
Nexus: Runtime Support for Task-Parallel

Programming Languages

Ian Foster
�

Carl Kesselman
y

Steven Tuecke
�

Abstract

A runtime system provides a parallel language compiler with an interface

to the low-level facilities required to support interaction between concurrently

executing program components. Nexus is a portable runtime system for task-

parallel programming languages. Distinguishing features of Nexus include

its support for multiple threads of control, dynamic processor acquisition,

dynamic address space creation, a global memory model via interprocessor

references, and asynchronous events. In addition, it supports heterogeneity at

multiple levels, allowing a single computation to utilize di�erent programming

languages, executables, processors, and network protocols. Nexus is currently

being used as a compiler target for two task-parallel languages: Fortran M

and Compositional C++. In this paper, we present the Nexus design, outline

techniques used to implement Nexus on parallel computers, show how it is

used in compilers, and compare its performance with that of another runtime

system.

1 Introduction

Compilers for parallel languages rely on the existence of a runtime system. The run-
time system de�nes the compiler's view of a parallel computer: how computational
resources are allocated and controlled and how parallel components of a program
interact, communicate and synchronize with one another.

Most existing runtime systems support the single-program, multiple-data (SPMD)
programming model used to implement data-parallel languages such as High Per-
formance Fortran (HPF) [10], Fortran-D [18], Vienna Fortran [6], and pC++ [17].
In this model, each processor in a parallel computer executes a copy of the same
program. Processors exchange data and synchronize with each other through calls
to the runtime library, which typically is designed to optimize collective operations
in which all processors communicate at the same time, in a structured fashion. A

�Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL

60439.
yDept of Computer Science, California Institute of Technology, Pasadena, CA 91125.

1

major research goal in this area is to identify common runtime systems that can be
shared by a variety of SPMD systems.

Task-parallel computations extend the SPMD programming paradigm by allow-
ing unrelated activities to take place concurrently. The need for task parallelism
arises in time-dependent problems such as discrete-event simulation, in irregular
problems such as sparse matrix problems, and in multidisciplinary simulations cou-
pling multiple, possibly data-parallel, computations. Task-parallel programs may
dynamically create multiple, potentially unrelated, threads of control. Communica-
tion and synchronization are between threads, rather than processors, and can occur
asynchronously among any subset of threads and at any point in time. A compiler
often has little global information about a task-parallel computation, so there are
few opportunities for exploiting optimized collective operations.

In the long term, it may prove possible to design runtime systems that support
both task-parallel and SPMD computations e�ciently. Before such integrated sys-
tems can be designed, however, it is important to identify the runtime requirements
of task-parallel languages, and to develop e�cient and portable runtime systems that
meet these requirements. In order to achieve these goals, di�erent task-parallel lan-
guage projects need to collaborate to identify common runtime requirements and to
experiment with the use of common runtime support. The Nexus project represents
a �rst step in this direction.

The design of Nexus is shaped both by the requirements of task-parallel com-
putations and by a desire to support the use of heterogeneous environments, in
which heterogeneous collections of computers may be connected by heterogeneous
networks. Other design goals include e�ciency, portability across diverse systems,
and support for interoperability of di�erent compilers. It is not yet clear to what
extent these various goals can be satis�ed in a single runtime system: in particular,
the need for e�ciency may con
ict with the need for portability and heterogeneity.
Later in this paper, we present some preliminary performance results that address
this question.

As we describe in this paper, Nexus is already in use as a compiler target for two
task-parallel languages: Fortran M (FM) and Compositional C++ (CC++). Our
initial experiences have been gratifying in that the resulting compilers are consider-
ably simpler than earlier prototypes that did not use Nexus services. Nevertheless,
further work is required to determine whether the Nexus design incorporates fea-
tures that will be useful for a wide range of task-parallel computations. One of our
goals in writing this paper is to encourage discussion of this topic.

2 Existing Runtime Systems

We �rst review some existing runtime systems. We focus on systems designed for
distributed-memory computers, motivated by the prevalence of this architecture
among large, scalable parallel computers.

2

At the lowest level, parallel runtime systems must support data transfer between
processors and synchronization on the availability of data. The mechanisms most
commonly used for these purposes are send and receive. Send calls are usually
addressed to a processing node, which in a data-parallel program will be executing
the same program as the sending node. Consequently, it is straightforward for a
compiler to place a corresponding receive in the generated code. The send/receive
model is supported by a variety of machine-speci�c and portable communication
libraries, including NX, p4, PVM, and MPI [3, 11, 8]. These are designed for
programmer use and are not necessarily good compiler targets. In particular, the
focus on process-based rather than thread-based communication causes di�culty for
task-parallel languages.

