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Abstract 
 

Internet traffic is experiencing a shift from web 
traffic to file swapping traffic. Today a significant part 
of Internet traffic is generated by peer-to-peer 
applications, mostly by the popular Kazaa application. 
Yet, to date, few studies analyze Kazaa traffic, thus 
leaving the bulk of Internet traffic in dark. We present 
a large-scale investigation of Kazaa traffic based on 
logs collected at a large Israeli ISP, which capture 
roughly a quarter of all traffic between Israel and US. 

 
1. Introduction 

 
In a brief period of time the composition of 

Internet traffic shifted dramatically from mainly Web 
traffic to traffic generated by peer-to-peer (P2P) 
file-sharing applications like Kazaa, Morpheus or 
iMesh. Both network measurements and anecdotic 
evidence support this statement.  Internet2 
administrators report that about 16% of the traffic 
carried by their network is P2P traffic while a further 
54% is unidentified traffic most likely to be generated 
by applications in the same class [1] (January 2003).  
Between 15% and 30% of residential subscribers on 
several large ISPs surveyed were using Kazaa or 
Morpheus [2]. Downloads of P2P applications 
progress at incredible rates: 3.2 million per week for 
Kazaa and 200,000 per week for Gnutella [3] 
(February 2003).   

Yet, to date, few studies have analyzed Kazaa 
traffic, thus leaving the bulk of Internet traffic in dark. 
This paper describes a large-scale investigation of this 
traffic structured along three main guidelines: 
��Firstly, we try to identify the salient features of 

Kazaa traffic. We confirm that the traffic is highly 
concentrated around a small minority of large, 
popular items. We find however, that this 
concentration is even more pronounced than 
previously reported.  This is a strong indication that 
caching can bring significant savings in this 
context. 

��Secondly, we study the dynamics of network content 
to better understand both the underlying trends in 

the user community and in its tastes, and the 
potential for caching.  We are interested in the rate 
of appearance of new content, as well as in the 
stability properties for the sets of the most popular 
items.   

��Thirdly, we study the virtual relationships that form 
among users based on the data they download.  We 
model the network as a data-sharing graph and 
uncover its small-world characteristics.  We believe 
that these small-world characteristics can be 
exploited to build efficient data location and data 
delivery mechanisms. 

 
The rest of this paper is structured as follows. In the 

next section we describe our data collection setup and 
the main trace processing steps. Section 3 surveys 
related work on peer-to-peer traffic characterization. 
Section 4 comprises the bulk of our analysis structured 
along the three guidelines mentioned above.  We 
summarize our findings in Section 5. 

 
2. Data Collection and Processing 

 
Few details are publicly available about the Kazaa 

protocol. Apparently, Kazaa nodes dynamically elect 
‘super-nodes’  that form an unstructured overlay 
network and use query flooding to locate content. 
Regular nodes connect to one or more super-nodes to 
query the network content and in fact act as querying 
clients to super-nodes.  Once desired content has been 
located Kazaa uses HTTP protocol to transfer it 
directly between the content provider and the node 
that issues the download request. In fact, to improve 
transfer speed multiple file fragments are downloaded 
in parallel from multiple providers. While traffic 
flowing on the control channel (queries, network 
membership information, software version 
information, etc.) is encrypted, traffic on the download 
channel (i.e. all HTPP transfers) is not encrypted.  We 
are using information collected from the download 
channel for an, admittedly non-exhaustive, study of 
Kazaa network. 
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2.1. Data Collection 
 
To collect Kazaa traces we use a setup similar to 

[4].  We briefly describe the trace collection setup 
below and refer to [4] for a complete description. A 
caching server is installed at the border between the 
local user base of a large ISP and the Internet cloud. 
For each TCP connection, regardless if direction (both 
in and out), a Layer 4 switch inspects the fist few 
packets to detect Kazaa download traffic.  If download 
traffic is detected then the switch redirects it through 
the caching server. Thus, the caching server is able to 
intercept all downloads performed by local users, 
cache, and serve cached data. We note that we focus 
on downloads performed by local users and 
completely ignore downloads performed by outside 
users from local file providers (in other words we are 
only interested in incoming traffic). 

