke (Globus Alliance / Argonne National Laboratory)

Abstract
The Open Grid Services Infrastructure specification version 1.0 (OGSI), released in
July 2003, defines a set of conventions and extensions on the use of Web Service
Definition Language and XML Schema to enable stateful Web services. It introduces
the idea of a stateful Web services and defines approaches for creating, naming, and
managing the lifetime of instances of services; for declaring and inspecting service
state data; for asynchronous notification of service state change; for representing
and managing collections of service instances; and for common handling of service
invocation faults. In January 2004, the WS-Resource Framework was proposed as a
refactoring and evolution of OGSI aimed at exploiting new Web services standards,
specifically WS-Addressing, and at evolving OGSI based on early implementation and
application experiences. The WS-Resource Framework retains essentially all of the
functional capabilities present in OGSI, while changing some of the syntax (e.g., to
exploit WS-Addressing) and also adopting a different terminology in its presentation.
In addition, the WS-Resource Framework partitions OGSI functionality into five
distinct, composable specifications. In this document, we explain the relationship
between OGSI and the WS-Resource Framework and the related WS-Notification
family of specifications, explain the common requirements that both address, and
compare and contrast the approaches taken to the realization of those requirements.

From OGSI to WS-Resource Framework: Refactoring and Evolution 2

Copyright Notice
© Copyright Fujitsu Limited, International Business Machines Corporation and The
University of Chicago 2003, 2004. All Rights Reserved.

Permission to copy and display this “From Open Grid Services Infrastructure to WS-
Resource Framework: Refactoring & Evolution” whitepaper (this Whitepaper"), in any
medium without fee or royalty is hereby granted, provided that you include the
following on ALL copies of this Whitepaper, or portions thereof, that you make:

1. A link or URL to this Whitepaper at this location.

2. This Copyright Notice as shown in this Whitepaper.

THIS WHITEPAPER IS PROVIDED "AS IS," AND FUJITSU, IBM, AND THE UNIVERSITY
OF CHICAGO (COLLECTIVELY, THE COMPANIES) MAKE NO REPRESENTATIONS OR
WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, NON-
INFRINGEMENT OR TITLE; THAT THE CONTENTS OF THIS WHITEPAPER ARE
SUITABLE FOR ANY PURPOSE; NOR THAT THE IMPLEMENTATION OF SUCH
CONTENTS WILL NOT INFRINGE ANY THIRD PARTY PATENTS, COPYRIGHTS,
TRADEMARKS OR OTHER RIGHTS.

THE COMPANIES WILL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL,
INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF OR RELATING TO ANY
USE OR DISTRIBUTION OF THIS WHITEPAPER.

The names and trademarks of the Companies may NOT be used in any manner,
including advertising or publicity pertaining to this Whitepaper or its contents,
without specific, written prior permission. Title to copyright in this Whitepaper will at
all times remain with the Companies.

No other rights are granted by implication, estoppel or otherwise.

PORTIONS OF THIS MATERIAL WERE PREPARED AS AN ACCOUNT OF WORK
SPONSORED BY IBM CORPORATION AT UNIVERSITY OF CHICAGO’S ARGONNE
NATIONAL LABORATORY. NEITHER THE AUTHORS, NOR THE UNITED STATES
GOVERNMENT OR ANY AGENCY THEREOF, NOR THE UNIVERSITY OF CHICAGO, NOR
IBM, NOR ANY OF THEIR EMPLOYEES OR OFFICERS, NOR ANY OTHER COPYRIGHT
HOLDERS OR CONTRIBUTORS, MAKES ANY WARRANTY, EXPRESS OR IMPLIED, OR
ASSUMES ANY LEGAL LIABILITY OR RESPONSIBILITY FOR THE ACCURACY,
COMPLETENESS, OR USEFULNESS OF ANY INFORMATION, APPARATUS, PRODUCT,
OR PROCESS DISCLOSED, OR REPRESENTS THAT ITS USE WOULD NOT INFRINGE
PRIVATELY OWNED RIGHTS. REFERENCE HEREIN TO ANY SPECIFIC COMMERCIAL
PRODUCT, PROCESS, OR SERVICE BY TRADE NAME, TRADEMARK, MANUFACTURER,
OR OTHERWISE, DOES NOT NECESSARILY CONSTITUTE OR IMPLY ITS
ENDORSEMENT, RECOMMENDATION, OR FAVORING BY IBM, THE UNITED STATES
GOVERNMENT OR ANY AGENCY THEREOF OR ANY OTHER COPYRIGHT HOLDERS OR
CONTRIBUTORS. THE VIEW AND OPINIONS OF AUTHORS EXPRESSED HEREIN DO
NOT NECESSARILY STATE OR REFLECT THOSE OF IBM, THE UNITED STATES
GOVERNMENT OR ANY AGENCY THEREOF, OR THE ENTITY BY WHICH AN AUTHOR
MAY BE EMPLOYED.

From OGSI to WS-Resource Framework: Refactoring and Evolution 3

This manuscript has been created in part by the University of Chicago as Operator of
Argonne National Laboratory ("Argonne") under Contract No. W-31-109-ENG-38 with
the U.S. Department of Energy. The U.S. Government retains for itself, and others
acting on its behalf, a paid-up, nonexclusive, irrevocable worldwide license in said
article to reproduce, prepare derivative works, distribute copies to the public, and
perform publicly and display publicly, by or on behalf of the Government.