Two representative runtime systems layered on top of a send/receive model are
the HPF runtime of Bozkus et al. [1] and CHAOS [21]. Both support an SPMD
programming model. In Bozkus et al.'s runtime, the focus is on providing e�cient
support for collective operations on distributed arrays. Services include rotation
of a matrix by row and column and broadcast along speci�c dimensions. A global
Fortran namespace is supported by routines that map between indices for local
sections of arrays and the global indices associated with that data. CHAOS supports
irregular mesh computations in data-parallel languages. A technique called runtime
compilation is used to compute optimized communication schedules at runtime,
which are then executed in an SPMD fashion.

While apparently e�ective for data-parallel computation, the send/receive model
poses di�culties for task-parallel systems. Because communication is between threads,
not nodes, and can take place asynchronously, it can be di�cult for a compiler to
place receive operations. In addition, few existing send/receive libraries are thread
safe.

A promising alternative model is active messages [22]. Here, a sender speci�es
the data that is to be transferred and the address of a compiler-generated active
message handler that will process the data. When the data arrives at the destina-
tion processor, an interrupt is generated and the speci�ed handler is executed as the
interrupt handler. However, while active messages allow for asynchronous transfer,
limitations on their semantics (enforced by a need to run in interrupt service rou-
tines) still restrict their use to data-parallel programs. As we will see, the remote
service request used in Nexus behaves like an active message handler, but removes
the restrictions that prevent its e�ective use in task-parallel programs.

The runtime systems discussed so far are subroutine libraries. An alternative
approach is to de�ne an abstract machine that de�nes the runtime environment.
An abstract machine provides an instruction set tailored to compilation of the
parallel language; the compiler translates programs into this instruction set. Ex-
amples include the Program Composition Machine (PCM) [16] and the Threaded
Abstract Machine (TAM) [23]. PCM was designed as a compilation target for the
task-parallel language PCN. It provides task creation, memory management via
distributed garbage collection, synchronization via data-
ow variables, and data

3

transfer functions. TAM was designed to support the compilation of the data-
ow
language ID 90. The instruction set provides e�cient support for the dynamic cre-
ation of multiple threads of control, locality of reference via hierarchal scheduling
mechanisms, and e�cient synchronization via data-
ow variables.

3 Nexus Design and Implementation

Before describing the Nexus interface and implementation, we review the require-
ments and assumptions that motivated the Nexus design.

Nexus is intended as a general-purpose runtime system for task-parallel lan-
guages. While it currently contains no specialized support for data parallelism,
data-parallel languages such as pC++ and HPF can in principle also use it as a
runtime layer. Nexus is designed speci�cally as a compiler target, not as a library
for use by application programmers. Consequently, the design favors e�ciency over
ease of use.

We believe that the future of parallel computing lies in heterogeneous environ-
ments in which diverse networks and communications protocols interconnect PCs,
workstations, small shared-memory machines, and large-scale parallel computers.
We also expect heterogeneous applications combining di�erent programming lan-
guages, programming paradigms, and algorithms to become widespread.

Nexus abstractions need to be close to the hardware, in order to provide e�ciency
on machines that provide appropriate low-level support. Operations that occur fre-
quently in task-parallel computations, such as thread creation, thread scheduling,
and communication, need to be particularly fast. At the same time, Nexus abstrac-
tions must be easily layered on top of existing runtime mechanisms, so as to provide
portability to machines that do not support Nexus abstractions directly. Communi-
cation mechanisms that were considered in designing Nexus include message passing,
shared memory, distributed shared memory, and message-driven computation.

Finally, Nexus is intended to be a lingua franca for compilers, promoting reuse
of code between compiler implementation as well as interoperability between code
generated by di�erent compilers.

Important issues purposefully not addressed in the initial design include reliabil-
ity and fault tolerance, real-time issues, global resource allocation, replication, data
and code migration, and scheduling policies. We expect to examine these issues in
future research.

3.1 Core Abstractions

The Nexus interface is organized around �ve basic abstractions: nodes, contexts,
threads, global pointers, and remote service requests. The associated services pro-
vide direct support for light-weight threading, address space management, com-
munication, and synchronization [14]. A computation consists of a set of threads,
each executing in an address space called a context. An individual thread executes

4

a sequential program, which may read and write data shared with other threads
executing in the same context. It can also generate asynchronous remote service
requests, which invoke procedures in other contexts.