Additionally, our content-based technique to 
detect traffic of interest has significant advantages 
over traditional, port based techniques: we find that in 
February 2003 about 38% of all download sessions 
were not using the standard Kazaa port (1214). 

It is difficult to define Kazaa downloads in the 
terms originally coined for describing standard file 
downloads, the salient difference being that the 
download of a single file is usually composed of tens 
of smaller downloads of different fragments of the file 
from different providers. This complicates both the 
terminology and the computations involved in 
analyzing the data. We use the terms and methods 
introduced in [4] to circumvent these problems: The 
term download or session describes a single TCP 
session between two nodes, over which a portion of a 
file (none, part, or all of the file) is transferred. The 
term download cycle describes the logical transfer of a 
whole file, which may consist of tens of sessions, and 
extend over hours or even days. Finally, we use the 
following scheme to quantify the number of download 
cycles for each file: if an accumulated value of X bytes 
of file Y have been transferred over the network, then 
we estimate that X/FileSize-of-Y download cycles of the file 
have passed over the network. 

 
2.2. The Traces 

 
The caching server has been continuously logging 

traffic over the past year. As we do not see qualitative 
changes in traffic characteristics during this period we 
use only a part of these logs for most of our analysis 
below.  

We eliminate from our logs all control channel 
connections and use only the inbound download 
sessions (i.e. data flowing to local users from both 
other external or other internal users) for our analysis. 

Table 1 summarizes the main characteristics of the 
traffic captured.  

3. Related Work 
 
A number of recent studies cast more light on the 

nature of P2P traffic in particular on traffic generated 
by FastTrack (KaZaa, KaZaa Lite) and Gnutella 
(Morpheus, LimeWire, etc) family applications that 
have started to generate a significant share of Internet 
traffic. 

Sen et al. [5] use TCP flow-level data gathered 
from multiple routers across a large Tier-1 ISP to 
analyze three P2P applications (Kazaa, Gnutella and 
DirectConnect).  While this data does not reveal 
application level details and cannot give insights 
explaining the behavior observed, it is an important 
step in characterizing these applications from a 
network engineering perspective.  For example, Sen et 
al. [5] report that although the distribution of 
generated P2P traffic volume is highly skewed at the 
individual host level, the fraction of the traffic 
contributed by each network prefix remains relatively 
unchanged over long time intervals. 

At the application level, Gnutella’s open protocol 
has made the analysis of this network somewhat 
simpler. A number of studies [5-9], based mostly on 
data collected from the control channel, explore the 
topology of the Gnutella overlay, its mapping on the 
Internet physical infrastructure, the behavior of 
Gnutella users, and the main characteristics of 
Gnutella nodes.  

Two recent studies [4, 10] use the fact that 
although Kazaa’s protocol (FastTrack) is proprietary, 
Kazaa uses HTTP to move data files: thus this traffic 
can be logged and cached.  Both these studies monitor 
HTTP traffic on costly links: traffic from a large 
Israeli ISP to US and Europe [4], or from University 
of Washington campus to its ISP [10] (in the following 
we refer to these traces as UW traces).  

Leibowitz et al. [4] note that Kazaa traffic 
constitutes most of the Internet traffic, show that a tiny 
number of files generates most of the download 
activity, suggest the feasibility of traffic caching, and 

Table 1: Characteristics of collected Kazaa traces. 
Data collection period 1/15 – 2/15/03 
Number of download sessions 7 * 106 
Number of control sessions 24 * 106 
Bytes transferred 20 TB 
Concurrent sessions (avg.) 1200 
Concurrent sessions (peak) 3000 
Bandwidth used (average) 75 Mbps 
Bandwidth used (peak) 145 Mbps 
Number of unique files ~300,000 
Number of unique users � 50,000 
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empirically demonstrate its benefits.  Saroiu et al. [10] 
reaffirm these findings and compare Kazaa traffic with 
traffic generated by traditional content distribution 
systems (i.e. Akamai and Web traffic).   