From OGSI to WS-Resource Framework: Refactoring and Evolution 4

Table of Contents
1 Introduction.. 5
2 Background .. 7

2.1 Open Grid Services Infrastructure ... 7
2.2 Web Services Architecture Evolution .. 7
2.3 Web Services Critiques of OGSI .. 8

3 From OGSI to the WS-Resource Framework .. 9
3.1 The WS-Resource Construct ... 9
3.2 Other Changes ..11

4 Stateful Resource Addressing ...12
5 Resource Properties ..13
6 Lifetime Management..14
7 Service Groups...16
8 Faults ...17
9 Notification..17
10 Porting Interfaces..17
11 Conclusions ..18
12 Acknowledgements..18
13 References ...18

From OGSI to WS-Resource Framework: Refactoring and Evolution 5

1 Introduction
The Open Grid Services Infrastructure specification version 1.0 (OGSI) [OGSI-Spec],
released in July 2003 by the OGSI Working Group of the Global Grid Forum, defines
a set of conventions and extensions on the use of Web Service Definition Language
(WSDL) and XML Schema to enable stateful Web services. It defines approaches for
creating, naming, and managing the lifetime of instances of services; for declaring
and inspecting service state data; for asynchronous notification of service state
change; for representing and managing collections of service instances; and for
common handling of service invocation faults.

At the core of OGSI is a Grid service [Physiology], a Web service that conforms to a
set of conventions for such purposes as service lifetime management, inspection,
and notification of service state changes. Grid services provide for the controlled
management of the distributed and often long-lived state that is commonly required
in distributed applications. OGSI also introduces standard factory and registration
interfaces for creating and discovering Grid services, and a base fault type.

In parallel with and subsequent to this OGSI work, the Web services architecture has
evolved, with for example the definition of WSDL 2.0 [WSDL 2.0] progressing and
the release of new draft specifications such as WS-Addressing [WS-Addressing].
These developments make it timely to consider how the functional capabilities of
OGSI exploit functionality provided by other specifications (in particular, WS-
Addressing) and to align OGSI functions with the emerging consensus on Web
services architecture [WS-Arch]. OGSI 1.0 also combined into one specification
functions that are independently useful, for example event notification. It is
appropriate to factor the OGSI interfaces to produce a framework of independently
useful Web service standards.

A recent effort aimed at achieved such a refactoring has produced the specifications
listed in Table 1, five of which are named collectively the WS-Resource Framework
[State Paper], while the WS-Notification family of specifications [WS-Notification]
addresses notification (event) subscription and delivery. Collectively, these
specifications retain all of the essential functional capabilities present in OGSI, while
changing some of the syntax (e.g., to exploit WS-Addressing) and adopting a
different terminology in its presentation. In addition, the specifications partition OGSI
functionality into distinct functionality that allows flexible composition in a mix-and-
match manner. The factoring, composition capability and greater reliance on broadly
accepted Web service concepts provide a simpler, more familiar and incremental
path for developers wishing to exploit OGSI functionality.

The purpose of this paper is to explain how the new WS-Resource Framework and
WS-Notification specifications derive from and relate to the OGSI specification. To
this end, we explain how each OGSI constructs realization in the new specifications,
and point out areas in which the new specifications provide different or enhanced
functionality. Our goals in defining this mapping from OGSI are to:

1. persuade the OGSI community that the new specifications are a useful
refactoring and evolution of OGSI;

From OGSI to WS-Resource Framework: Refactoring and Evolution 6

2. make clear the intellectual debts that the new specifications owe to OGSI and
in doing so also highlight the architectural differences between the new
specifications and OGSI; and

3. Summarize the issues that arise in migrating OGSI-based applications to the
WS-Resource Framework and WS-Notification specifications.

In the rest of this paper, we first review OGSI and related Web services
specifications (Section 2) and introduce the principal concepts that underlie the WS-
Resource Framework, including the WS-Resource construct (Section 3). Then, we
compare and contrast in turn the OGSI and the WS-Resource Framework treatments
of service addressing (Section 4), resource properties (Section 5), lifetime
management (Section 6), service groups (Section 7), and faults (Section 8), and the
WS-Notification treatment of notification (Section 9). Finally, we discuss issues that
arise when migrating applications from OGSI to WS-Resource Framework and WS-
Notification (Section 10), and conclude. We have tried to make this paper accessible
to the reader unfamiliar with OGSI and WS-Resource Framework, but the reader who
wishes to understand technical details will need to read the relevant technical
specifications.

Table 1: The refactoring of OGSI yields
five normative WS-Resource Framework specifications plus WS-Notification

Name Description

WS-ResourceProperties Describes associating stateful resources and Web
services to produce WS-Resources, and how
elements of publicly visible properties of a WS-
Resource are, retrieved, changed, and deleted.

WS-ResourceLifetime Allow a requestor to destroy a WS-Resource either
immediately or at a scheduled future point in time.

WS-RenewableReferences Annotate a WS-Addressing endpoint reference with
information needed to retrieve a new endpoint
reference when the current reference becomes
invalid.

WS-ServiceGroup Create and use heterogeneous by-reference
collections of Web services.

WS-BaseFault Describes a base fault type used for reporting
errors.