Nodes. The most basic abstraction in Nexus is that of a node. A node represents
a physical processing resource. Consequently, the set of nodes allocated by a pro-
gram determines the total processing power available to that computation. When
a program using Nexus starts, an initial set of nodes is created; nodes can also be
added or released dynamically. Programs do not execute directly on a node. Rather,
as we will discuss below, computation takes place in a context, and it is the context
that is mapped to a node.

Nexus provides a set of routines to create nodes on named computational re-
sources, such as a symmetric shared-memory multiprocessor or a processor in a
distributed-memory computer. A node speci�es only a computational resource
and does not imply any speci�c communication medium or protocol. This nam-
ing strategy is implementation dependent; however, a node can be manipulated in
an implementation-independent manner once created.

Contexts. Computation takes place within an object called a context. Each con-
text relates an executable code and one or more data segments to a node. Many
contexts can be mapped onto a single node. Contexts cannot be migrated between
nodes once created.

Contexts are created and destroyed dynamically. We anticipate context creation
occurring frequently: perhaps every several thousand instructions. Consequently,
context creation should be inexpensive: certainly less expensive then process cre-
ation under Unix. This is feasible because unlike Unix processes, contexts do not
guarantee protection. We note that the behavior of concurrent I/O operations within
contexts is currently unde�ned.

Compiler-de�ned initialization code is executed automatically by Nexus when
a context is created. Once initialization is complete, a context is inactive until a
thread is created by an explicit remote service request to that context. The creation
operation is synchronized to ensure that a context is not used before it is completely
initialized. The separation of context creation and code execution is unique to Nexus
and is a direct consequence of the requirements of task parallelism. All threads of
control in a context are equivalent, and all computation is created asynchronously.

Threads. Computation takes place in one or more threads of control. A thread of
control must be created within a context. Nexus distinguishes between two types of
thread creation: within the same context as the currently executing thread and in
a di�erent context from the currently executing thread. We discuss thread creation
between contexts below.

Nexus provides a routine for creating threads within the context of the currently
executing thread. The number of threads that can be created within a context is

5

N O D E N O D E

Context

TT T T T T T

Context Context

Figure 1: Nodes, Contexts, and Threads

limited only by the resources available. The thread routines in Nexus are modeled
after a subset of the POSIX thread speci�cation [20]. The operations supported
include thread creation, termination, and yielding the current thread. Mutexes and
condition variables are also provided for synchronization between threads within a
context.

Basing Nexus on POSIX threads was a pragmatic choice: because most ven-
dors support POSIX threads (or something similar), it allows Nexus to be imple-
mented using vendor-supplied thread libraries. The drawback to this approach is
that POSIX was designed as an application program interface, with features such as
real-time scheduling support that may add overhead for parallel systems. A lower-
level interface designed speci�cally as a compiler target would most likely result in
better performance [2, 9] and will be investigated in future research.

To summarize, the mapping of computation to physical processors is determined
by both the mapping of threads to contexts and the mapping of contexts to nodes.
The relationship between nodes, contexts, and threads is illustrated in Fig. 1.

Global Pointers. Nexus provides the compiler with a global namespace, by al-
lowing a global name to be created for any address within a context. This name is
called a global pointer. A global pointer can be moved between contexts, thus pro-
viding for a movable intercontext reference. Global pointers are used in conjunction
with remote service requests to cause actions to take place on a di�erent context.
The use of global pointers was motivated by the following considerations.

� While the data-parallel programming model naturally associates communica-
tion with the section of code that generates or consumes data, task-parallel
programs need to associate the communication with a speci�c data structure
or a speci�c piece of code. A global namespace facilitates this.

� Dynamic behaviors are the rule in task-parallel computation. References to
data structures need to be passed between contexts.

6

� Data structures other than arrays need to be supported. A general global
pointer mechanism facilitates construction of complex, distributed data struc-
tures.

� Distributed-memory computers are beginning to provide direct hardware sup-
port for a global shared namespace. We wanted to re
ect this trend in Nexus.

Global pointers can be used to implement data structures other than C pointers.
For example, the FM compiler uses them to implement channels.

Remote Service Requests. A thread can request that an action be performed
in a remote context by issuing a remote service request. A remote service request
results in the execution of a special function, called a handler, in the context pointed
to by a global pointer. The handler is invoked asynchronously in that context; no
action, such as executing a receive, needs to take place in the context in order for
the handler to execute. A remote service request is not a remote procedure call,
because there is no acknowledgement or return value from the call, and the thread
that initiated the request does not block.