We believe the traces analyzed in this study and 
in [4] complement well the traces analyzed in [10]: our 
traces reflect a more diverse user population with 
significant heterogeneity in network connectivity and 
interests. Additionally we analyze a community where 
users pay network usage charges upfront, as opposed 
to a university where users charged for network usage 
indirectly or not at all. 

One interesting observation highlights the 
difference in user population (and respective usage 
patterns) in these two studies: while the University of 
Washington user community acts as net provider of 
Kazaa content (Saroiu et al. report that at UW 
outbound Kazaa traffic is at least seven times larger 
than inbound traffic) the user population in our study 
is a net content consumer (the ratio outbound to 
inbound traffic is almost reversed). 

In this paper we expand results presented in [4], 
and, while we note that the basic characteristics 
remain valid on current traffic, we investigate new 
aspects of the traffic, user behavior and network 
structure that have not been previously explored. 

 
4. Analysis 

 
4.1. Counting Downloads 

 
Kazaa’s user interface reports hundreds of 

millions of files available in the network. We cannot 
confirm or refute this claim, as this would require a 
global view on the entire network. We analyze, 
however, the traffic generated by local users 
downloading files from the rest of the Internet. In this 
section we analyze one month long Kazaa trace 
presented above.  Since files are generally downloaded 
from multiple sources we process the logs to compute 
the number of download cycles for each file. We then 
produce a list of files sorted by the number of 
download cycles and used it to generate a CDF 
(Cumulative Distribution Function) that shows the 
percent of downloads cycles for each progressing 
subset of the most downloaded files.  

In Figure 1 we observe that only about a half of 
the requested 300,000 files have been downloaded a 
significant number of times. Also, 65% of all 
download cycles go to the 20% most popular files 
(60,000 files).  To provide more detail, Figure 2 
zooms-in and plots the CDF for the 10% most popular 
files: it becomes obvious that about 30% of all 
download cycles go to the 1% most popular files. 

 
Figure 1: CDF for file download cycles. Note that 
more than 10% of all download sessions attempted 
actually fail.  
 

 
Figure 2: CDF of file download cycles for the 10% 
most downloaded files. Note that 30% of all download 
cycles are generated by the 1% most popular files. 

 
4.2. File Download Distribution by Bytes 

 
The analysis above treats each download cycle as 

a unit value, and ignores file size variability. As a 
consequence, it does not indicate how much traffic is 
concentrated around the subset of the most popular 
files. To investigate this aspect, we weigh each 
download cycle with the corresponding file size, and 
obtain for each file, the total amount of traffic that it 
generated. We then produce a list of files sorted by 
volume of generated traffic and create a CDF similar 
to that presented in the previous section: we plot the 
percent of traffic for each progressing subset of the 
most popular files.  Figures 3 and 4 plot this CDF for 
byte popularity distribution for the top 10% and 
respectively 1% most popular files. 

The behavior we notice in the previous graph is 
much more pronounced: we observe that as little as 
2500 files (a mere 0.8% of all detected files) account 
for as much as 80% of the traffic.    
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Figure 3: CDF for byte popularity distribution for the 
10% most popular files.  Note that most of the 
generated traffic is concentrated around a very small 
set of files (1% of all files). 
 

Figure 4: CDF for byte popularity distribution for the 
top 1% most popular files. Note that 50% of total traffic 
is generated by the 0.1% most ‘bandwidth-hungry’ 
files. 
 