WS-Notification family of
specifications

Standard approaches to notification using a topic-
based publish and subscribe pattern.

From OGSI to WS-Resource Framework: Refactoring and Evolution 7

2 Background
We provide some background on OGSI and relevant Web services specifications.

2.1 Open Grid Services Infrastructure
OGSI is concerned primarily with creating, addressing, inspecting, and managing the
lifetime of stateful Grid services [Physiology]. The OGSI version 1.0 specification
[OGSI-Spec], released in July 2003, defines a Grid service to be a Web service that
conforms to a set of conventions (interfaces and behaviors) that define how a client
interacts with a Grid service. These conventions, and other OGSI mechanisms
associated with Grid service creation and discovery, provide for the controlled, fault-
resilient, and secure management of the distributed and often long-lived state that is
commonly required in advanced distributed applications.

OGSI defines a component model by using extended WSDL and XML Schema
definition to introduce the concepts of stateful Web service instances, common
metadata and inspection, asynchronous notification of state change, references to
instances of services, collections of service instances, and service state data
declaration that augments the constraint capabilities of XML Schema definition. More
specifically, the OGSI specification defines:

• A set of WSDL extensions some of which have analogous support in WSDL 2.0
[WSDL 2.0 DRAFT].

• WSDL constructs and standard operations for representing, querying, and
updating service data (metadata and state data) associated with a service.

• The Grid Service Handle and Grid Service Reference constructs, used to
address Grid services.

• A definition of common fault information from operations that defines a base
XML Schema and associated semantics for WSDL fault messages to support a
common interpretation. The approach simply defines the base format for fault
messages, without modifying the WSDL fault message model.

• A set of operations for creating and destroying Grid services that provides for
both explicit destruction of services and implicit garbage collection of expired
services without the need for explicit destruction.

• A set of operations for creating and using heterogeneous by-reference
collections of Web services.

• Mechanisms for requesting asynchronous notifications of changes in the value
of service data elements.

At least six different implementations of the OGSI specification exist and some early
experience has been gained with the use of OGSI constructs in applications. In
addition, various efforts have started to develop higher-level specifications that build
on OGSI constructs.

2.2 Web Services Architecture Evolution
Since development started on OGSI in early 2002, the Web Services world has
evolved significantly. Specifically, a number of new specifications and use patterns

From OGSI to WS-Resource Framework: Refactoring and Evolution 8

have emerged that simplify and clarify the ideas expressed in OGSI. The following
briefly outlines this evolution.

WS-Addressing provides transport-neutral mechanisms to address Web services.
Specifically, WS-Addressing specification defines XML elements to identify Web
service endpoints and to include endpoint identification in messages. This
specification enables messaging systems to support message transmission through
networks that include processing nodes such as endpoint managers, firewalls, and
gateways in a transport-neutral manner. The end point reference information
provides not only the address of Web service itself, but can also serve to identify
stateful resources “behind” the service by using endpoint reference properties.

Although less central to the WS-Resource definition, WS-MetaDataExchange provides
a collection of mechanisms for obtaining information about a published service, such
as its WSDL description, XML Schema definitions and any other policy information
necessary to use the service.

Since WS-Addressing and WS-MetaDataExchange provide several capabilities that
are also defined within OGSI, it is beneficial to exploit those Web services
specifications rather than maintaining a specification that defines the same
functionality redundantly.

2.3 Web Services Critiques of OGSI
While the motivation for the WS-Resource Framework is primarily the desire to
integrate recent developments in Web services architecture, in particular WS-
Addressing, its design also addresses four criticisms of OGSI from the Web services
community.

1. Too much stuff in one specification. OGSI did not have a clean separation
(factoring) of functions to support incremental adoption. For example, event
notification is a useful function independent of coupling with service data.
Metadata introspection is a useful concept that does not require expression
through service data. The WS-Resource Framework and WS-Notification
specifications address this critique by partitioning OGSI v1.0 functionality into
a family of separate specifications that allow for flexible composition.

2. Does not work well with existing Web services and XML tooling. OGSI v1.0
uses XML Schema aggressively, for example with substantial use of xsd:any,
attributes, etc., and “document-oriented” WSDL operations. These features
cause problems with, for example, JAX-RPC. The WS-Resource Framework
uses standard XML Schema mechanisms that are familiar to developers and
are supported by existing tooling. Instead of extending the WSDL 1.1
portType definition, the WS-Resource Framework defines a means to
annotate the WSDL 1.1 portType to associate this XML information model of
the resource with Web service operations. This annotation is a legal construct
within the WSDL 1.1 language.

3. Too object oriented. OGSI v1.0 models a stateful resource as a Web service
that encapsulates the resource’s state, with the identity and lifecycle of the
service and resource state coupled. This approach has spurred anxiety among
some Web services purists who argue, “Web services do not have state or
instances”. In addition, some Web services implementations do not

From OGSI to WS-Resource Framework: Refactoring and Evolution 9

accommodate dynamic service creation and destruction. The WS-Resource
Framework re-articulates the underlying OGSI architecture to make an
explicit distinction between the “service” and the stateful entities acted upon
by that service. The WS-Resource Framework defines the means by which a
Web service and a stateful resource are composed. The WS-Resource
Framework calls these compositions “WS-Resources,” and introduces the
“implied resource pattern” to formalize the relationship between Web services
and the stateful resources through a conventional use of WS-Addressing.