Remote service requests are similar in some respects to active messages [22].
They also di�er in signi�cant ways, however. Because active message handlers are
designed to execute within an interrupt handler, there are restrictions on the ways
in which they can modify the environment of a node. For example, they cannot
call memory allocation routines. While these restrictions do not hinder the use of
active messages for data transfer, they limit their utility as a mechanism for creating
general threads of control. In contrast, remote service requests are more expensive
but less restrictive. In particular, they can create threads of control, and two or
more handlers can execute concurrently.

During a remote service request, data can be transferred between contexts by
the use of a bu�er. Data is inserted into a bu�er and removed from a bu�er through
the use of packing and unpacking functions similar to those found in PVM and
MPI [8, 11]. Invoking a remote service request is a three-step process:

1. The remote service request is initialized by providing a global pointer to an
address in the destination context and the identi�er for the handler in the
remote context. A bu�er is returned from the initialization operation.

2. Data to be passed to the remote handler is placed into the bu�er. The bu�er
uses the global pointer provided at initialization to determine if any data
conversion or encoding is required.

3. The remote service request is performed. In performing the request, Nexus uses
the global pointer provided at initialization to determine what communication
protocols can be used to communicate with the node on which the context
resides.

7

 Network
Protocol 1

 Network
Protocol 2

Thread
Library

Other System Services

 Protocol
 Module 1

 Protocol
Module 2

Nexus
Thread
Module

Other Nexus Services

 Nexus Protocol
Module Interface

N e x u s I n t e r f a c e

Figure 2: Structure of Nexus Implementation

The handler is invoked in the destination context with the local address com-
ponent of the global pointer and the message bu�er as arguments. In the most
general form of remote service request, the handler runs in a new thread. However,
a compiler can also specify that a handler is to execute in a preallocated thread if
it knows that that handler will terminate without suspending. This avoids the need
to allocate a new thread; in addition, if a parallel computer system allows handlers
to read directly from the message interface, it avoids the copying to an intermediate
bu�er that would otherwise be necessary for thread-safe execution. As an example,
a handler that implements the get and put operations found in Split-C [7] can take
advantage of this optimization.

3.2 Implementation

In our description of the Nexus implementation, we focus on the techniques used to
support execution in heterogeneous environments: in particular, to support multiple
communication protocols. As an example of why this is important, the IBM SP1 at
Argonne (a representative modern parallel computer, with multifunctional nodes)
currently provides �ve communication protocols, any combination of which may be
used in a particular application: shared memory between processes on the same
node, MPI over the messaging fabric, Fiber Channel from compute nodes to I/O
nodes, HIPPI between I/O nodes, and TCP to other computers. In the future,
Asynchronous Transfer Mode (ATM) connections will also be incorporated. While
TCP can be used on many of these networks, it is often not the most e�cient
protocol.

In order to support heterogeneity, the Nexus implementation encapsulates thread
and communication functions in thread and protocol modules, respectively, that
implement a standard interface to low-level mechanisms (Fig. 2). Current thread
modules include POSIX threads, DCE threads, C threads, and Solaris threads. Cur-

8

rent protocol modules include local (intracontext) communication, TCP socket, and
Intel NX message-passing. Protocol modules for MPI, PVM, SVR4 shared mem-
ory, Fiber Channel, IBM's EUI message-passing library, AAL-5 (ATM Adaptation
Layer 5) for Asynchronous Transfer Mode (ATM), and the Cray T3D's get and put
operations are planned or under development.

More than one communication mechanism can be used within a single program.
For example, a context A might communicate with contexts B and C using two
di�erent communication mechanisms if B and C are located on di�erent nodes.
This functionality is supported as follows. When a protocol module is initialized, it
creates a table containing the functions that implement the low-level interface and a
small descriptor that speci�es how this protocol is to be used. (Protocol descriptors
are small objects: typically 4-5 words, depending on the protocol.) When a global
pointer is created in a context, a list of descriptors for the protocols supported by
this context is attached to the global pointer. The protocol descriptor list is part of
the global pointer and is passed with the global pointer whenever it is transferred
between contexts. A recipient of a global pointer can compare this protocol list with
its local protocols to determine the best protocol to use when communicating on
that global pointer.