We note that our measurements show a byte 
popularity distribution significantly more skewed than 
UW traces [10].  While in the UW traces the most 
popular 1% of all files account for ‘only’  about 50% 
of all bytes transferred, here the same 1% most 
popular files account for more than 80% of all traffic. 
To provide better insight, Figure 4 zooms-in and plots 
the CDF for the 1% most popular files: it becomes 
obvious that generated traffic is concentrated around 
the most popular files: as little as 0.1% of the most 
bandwidth-hungry files generate 50% of the traffic. 

 
4.3. File Sizes 

 
We now switch gears and analyze file size 

distribution. Figure 5 presents a CDF for file sizes. 
The ‘steep’  regions of the plot reflect ranges with a 
large number of files. As we expect these are: roughly 
100KB for pictures, 2-5MB for music files, 50-150MB 

for applications and movie clips, and larger than 
100MB for movies files. 
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Figure 5: File size cumulative distribution function.  
The ‘steep’ portions of the distribution reflect ranges 
with a larger number of files: 2-5MB for music files, 
around 100KB for pictures and larger than 700MB for 
movies probably. (Note the logarithmic scale on X axis 
in this figure and the normal scale in Figure 6). 
 

0%

20%

40%

60%

80%

100%

1.
E

+
03

1.
E

+
08

2.
E

+
08

3.
E

+
08

4.
E

+
08

5.
E

+
08

6.
E

+
08

7.
E

+
08

8.
E

+
08

9.
E

+
08

1.
E

+
09

File size (bytes)

%
 o

f 
ac

tiv
ity

 (
do

w
nl

./t
ra

ff
ic

) 
 .

% of files (top line)
% of download cycles
% of traffic (bottom)

 
Figure 6: Activity CDF. The plot line in the middle 
presents the CDF for number of download cycles while 
the bottom plot presents the CDF for the generated 
traffic.  The top plot representing size CDF is present 
for reference. The same regions visible in Figure 5 are 
present (although less accentuated since we use a 
normal scale on X axis). Note again that files in the 
700-900MB range generate most of the traffic. 
 

Additionally, similar to the analysis in the 
previous section, we are interested in two other 
aspects: the number of download cycles, and the 
generated traffic volume. In Figure 6, we weigh each 
file size by the number of download cycles, and, 
respectively, by the traffic generated to download the 
file.  We sort files in increasing order of their sizes and 
plot the usage CDF (where usage is defined as number 
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of download cycles or bytes transferred respectively).  
The file size CDF plotted in Figure 5 is presented for 
reference (the top line in the plot). 
While the plots have similar structure, the plot 
representing the CDF of generated traffic weighted by 
bits transferred, has more pronounced features. It 
emphasizes the fact that most of the traffic is 
generated by the largest files (60% of the traffic is 
generated by file larger than 700MB). It is interesting 
to note that little traffic is generated by files in the 
200-700 MB range, indicated by the plateau in that 
range – indeed user experience indicates that most 
files are either smaller than 150 MB (clips and 
applications) or larger than 700MB (movies and 
games). 

Figure 7 uncovers the roughly linear correlation 
between a file size and the activity generated in terms 
of bytes transferred  

Figure 7: Roughly linear correlation between the file 
size and the traffic generated by downloading each file 
(logarithmic scales on both X and Y axes). 

 
4.4. Dynamic Properties of Network Content 

 
4.4.1 Quantity and Rate of Distinct Files. 

 
Kazaa claims its users share millions of files. 

However it is unclear how many of these files are 
distinct, or how many are actually transferred over the 
network, and at what rate. These questions are 
important for understanding the diversity of the 
network content, the heterogeneity in user interests, 
and are crucial from a caching perspective. 

The data we use in this section are a detailed log 
of all Kazaa traffic through our server during a 17 
days period (early February 2003). They consist of 
approximately 3 million downloads which altogether 
accessed some 150,000 distinct files. 

We process these logs in three different time 
units: minute, hour and day. Our strategy for 
answering the above questions is to compute the 
number of distinct new files observed during each time 
unit (new files are files not observed from the 
beginning of the experiment). The first time units 
should measure high values of new files, and later new 
files will be encountered less frequently. 