4. Introduction of forthcoming WSDL 2.0 capability as unsupported extensions to
WSDL 1.1. The OGSI authors exploited constructs from the proposed WSDL
2.0 draft specification. Delays in the publication of WSDL 2.0 made it more
difficult to support the OGSI definition with existing Web services tooling and
runtimes. Therefore, it is beneficial to express the capabilities of OGSI using
the WSDL 1.1 definition to avoid the requirement for extended tooling.

3 From OGSI to the WS-Resource Framework
We introduce the general approach and underlying motivations for the factoring and
evolution process that takes OGSI to the WS-Resource Framework. This factoring is
done in terms of three evolutionary steps:

o the introduction of the WS-Resource concept;

o better separation of function and exploitation of other Web services
specifications; and

o A broader view of notification, which is a general Web service requirement
upon which state change notification can be built.

We provide first an overview of the modifications made when moving from OGSI to
the WS-Resource Framework and then present details in subsequent sections. The
relevant technical specifications (Table 1) can be consulted for WS-Resource
Framework details. Table 2 summarizes the mappings from OGSI concepts and
constructs to equivalent WS-Resource Framework concepts and constructs.

3.1 The WS-Resource Construct
The WS-Resource Framework is concerned primarily with the creation, addressing,
inspection, and lifetime management of stateful resources. The framework provides
the means to express state as stateful resources and codifies the relationship
between Web services and stateful resources in terms of the implied resource
pattern, which is a set of conventions on Web services technologies, particularly XML,
WSDL, and WS-Addressing [WS-Addressing]. The composition of a stateful resource
and a Web service that participates in the implied resource pattern is termed a WS-
Resource. The framework describes the WS-Resource definition, and describes how
to make the properties of a WS-Resource accessible through a Web service interface,
and to manage and reason about a WS-Resource’s lifetime.

From OGSI to WS-Resource Framework: Refactoring and Evolution 10

Table 2: How the primary OGSI constructs map to
WS-Resource Framework and WS-Notification constructs

OGSI WS-Resource
Framework

Comments

Grid Service
Reference

WS-Addressing
Endpoint Reference

Uses the endpoint reference properties
of WS-Addressing to identify a stateful
resource associated with the Web
service at the designated endpoint.

Grid Service
Handle

WS-Addressing
Endpoint Reference &
WS-
RenewableReferences

WS-RenewableReferences introduces
policy annotations to the WS-Addressing
endpoint reference that allow “handles”
and “handle Resolvers” to be an
integrated part of the endpoint
reference. Use of the policy annotations
provides for additional endpoint
reference stability.

HandleResolver
portType

WS-
RenewableReferences

Integration of Handle Resolution service
references in the endpoint reference.

Service data
definition

Resource properties
definition

Better exploits XML Schema. Compatible
with WSDL 1.1. Removes modifiability
and mutability metadata.

GridService
portType service
data access

WS-
ResourceProperties

Multiple operations instead of one
extensible operation, supporting simpler
binding to existing programming
models.

GridService
portType lifetime
management

WS-ResourceLifetime Removes the superfluous “terminate
before” operation. Cosmetic changes to
others.

Notification
portTypes

WS-Notification Generalizes notification to hierarchical
topic-based pub/sub mechanism.

Factory portType Now treated as a pattern; thus, no
specific operation.

ServiceGroup
portTypes

WS-ServiceGroup Only minor changes

Base fault type WS-BaseFault Only minor changes.

GWSDL Cut-and-paste Use existing WSDL 1.1 interface
composition approaches (i.e., cut-and-
paste). Wait for WSDL 2.0 adoption to
enable support for Web service tooling
and runtimes.

From OGSI to WS-Resource Framework: Refactoring and Evolution 11

As this brief description suggests, both OGSI and the WS-Resource Framework are
concerned with how to manipulate stateful resources through a Web services
interface. Furthermore, while the two approaches model stateful resources
differently—as a Grid service and a WS-Resource, respectively—they provide
essentially equivalent functionality and use semantically similar WSDL interface
definitions. Both Grid services and WS-Resources can be created, addressed,
inspected, and destroyed, and in essentially the same ways.

The WS-Resource Framework has two advantages relative to OGSI. First, it better
exploits existing XML standards, as well as emerging Web services standards such as
WS-Addressing. Thus, the WS-Resource Framework is easier to implement within
existing and emerging Web services toolkits, and easier to exploit within the myriad
of Web services interfaces in definition. The second advantage is pedagogical. OGSI
terminology and constructs have caused anxiety for some in the Web services
community due to a mistaken view that OGSI implies that Web services must
become heavyweight constructs. The WS-Resource Framework makes it clear that
this is not the intention or consequence: the goal is simply to allow stateful resources
manipulation via Web services operations. Nothing in either the OGSI or the WS-
Resource Framework model prevents a Web services implementation from being a
stateless message processor that dispatches operations to backend resources. The
WS-Resource Framework model makes this fact clearer, due to its more direct
translation to an implementation approach that separates message processors from
stateful resources.

3.2 Other Changes
The WS-Resource Framework also incorporates changes motivated by other lessons
learned since the completion of the OGSI 1.0 specification. We summarize some of
the more notable changes here and provide a more detailed description in
subsequent sections.