Although some existing message-passing systems support limited network hetero-
geneity, none do so with the same generality. For example, PVM3 allows processors
in a parallel computer to communicate with external computers by sending messages
to the pvmd daemon process which acts as a message forwarder [8]. However, this
approach is not optimal on machines such as the IBM SP1 and the Intel Paragon,
whose nodes are able to support TCP directly, and it limits PVM programs to using
just one protocol in addition to TCP. P4 has several special multiprotocol imple-
mentations, such as a version for the Paragon that allows the nodes to use both NX
and TCP [3]. But it does not allow arbitrary mixing of protocols.

4 Nexus as a Compiler Target

Nexus is currently being used as the runtime system for two di�erent program-
ming languages: CC++ and FM. Although both languages provide a task-parallel
programming model, they have very di�erent characteristics. The compilers use
Nexus in two di�erent ways, translating some language constructs directly to Nexus
calls and for others generating calls to specialized FM or CC++ runtime libraries
implemented using Nexus services.

In the following, we give a brief overview of CC++ and FM and the ways in
which they use Nexus services. Rather than present a comprehensive discussion of
compilation strategies, our goal is to present representative examples that illustrate
the correspondence between Nexus features and the runtime requirements of these
languages.

9

4.1 Compiling CC++ Using Nexus

CC++ [4, 5] is a general-purpose parallel programming comprising all of C++ plus
six new keywords. The CC++ parallel constructs are intended to support the de-
velopment of parallel class libraries implementing a wide range of di�erent parallel
programming styles, for example, synchronous virtual channels, actors, data
ow,
and concurrent aggregates.

Parallel Control Structures. CC++ provides three parallel control structures:
the parallel block, the parallel loop, and the spawn statement. These structures
create new threads of control which have complete access to the environment in
which they execute; they map naturally to Nexus threads.

Parallel blocks and loops introduce structured parallelism: they do not terminate
until all threads of control that they have created terminate. Because Nexus does not
provide any parent/child relationship between threads, the CC++ compiler must
place a barrier after each parallel block or loop. These barriers are implemented
with Nexus condition variables.

Synchronization Structures. CC++ provides two mechanisms for controlling
the interaction of parallel threads of control: synchronization (sync) variables and
atomic functions. Any data type can be made into a sync variable by modifying its
type with the keyword sync. Sync variables are single assignment variables. At-
tempting to read an unassigned sync variable causes the reader to block; attempting
to write to a sync variable more than once is an error. Assignment to a sync variable
wakes any threads suspended on that variable. A sync variable is implemented as a
data structure containing the variable's value, a
ag to indicate if the variable has
been initialized and a Nexus condition variable. Threads waiting for the value of a
sync variable block on the condition variable.

Atomic functions provide a means for controlling the scheduling of threads. An
atomic function is like a monitor [19]. Within an instance of a given C++ class,
only one atomic function is allowed to execute at a time. Atomic functions are
implemented by requiring that they obtain a Nexus mutex prior to executing the
function body.

Managing Processing Resources. CC++ introduces a structure called a pro-
cessor object. Like other C++ objects, a processor object has a type declared by
a class de�nition, encapsulates functions and data, and can be dynamically created
and destroyed. It is distinguished from other objects by the type of resources from
which it is allocated. A normal object is allocated from an address space, while the
resources for a processor object are allocated from a \process space". Each instance
of a processor object contains an address space from which regular objects can be
allocated. Thus a CC++ computation consists of a collection of processor objects,
where each processor object contains a collection of normal C++ objects.

10

Interprocessor object references are allowed but must be explicitly declared to
be global. Global pointers provide CC++ with both a global name space and a
two-level locality model that can be manipulated directly by a program. A global
pointer can be dereferenced like any other C++ pointer. However, dereferencing a
global pointer causes an operation to take place in the processor object referenced
by that global pointer.

A Nexus context is created for each processor object created by a CC++ pro-
gram; the compiler also ensures that a Nexus node exists prior to creating a processor
object. CC++ global pointers are mapped directly into Nexus global pointers. An
operation that results in dereferencing a global pointer is compiled to a remote ser-
vice request. The handler for this request is speci�c to the data type of the global
pointer and is generated by the compiler. The function of the handler is to perform
the requested operation on the object referenced by the global pointer.

Data access and function call through global pointers are synchronous: the caller
must wait until the operations complete and any return values have be obtained.
Because Nexus remote service requests are asynchronous and unidirectional, a han-
dler responsible for processing a remote operation must notify the initiator when
that operation has completed. This noti�cation is accomplished by issuing a remote
service request back to the context from which the operation was invoked. The
thread requesting the remote operation waits for completion by blocking on a Nexus
condition variable. By including a global pointer to that condition variable as part
of the data included in the initial remote service request, the return remote service
request can signal on the condition variable, notifying the initial thread that the re-
mote operation has completed. Because remote service requests are unidirectional,
the CC++ compiler can detect when a return value is not required and optimize
out the return remote service request.