Figure 8 plots the number of distinct new files 
observed in consecutive one hour periods. Initially the 
rate at which new files are encountered is extremely 
high and then declines sharply after a few hours, 
indicating a large temporal locality: once a file is 
requested it will be requested again soon. The seasonal 
pattern observed on Figure 8 follows a period of 24 
hours with night-time peaks. This seasonality is easily 
explained, since the majority of our users are in the 
same time zone.  

In order to evaluate the rate of change, we show 
in Figure 9 a close-up for the first hour, computed at a 
1-minute resolution. Initially we encounter 200 new 
distinct files a minute (a new file every 0.3 seconds). 
This value declines sharply attains a relative stability 
within 20 seconds at a value of 50 new filer per 
minute. This stability, however, is superficial, as 
evident by the constant slope at the hourly resolution 
plotted in Figure 8.  
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Figure 8: New files encountered during one hour long 
intervals for our 17-day trace. 
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Figure 9: New unique files by minute for the first hour 
in our trace 
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In order to better understand the behavior and 
enable extrapolation, in Figure 10 we plot the same 
values at a 1-day resolution, which avoids the daily 
cycle. The persistent decrease in the rate of 
encountering new files, even after 16 days is clearly 
visible. 
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Figure 10: New files encountered during a one day 
interval for our 17-day trace. 

 
During the period of observation, the number of 

new unique files did not decrease to zero and did not 
stabilize at a constant level. However, it is reasonable 
to suppose that this value would stabilize during a 
longer observation period. We suggest an interesting 
explanation for the steady state value: it indicates the 
rate at which new files enter the network, in other 
words the rate at which new songs, movies games and 
the like are created.  

 
4.4.2 Rate of Change 

 
An interesting question, both from a caching 

perspective and from the perspective of understanding 
usage patterns, is the rate variation for the set most 
popular files. Consider for instance compiling every 
day the list of 100 most popular files. How would 
these lists change over time? Would it be possible to 
identify files that are always on these lists (all time 
favorites), or would the list change very quickly 
(equivalent of one-day stars)? 

To investigate this question, we determine the N 
most popular files during consecutive observation 
periods, where N∈{4, 50, 400}. The observation 
periods are approximately 24 hour intervals. The 
popularity of a file is measured by the number of 
download cycles of the file. 

The first part of our analysis investigates how 
much the lists of most popular N files change from one 
observation period to another. Let xt be the set of files 
that were on both the N-most-popular-list of 
observation period t-1 and t. We calculate  100* xt /N 
to obtain a percentage of the popular files that have 
persisted between the two observations. This value is 
plotted on Figure 11 for different values of N.  

For N=4, the percentage of recurrently popular 
files is almost always 50%, which means that during 
all the observation periods 2 files persistently occupied 
the top 4 lists. Based on accumulated user experience 
with the Kazaa application, we assume these files are 
most likely the Kazaa software installation packages, 
which circulate frequently in the network. For higher 
values of N, the situation changes. The percentage of 
recurrently popular files seems to be stable at about 
30%, slightly decreasing for large N. This suggests 
that caching could be quite effective for Kazaa traffic. 

We investigate the characteristics of these files 
that remain popular from one observation period to the 
following. For each new observation period, we 
intersect the list corresponding to that period with the 
intersection of the lists from all previous observation 
periods. In Figure 12, we plot the percentage of the 
files in the first list that remained in this intersection 
after t observation periods.  The percentage of files 
that are popular in all observation periods stabilizes at 
about 15%. This suggests that there are indeed a 
number of "all-time favorites" items during our 
observation.  
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Figure 11: Ratio of the popular files set that remains 
stable during consecutive time periods. 
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Figure 12: Ratio of the popular files set that remains 
stable when compared with a base period. 