Implementation experience shows that the OGSI Factory interface provides little
useful functionality. Thus, the WS-Resource Framework defines instead the more
general WS-Resource factory pattern. Even within OGSI, there are several uses of a
factory pattern where, for clarity of expression and type control, explicit operations
exist rather than relying on the generic 'create' operation in the Factory portType,
e.g. the 'add' operation in ServiceGroupRegistration portType.

The OGSI Notification interfaces do not support a variety of functions required in a
general eventing system and supported by existing message-oriented middleware.
The family of WS-Notification specifications was created to address this gap.

OGSI uses the Grid Service Reference (GSR) as an address for a Grid service and
introduces the OGSI Grid Service Handle (GSH) construct and HandleResolver
mechanism as one (underspecified) way of handling mappings between abstract,
long-lived names and concrete, perhaps short-lived addresses. The combination of
these three OGSI constructs provides several distinct functions in an interdependent
collection of mechanisms. The WS-Resource Framework defines a framework for
these functions and provides the independent mechanisms. The WS-
RenewableReferences specification defines the ability to make endpoint references
stable references by the addition of endpoint policy assertions.

From OGSI to WS-Resource Framework: Refactoring and Evolution 12

The large size and scope of the OGSI specification has made it hard for readers to
understand its contents and to identify and refer to those components that are
required for a specific task. Thus, the WS-Resource Framework partitions OGSI
functionality into distinct specifications that allow flexible composition.

OGSI uses XML Schema aggressively and in particular makes substantial use of
extensibility (e.g., xsd:any). Unfortunately, this use of these standard XML Schema
features has caused problems with some existing Web services toolkits, XML
development tools, and standards (e.g., JAX-RPC). Thus, the WS-Resource
Framework takes a somewhat more conservative approach to the use of XML
Schema, for example by using multiple operations in place of a single, extensible
operation as in OGSI.

OGSI’s GWSDL extension to the WSDL 1.1 portType is mainly syntactic sugar, to
allow for interface extension. In addition, GWSDL went beyond syntactic sugar with
the declaration of service data as part of an interface definition. Unfortunately,
GWSDL was a major barrier to the use of OGSI. Thus, the WS-Resource Framework
simply defines its messages in terms of WSDL 1.1, and requires that designers of
composite interfaces copy-and-paste together the components of such an interface
until WSDL 2.0 is completed.

4 Stateful Resource Addressing
We now proceed to discuss the WS-Resource Framework rendering of each OGSI
construct in turn, presenting first requirements and then comparing and contrasting
the OGSI and WS-Resource Framework approaches to meeting those requirements.
We start with addressing.

Because the WS-Resources to which we wish provide access via service-oriented
mechanisms are dynamic and stateful, we need to be able to distinguish one
dynamically created WS-Resource from another, and provide the means to address
these WS-Resources reliably across a Web services infrastructure in a convenient
and interoperable way.

A minimum requirement for a network-wide WS-Resource addressing construct is
that it must standardize the representation of the address of the associated Web
service deployed at a given network endpoint. In addition to the endpoint address of
the Web service, the addressing construct may contain other metadata associated
with the Web service such as service description information and reference
properties associated to a contextual use of the targeted Web service.

Typically, an authoritative source provides Web service addressing constructs (Web
service “endpoint references”) and associated policy information. The endpoint
reference made available to a client represents a copy of the addressing and policy
information that may, at some point, become incoherent due to changes introduced
by the authoritative source that effects the endpoint location and/or the policy
assertions governing message exchanges with the Web service. Mechanisms that
allow the Web service endpoint references to be “renewed” in the event they become
invalid would provide additional stability in the addressing scheme.

OGSI addresses these requirements by defining the Grid Service Handle (GSH) and
the Grid Service Reference (GSR) constructs. The GSH does not provide sufficient
addressing information to allow a client to access the service instance, but it is a

From OGSI to WS-Resource Framework: Refactoring and Evolution 13

more stable “virtualized” expression of the service “endpoint reference”; the client
needs to “resolve” a GSH into a GSR, which contains the necessary information in
order to communicate with the stateful Web service instance. OGSI provides a
mechanism, the HandleResolver to support client resolution of a GSH into a GSR. The
HandleResolver portType defines a standard means for resolving a GSH to a GSR,
independent of any particular GSH scheme. We refer to a service instance that
implements the HandleResolver portType as a handle resolver.

In contrast, the WS-Resource Framework builds on the recently published WS-
Addressing specification to achieve the same goals in slightly different ways. First, it
adopts the endpoint reference construct defined in the WS-Addressing specification
as an XML syntax for identifying Web service endpoints. It then defines a particular
usage pattern for endpoint references, the implied resource pattern, in which the
reference properties field of the endpoint reference contains an identifier of a specific
stateful resource associated with the Web service. These two pieces of information
are the logical equivalent of the addressing content of the OGSI defined GSR.

Second, rather than distinguishing between two fixed types of names, immutable
GSHs and potentially mutable GSRs, it introduces (in WS-RenewableReferences) a
mechanism for associating with any endpoint reference (not just one that refers to a
WS-Resource) a “resolver service.” Specifically, WS-RenewableReferences allows a
renewable reference policy to be associated with an endpoint reference. This WS-
Policy statement can include an assertion concerning the ReferenceResolver for
obtaining a new reference for a particular service.