4.2 Compiling FM Using Nexus

FM [13, 15] is a small set of extensions to Fortran 77 for task-parallel programming.
FM is designed to support both the modular construction of large parallel programs
and the development of libraries implementing other programming paradigms. For
example, in a joint project with Syracuse, such a library has been used to integrate
HPF programs into a task-parallel framework [12].

FM programs can dynamically create and destroy processes, single-reader/single-
writer channels, and multiple-writer, single-reader mergers. Processes can encapsu-
late state (common data) and communicate by sending and receiving messages on
channels and mergers; references to channels, called ports, can be transferred be-
tween processes in messages. FM also provides constructs for mapping processes to
processors.

Processes FM processes are created by process block and process do-loop con-
structs. These have similar semantics to CC++ parallel blocks and loops and are

11

implemented in the same fashion, by using a compiler-generated barrier.
Arguments passed to a process are copied in on call and back on return. A

process is compiled into two Nexus handlers: a process invocation handler which
invokes the subroutine in a new thread, extracting arguments from the bu�er; and
a process return handler, called on process completion to return arguments to the
calling process block and to update the barrier.

By default, an FM process is implemented as a thread executing in a dedicated
Nexus context, with the context's data segments used to hold process state. This
context must be allocated by the FM compiler prior to creating the thread, and
deallocated upon process termination. As an optimization, processes without state
can be implemented as threads in a preexisting context containing the code for that
process. This optimization can reduce process creation costs and, in some systems,
scheduling costs, and is important for �ne-grained applications.

Channels and Mergers. A channel is a typed, �rst-in/�rst-out message queue
with a single sender and a single receiver; the merger is similar but allows for mul-
tiple senders. A restricted global address space is provided by outport and inport
variables, which can contain references to the sending and receiving ends, respec-
tively, of channels and mergers. Ports can be passed as arguments when processes
are created, or can be transferred between processes in messages.

A channel is implemented as a message queue data structure maintained in the
context of the receiving process; an outport is implemented as a data structure
containing a Nexus global pointer to the channel data structure. A send operation
is compiled to code which packs the message data into a bu�er and invokes a remote
service request to a compiler-generated handler which enqueues the message onto the
channel. A receive operation is compiled to code which unpacks a pending message
into variables or suspends on a condition variable in the channel data structure if
no messages are pending.

One of the more complex aspects of FM implementation is port migration. For
e�ciency reasons, we maintain the invariant that a channel data structure is located
in the same context as its inport; hence, migration of a port can require the updating
of a number of distributed data structures. In earlier versions of the FM compiler,
these protocols were implemented in terms of send and receive calls; however, the
resulting code was both complex and hard to verify. The asynchronous nature of
the Nexus remote service request has greatly simpli�ed both implementation and
validation.

Process Mapping. FM constructs allow the programmer to control process place-
ment by specifying mappings of processes to virtual computers: arrays of virtual
processors. The mapping of virtual to physical processors is speci�ed at program
startup. The programmer can also de�ne submachines to indicate that a subcom-
putation should execute in a subset of available resources.

12

A virtual processor array is implemented as an array of pointers to Nexus node
structures. Mapping a process call to a virtual processor involves �rst looking up
the correct node in the virtual processor array and then creating the process on that
node (in a new or existing context). Creating a submachine causes a new virtual
processor array, based on the existing one, to be created.

4.3 Interoperability between FM and CC++

Because CC++ and FM are both implemented using Nexus facilities, parallel struc-
tures in the two languages can interact. For example, an FM program can invoke
a CC++ program, specifying the contexts in which it is to execute and passing
as arguments an array of Nexus global pointers representing the inports or out-
ports of channels. The CC++ program can then send or receive functions on these
global pointers to transfer data between contexts executing FM code and contexts
executing CC++ code.

5 Performance Studies

In this section, we present results of some preliminary Nexus performance studies.
We note that the thrust of our development e�ort to date has been to provide a
correct implementation of Nexus. No tuning or optimization work has been done
at all. In addition, the operating system features used to implement Nexus are
completely generic: we have not exploited even the simplest of operating system
features, such as nonblocking I/O. Consequently, the results reported here should
be viewed as suggestive of Nexus performance only, and are in no way conclusive.

The experiments that we describe are designed to show the cost of the Nexus
communication abstraction as compared to traditional send and receive. Because
Nexus-style communication is not supported on current machines, Nexus is imple-
mented with send and receive. Thus, Nexus operations will have overhead compared
to using send and receive. Our objective is to quantify this overhead. We note that
support for Nexus can be build directly into the system software for a machine,
in which case Nexus performance could meet or even exceed the performance of
a traditional process-oriented send and receive based system. (We have started
a development e�ort with the IBM T.J. Watson Research Center to explore this
possibility.)

The experiments reported here compare the performance of a CC++ program
compiled to use Nexus and a similar C++ program using PVM [8] for communica-
tion. The CC++ program uses a function call through a CC++ global pointer to
transfer an array of double-precision
oating-point numbers between two processor
objects (Nexus contexts). We measure the cost both with remote thread creation
and when a preallocated thread is used to execute the remote service request. The
PVM program uses send and receive to transfer the array. Both systems are com-
piled with -03 using the Sun unbundled C and C++ compilers; neither performs

13

1000

10000

100000

1e+06

1 10 100 1000 10000

T
ra

ns
fe

r
T

im
e

(u
se

cs
)

Message Length (double floats)

Nexus (remote thread)
Nexus (no remote thread)

PVM3

Figure 3: Round-trip time as a function of message size between two Sun 10 work-
stations under Solaris 2.3 using an unloaded Ethernet.

14

data conversion. In both cases the data starts and �nishes in a user-de�ned array.
This array is circulated between the two endpoints repeatedly until the accumulated
execution time is su�cient to measure accurately. Execution time is measured for
a range of array sizes. The results of these experiments are summarized in Fig. 3.

We see that despite its lack of optimization, Nexus is competitive with PVM.
Execution times are consistently lower by about 15 per cent when remote service
requests are executed in a preallocated thread; this indicates that both latency and
per-word transfer costs are lower. Not surprisingly, execution times are higher when
a thread is created dynamically: by about 40 per cent for small messages and 10 to
20 per cent for larger messages.

6 Summary and Future Work

Nexus is a runtime system for compilers of task-parallel programming languages.
It provides an integrated treatment of multithreading, address space management,
communication, and synchronization and supports heterogeneity in architectures
and communication protocols.

Nexus is operational on networks of Unix workstations communicating over
TCP/IP networks, the IBM SP1, and the Intel Paragon using NX; it is being ported
to other platforms and communication protocols. Nexus has been used to implement
two very di�erent task-parallel programming languages: CC++ and Fortran M. In
both cases, the experience with the basic abstractions has been positive: the overall
complexity of both compilers was reduced considerably compared to earlier proto-
types that did not use Nexus facilities. In addition, we have been able to reuse code
and have laid the foundations for interoperability between the two compilers. The
preliminary performance studies reported in this paper suggest that Nexus facilities
are competitive with other runtime systems.

These preliminary experiences suggest that Nexus is already useful as a tool for
implementing task-parallel programming languages, as a framework for studying the
interactions between task and data parallelism, and as a vehicle for studying paral-
lelism on heterogeneous computer systems and networks. In future work, we plan to
extend the basic Nexus design to incorporate new capabilities, including I/O oper-
ations and support for data-parallel computations. In the latter area, our objective
is not primarily to support purely data-parallel computations, but rather to sup-
port programs which combine task and data parallelism. This work is being pursued
jointly with other members of the POrtable RunTime System consortium (PORTS),
a working group including universities, government laboratories, and industry.

We also plan to conduct more detailed investigations of the performance con-
sequences of Nexus interface and implementation design decisions. For example,
we want to understand the cost of compile-time management of storage associ-
ated with communication, and determine whether our compilers can provide the
communication layer with additional information regarding data structures to facil-

15

itate optimization. We are also interested in the performance implications of the
POSIX-based thread interface, and the potential bene�ts of lower-level interfaces
or lighter-weight threads. Finally, we wish to investigate the locality properties
of compiler-generated Nexus code, to determine whether a hierarchical scheduling
mechanism such as found in TAM [23] can improve performance.

Acknowledgments

We are grateful to Bob Olson and James Patton for their considerable input to
the Nexus design and implementation. The FM runtime support was designed and
implemented by Robert Olson, and the NX protocol module by Tal Lancaster. This
work was supported by the O�ce of Scienti�c Computing, U.S. Department of
Energy, under Contract W-31-109-Eng-38, and by the National Science Foundation's
Center for Research in Parallel Computation under Contract CCR-8809615.