The quality of naming of OGSI services and WS-Resources provided by OGSI and the
WS-Resource Framework, respectively, are equivalent. There may be multiple OGSI
GSHs to the same service, while in the WS-Resource Framework there may be
multiple endpoint references for the same resource. Two GSHs can only be compared
for equality via syntactic comparison, but service inequality cannot be deduced from
GSH syntactic inequality. The same is true of endpoint references. Finally, non-reuse
of a GSH is guaranteed; that is, the same GSH will never refer to a different service.
A WS-Resource qualified endpoint reference provides the same guarantee. It is
expected that the quality of identity will be enhanced for specific use cases such as
resource and service management [WSDM].

One small feature of an OGSI GSH is its URI syntax, thus making it a short, human-
readable “name” for a service. There is not equivalent feature in the WS-Resource
Framework. Instead, various forms of naming services can be built on top of the WS-
Resource Framework, which can provide whatever from of name desired, and which
map to endpoint references.

Thus, the WS-Resource Framework provides virtually all functionality present in
OGSI, and has the advantages of leveraging WS-Addressing, allowing for arbitrary
hierarchies of resolver services, and allowing to be used independently of each other.

5 Resource Properties
The second set of requirements concerns mechanisms for defining the message
exchanges used to access the state of a stateful entity. More specifically, we require
the ability to

From OGSI to WS-Resource Framework: Refactoring and Evolution 14

1) determine the type of the state and thus the specific message exchanges that
may be supported, and

2) issue read, modify, and query requests against state components.

Both OGSI and the WS-Resource Framework take essentially the same approach to
addressing these two requirements, but use different syntax.

OGSI meets the first requirement by declaring service data elements as part of an
interface definition. When multiple interfaces are composed using the GWSDL (or
equivalently, WSDL 2.0) interface extension, the service data element declarations
are implicitly aggregated to create the complete service data set.

The WS-Resource Framework uses standard XML Schema global element
declarations to define resource property elements. A Resource properties document
collects resource property elements and the resource properties document is
associated with a Web service interface by using an XML attribute on the WSDL 1.1
portType. In this way the existence and type of a resource properties document is
captured, as well as its association with a particular portType. The annotated
portType defines the overall type of the WS-Resource. This construction is legal
WSDL 1.1, thanks to the revised WSDL 1.1 schema required by WS-Interoperability
Basic Profile 1.0. However, when combining messages from multiple interfaces into a
single interface via copy-and-paste, it is necessary to combine the resource property
elements from the various interfaces into a single resource property document via
copy-and-paste as well.

Resource property elements are almost identical to service data elements. The only
difference is that resource property element declarations are simply XML global
element declarations, whereas OGSI service data element declarations use an OGSI-
specific syntax that mirrors an XML element declaration. A result is that element
declarations for resource properties cannot contain annotations of modifiability and
mutability attributes, as can be done in OGSI. These attributes, if deemed critical for
some applications, could be defined in some other manner such as metadata
attachments, but the WS-Resource Framework has not defined any such approach.

OGSI meets the second requirement via a small set of extensible operations, in
particular findServiceData and setServiceData, with a required extension support
multi-element get/set. The WS-Resource Framework instead introduces, in WS-
ResourceProperties, a set of more specific operations for getting and setting resource
properties: single element get, multi-element get/set, and XPath query. Others may
define additional operations as desired. Thus, thanks to the XPath query in WS-
ResourceProperties, the functionality provided by the WS-Resource Framework for
accessing resource property elements is a superset of that provided by OGSI.

6 Lifetime Management
The lifetime of a stateful entity is defined to be the period between its creation and
its destruction. The actual mechanisms by which a particular stateful entity is created
and destroyed are implementation-specific, and therefore not defined or prescribed
in either OGSI or the WS-Resource Framework. However, we do need to address
three aspects of the entity lifecycle: creation, identity assignment, and destruction.
Both OGSI and the WS-Resource Framework address these three issues in

From OGSI to WS-Resource Framework: Refactoring and Evolution 15

essentially the same way. The mapping from OGSI to WS-Resource Framework
constructs is summarized in Table 3 and described in the following.

OGSI addresses the idea of service creation via the Factory portType, which provides
an operation “createService” that takes as optional arguments a proposed
termination time and execution parameters, and returns (upon success) an OGSI
defined service locator for the newly created service, an initial termination time, and
optional additional data. In practice, the standardization of this operation provided
only limited value, as most parameters provided to a particular Factory
implementation would be implementation-specific.

For these reasons, the WS-Resource Framework defines simply the factory pattern, a
term used to denote a Web service that supports an operation that creates, and
returns endpoint references for, one or more new WS-Resources [WS-
ResourceLifetime]. The WS-Resource Framework factory pattern can provide the
same functionality as the OGSI factory operation. Recall that the OGSI definition of a
stateful Web service is now a WS-Resource. Thus, the creation of a stateful Web
service in OGSI terms is really the creation of a WS-Resource in WS-Resource
Framework terms.

Table 3: Mapping from OGSI to WS-Resource Framework lifetime
management constructs

Function OGSI WS-Resource Framework

Create new
entity

Factory portType operation
“createService”

Factory pattern definition

Address the
entity

Grid Service Reference and
Grid Service Handle

WS-Addressing Endpoint Reference
with reference properties.

Immediate
destruction

GridService portType operation
“destroy.”