References

[1] Z. Bozkus, Alok Choudhary, Geo�rey C. Fox, T. Haupt, and S. Ranka. For-
tran 90D/HPF compiler for distributed memory MIMD computers: Design,
implementation, and performance results. In Proc. Supercomputing '93. IEEE,
November 1993.

[2] Peter Buhr and R. Stroobosscher. The �system: Providing light-weight con-
currency on shared-memory multiprocessor systems running Unix. Software
Practice and Experience, pages 929{964, September 1990.

[3] R. Butler and E. Lusk. Monitors, message, and clusters: The p4 parallel pro-
gramming system. Parallel Computing (to appear), 1994.

[4] K. Mani Chandy and Carl Kesselman. CC++: A declarative concurrent object
oriented programming notation. In Research Directions in Object Oriented
Programming. MIT Press, 1993.

[5] K. Mani Chandy and Carl Kesselman. Compositional C++: Compositional
parallel programming. In Proc. Fifth Int'l Workshop on Parallel Languages
and Compilers. Springer-Verlag, 1993.

[6] Barbra Chapman, Piyush Mehrotra, and Hans Zima. Programming in Vienna
Fortran. Scienti�c Programming, 1(1):31{50, 1992.

[7] David Culler et al. Parallel programming in Split-C. In Proc. Supercomputing
'93. ACM, 1993.

16

[8] J. Dongarra, G. Geist, R. Manchek, and V. Sunderam. Integrated PVM frame-
work supports heterogeneous network computing. In Computers in Physics,
April 1993.

[9] D. Engler, G. Andrews, and D. Lowenthal. Filaments: E�cient support for
�ne-grained parallelism. Technical Report 93-13, Dept. of Computer Science,
U. Arizona, Tuscon, Ariz., 1993.

[10] High Performance Fortran Forum. High performance Fortran language speci�-
cation, version 1.0. Technical Report CRPC-TR92225, Center for Research on
Parallel Computation, Rice University, Houston, Texas, January 1993.

[11] Message Passing Interface Forum. Document for a standard messge-passing
interface, March 1994. (available from netlib).

[12] I. Foster, B. Avalani, A. Choudhary, and M. Xu. A compilation system that
integrates High Performance Fortran and Fortran M. In Proc. 1994 Scalable
High Performance Computing Conf. IEEE, 1994. to appear.

[13] Ian Foster and K. Mani Chandy. Fortran M: A language for modular parallel
programming. J. Parallel and Distributed Computing, 1994. to appear.

[14] Ian Foster, Carl Kesselman, Robert Olson, and Steve Tuecke. Nexus: An
interoperability toolkit for parallel and distributed computer systems. Technical
Report ANL/MCS-TM-189, Argonne National Laboratory, 1994.

[15] Ian Foster, Bob Olson, and Steve Tuecke. Programming in Fortran M. Technical
Report ANL-93/26, Argonne National Laboratory, 1993.

[16] Ian Foster and Stephen Taylor. A compiler approach to scalable concurrent
program design. ACM TOPLAS, 1994. to appear.

[17] Dennis Gannon et al. Implementing a parallel C++ runtime system for scalable
parallel systems. In Proc. Supercomputing '93, November 1993.

[18] Seema Hiranandani, Ken Kenedy, and Chau-Wen Tseng. Compiling Fortran
D for MIMD distributed memory machines. Communications of the ACM,
35(8):66{80, August 1992.

[19] C.A.R Hoare. Monitors: An operating system structuring concept. Communi-
cations of the ACM, 17(10):549{557, October 1974.

[20] IEEE. Threads extension for portable operating systems (draft 6), February
1992.

[21] Ravi Ponnusamy, Joel Saltz, and Alok Choudhary. Runtime-compilation tech-
niques for data partitioning and communication schedule reuse. Computer
Science Technical Report CS-TR-3055, University of Maryland, 1993.

17

[22] Thorsten von Eicken, David Culler, Seth Copen Goldstein, and Klaus Erik
Schauser. Active messages: a mechanism for integrated communication and
computation. In Proc. 19th Int'l Symposium on Computer Architecture, May
1992.

[23] Thorsten von Eicken, David Culler, Seth Copen Goldstein, and Klaus Erik
Schauser. TAM| a compiler controlled threaded abstract machine. J. Parallel
and Distributed Computing, 1992.

18