ResourceLifetime portType
operation “Destroy.” However, this
operation is synchronous in WS-
Resource Framework.

Scheduled
destruction

GridService portType
operations
“requestTerminationAfter” and
“requestTerminationBefore”

ResourceLifetime portType
operation “SetTerminationTime” is
equivalent to “after.” “Before” was
determined to be superfluous in
the absence of real-time
scheduling.

Determine
current time

GridService portType service
data element “CurrentTime”

Resource property “CurrentTime”

Determine
lifetime

GridService portType service
data element
“terminationTime”

Resource property
“TerminationTime”

Notify of
destruction

Not available Subscribe to topic
“ResourceDestruction”

From OGSI to WS-Resource Framework: Refactoring and Evolution 16

A requestor that requests a factory to create a new stateful entity will typically only
be interested in that new entity for some finite period. After that time, it should be
possible to destroy the new entity so that associated system resources can be
reclaimed. Two destruction methods are of interest: immediate destruction, in which
the requestor sends a destroy request, and scheduled (also known as soft-state)
destruction, in which an entity has an assigned lifetime after which the entity can be
destroyed by the resource provider. By resource provider, we mean any component
in the system responsible for hosting the implementation of the resource.

OGSI addresses destruction via operations supported in its GridService portType. The
Destroy operation allows a requestor to request destruction of a Grid service, while
the requestTerminationAfter and requestTerminationBefore operations allow a
requestor to manage a Grid service’s lifetime.

The WS-Resource Framework WS-ResourceLifetime specification defines equivalent
message exchanges. A service requestor that wishes to destroy a WS-Resource
explicitly must use the appropriate WS-Resource-qualified endpoint reference to send
a destroy request message to the WS-Resource. The reference properties within the
endpoint reference identify the stateful resource component of the WS-Resource
targeted for destruction. Note that the destruction of the stateful resource
component of a WS-Resource effectively destroys the WS-Resource. Unlike in OGSI,
a successful response from a destroy operation indicates that the resource has been
destroyed and can no longer be accessed via that service. A successful return in
OGSI only indicates that destruction has been initiated.

The WS-Resource Framework defined SetTerminationTime operation supports
scheduled destruction in the same way as the OGSI defined
“requestTerminationAfter”; no equivalent to “requestTerminationBefore” is provided
as that operation is superfluous in the absence of real-time scheduling.

A final requirement relating to scheduled destruction is that a requestor may need to
be able to determine the stateful resource’s view of the current time and its
associated termination time. OGSI and the WS-Resource Framework address these
requirements in the same manner: via two service data elements (OGSI) or resource
properties (WS-Resource Framework): CurrentTime and TerminationTime.

7 Service Groups
The term service group refers to a standard mechanism for creating a heterogeneous
by-reference collection of Web services. Service groups can form a wide variety of
collections of services, including building registries of services. While their use is not
restricted to Grid services (in OGSI) or WS-Resources (in the WS-Resource
Framework), service groups are particularly important when dealing with stateful
entities.

OGSI and the WS-Resource Framework address this requirement in essentially the
same way, via the OGSI ServiceGroup portTypes and the equivalent interfaces
defined in the WS-ServiceGroup specification, respectively. The only difference
between the two approaches is that WS-ServiceGroup removes the “remove”
operation on the ServiceGroupRegistration interface, which allowed for removal of a
set of matching services. This operation was removed mainly because of the open

From OGSI to WS-Resource Framework: Refactoring and Evolution 17

extensibility of this operation, and its redundancy with removing services from a
group by doing lifetime management on the service group entry resource.

8 Faults
WSDL defines a message exchange fault model, but not a base format for fault
messages. Specific domains that define interfaces using WSDL would typically define
a “fault schema” for utilization across various message exchanges defined in those
interfaces. Both OGSI and the WS-Resource Framework define interfaces using
WSDL, and without a common base fault mechanism there is no basis for a common
interpretation of fault messages generated by different sources. Interoperability
requires the common interpretation.

OGSI addresses this issue by defining a base XML Schema definition (a base XSD
type, ogsi:FaultType) and associated semantics for fault messages, along with a
convention for extending this base definition for various types of faults. This
definition simplifies problem determination by having a common base set of
information that all fault messages contain. Note that the approach simply defines
the base format for fault messages, without modifying the WSDL fault message
model.

The WS-Resource Framework adopts the same constructs, defining them in the WS-
BaseFault specification. The only difference is the removal of the open extensibility
from WS-BaseFault, because it is redundant with the required approach of extending
the base fault type using XML Schema extension for extended faults, and that
extensibility element placed an additional burden upon the capabilities of broadly
available Web services tooling.

9 Notification
In an environment in which stateful resources may be created and destroyed, and
may change their state, dynamically, it becomes important to provide support for
asynchronous notification of changes in the state of individual resources and/or other
system components such as registries.

OGSI meets this requirement via its Notification portTypes, which allow a client to
define a subscription (a persistent query) against one or more service data values.

Subscription and notification is a broad concept. Not all “events” relate to changes in
the “state” of a service or resource. The WS-Notification family of specifications
introduce a more feature-complete, generic, hierarchical topic-based approach for
publish/subscribe-based notification, which is a common model followed in large-
scale, distributed event management systems. WS-Resource Properties then defines
a mapping from element names of resource properties to topic names to support
functionality similar to OGSI service data subscription. WS-Notification includes
richer support for controlling subscriptions (e.g., pause and resume), and for
defining intermediaries.

10 Porting Interfaces
The porting of interfaces from OGSI to the WS-Resource Framework and WS-
Notification is straightforward and comprises a set of mechanical transformations.

From OGSI to WS-Resource Framework: Refactoring and Evolution 18

WSDL operation definitions themselves need not change. What changes is simply
how we talk about the operations: we must do so in terms of the WS-Resource
model (i.e., in terms of operations on WS-Resources), rather than the OGSI Grid
service model.

The removal of GWSDL means that we must instead copy-and-paste messages and
resource property elements when creating composite interfaces in WSDL 1.1. This
requirement will disappear with the proposed WSDL 2.0 definition, which has the
same interface extension as OGSI’s GWSDL.

11 Conclusions
We have described the relationship between the concepts, mechanisms, and syntax
defined by the Open Grid Services Infrastructure 1.0 specification [OGSI-Spec] and
the five specifications that make up the proposed WS-Resource Framework [WS-
Resource Framework] as well as the related WS-Notification family of specifications.
We have discussed the rationale behind this evolution and attempted to describe the
value it provides. These specifications capture all of the functionality provided by
OGSI, but do so in a way that integrates with evolving Web services standards.
Specifically, the WS-Resource Framework definition relies upon the WS-Addressing
specification. In addition, the WS-Resource Framework definition expresses the
capabilities of the OGSI definition in a way that is more consistent, and will be more
familiar to Web services developers in general. Furthermore, the changes required to
port an interface from OGSI to the WS-Resource Framework are few and
straightforward.

12 Acknowledgements
This white paper development is the joint work of many individuals and teams. The
authors wish to acknowledge the contributions from many people, including:

Sonny Fulkerson, Carl Kesselman, Susan Malaika, Martin Nally, Jeff Nick, Chris
Sharp, Tony Storey, and Jay Unger. We also acknowledge those with whom we have
discussed issues addressed in this paper, including Malcolm Atkinson and Savas
Parastatidis.

13 References
[OGSI-Spec]

Open Grid Services Infrastructure (OGSI) V1.0
http://forge.gridforum.org/projects/ggf-editor/document/draft-ogsi-service-
1/en/1

[Physiology]

Foster, I., Kesselman, C., Nick, J., Tuecke, S., The Physiology of the Grid: An
Open Grid Services Architecture for Distributed Systems Integration, Globus
Project, 2002. Available at http://www.globus.org/research/papers/ogsa.pdf

[State Paper]
Modeling Stateful Resources using Web Services. http://www-
106.ibm.com/developerworks/library/ws-resource/ws-modelingresources.pdf

From OGSI to WS-Resource Framework: Refactoring and Evolution 19

[SOAP]

The fundamental message enveloping mechanism in Web services.
http://www.w3.org/TR/SOAP.

[WSDM]

OASIS WSDM Management Using Web Services and Management Of Web
Services Working Groups.

[WS-Addressing]

WS-Addressing, an XML serialization and standard SOAP binding for representing
network wide “pointers” to services.
http://www.ibm.com/developerworks/webservices/library/ws-add/

[WS-BaseFaults]

This specification defines a base fault type for use when returning faults in a Web
services message exchange. It can be used when reporting faults relating to WS-
Resource definition and use. This specification is a work in progress.

[WS-Arch]

The W3C Web Services Architecture working group, public draft, August 2003.
http://www.w3.org/TR/2003/WD-ws-arch-20030808/

[WS-MetaDataExchange]

WS-MetadataExchange is a set of Web service mechanisms to exchange policies,
WSDL, schema and other metadata between two or more parties. This
specification is part of the Web services roadmap for WS-Federation. This
specification is a work in progress.

[WS-Notification]

This whitepaper describes the concepts, patterns and terminology used in the
WS-Notification family of specifications (WS-BaseNotification, WS-Topics and WS-
BrokeredNotification).

http://www-106.ibm.com/developerworks/library/ws-pubsub/WS-PubSub.pdf

[WS-RenewableReferences]

This specification describes how a WS-Addressing endpoint reference can be
decorated with information on how a new version of an endpoint reference can be
retrieved by a requestor when an endpoint reference becomes invalid. This
specification is a work in progress.

[WS-ResourceProperties]

This specification describes how elements of publicly visible properties of a
resource can be described, retrieved, changed and deleted. http://www-
106.ibm.com/developerworks/library/ws-resource/ws-resourceproperties.pdf

[WS-ResourceLifetime]

This specification describes a collection of message exchanges that allow a
requestor to destroy a resource either immediately or by using a scheduled
expiration mechanism. http://www-106.ibm.com/developerworks/library/ws-
resource/ws-resourcelifetime.pdf

From OGSI to WS-Resource Framework: Refactoring and Evolution 20

[WS-Security]
The roadmap to the various security related Web services standards. See:
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wss

[WS-ServiceGroup]

This specification describes a means of representing and managing
heterogeneous by-reference collections of Web services or WS-Resources. This
specification is a work in progress.

[WSDL]

The Web Services Description Language, version 1.1. W3C Note. See
http://www.w3.org/TR/wsdl.

[WSDL 2.0]

The Web Services Description Language, version 2.0 draft. See
http://www.w3.org/TR/wsdl.