 
The number of files that remain popular in the 

following observation period is larger than the number 
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of files that are popular in all observation periods. This 
suggests that the set of cacheable files changes over 
time, since only about half of these files are present in 
all observation periods. A longer experimentation 
period is required to determine how persistent is this 
group and further quantify their rate of change over 
months. 

Summarizing these two experiments, we obtain 
that 15% of the highly popular files, remain popular 
throughout the experiment, while the rest are popular 
shorter time intervals. This indicates that the popular 
files are composed of two sets: a set of persistently 
popular files and a set of transiently popular files 
whose popularity is short lived. 

 
4.5. Data-Sharing Relationships among 

Users 
 
This section explores the virtual relationships that 

form among Kazaa users based on the files they try to 
download.  We are inspired by recent studies [11, 12] 
that analyze the Web and a high-energy physics 
collaboration and uncover in both these systems 
small-world patterns emerging in users’  data-sharing 
relationships.  

When users install and configure Kazaa 
application they have the opportunity to choose a user 
name. Our traces capture user names and we use them 
to identify users. We investigate the distribution of 
download activity (generated traffic and number of 
download sessions) over the set of user names and 
discover that three users generate one order of 
magnitude or more activity than any other users in our 
set (about 20% of all system activity is generated by 
these three users; Figure 13).  We believe these are 
‘outliers’ : in fact multiple users that have not 
configured their software and thus run under the 
default user name (in fact their usernames: defaultuser 
or kazaliteuser strengthen this intuition).  Therefore, 
for the analysis in this section, we purged out all 
activity generated under these user names. 

We follow closely the technique described in [11].  
We define the data-sharing graph as the graph whose 
nodes are the Kazaa users; edges connect pairs of 
nodes whose activity satisfies a similarity criterion: 
two users are connected if they (try to) download at 
least m common files during a time interval T.  For 
this analysis we use a one week long Kazaa trace and 
we vary m from 1 to 5 and T from 4 to 48 hours. 

 
Figure 13: Activity distribution over the user name 

space.  Users are ordered in decreasing order of the 
number of downloads they initiate.  (logarithmic scales 
on both X and Y axes). 

 
We discover that data-sharing graph displays 

small-world properties.  Small-world graphs are 
defined by comparison with random graphs with the 
same number of nodes and edges: first, a small-world 
displays a small average path length, similar to a 
random graph; second, a small-world has a 
significantly larger clustering coefficient than a 
random graph of the same size. The clustering 
coefficient captures how many of a node’s neighbors 
are connected to each other. One can picture a 
small-world as a graph constructed by loosely 
connecting a set of almost complete sub-graphs. Social 
networks, in which nodes are people and edges are 
relationships; the Web, in which nodes are pages and 
edges are hyperlinks; and neural networks, in which 
nodes are neurons and edges are synapses or gap 
junctions, are a few of the many examples of small-
world networks [13-16]. 

Table 2 presents the average path-length and the 
clustering coefficient (averaged over multiple intervals 
of equal duration) for the data-sharing graphs defined 
by a few different similarity criteria. We compare 
these metrics with those of random graphs of similar 
sizes. Note that despite diversity graph definitions 
(i.e., similarity criteria), and graph sizes, the values are 
remarkably close.  
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Table 2: Clustering coefficient and average path 
length for graphs constructed under various similarity 
criteria (together with the same characteristics for 
random graphs of similar size). 

Graph size 
(avg.) 

Average 
path length 

(avg.) 

Clustering 
coefficient 

 
Similarity 

criteria used 
# 

nodes 
#  

links 
DS 

graph 
Rand.
graph 

DS 
graph 

Rand 
graph 

m=1, T=4h. 1585 8546 4.01 4.41 0.653 0.0070 
m=1,T=8h. 2038 14267 3.76 4.08 0.645 0.0068 
m=1, T=12h 3033 29991 3.31 3.50 0.605 0.0065 
m=2, T=24h 1311 5227 3.72 4.51 0.483 0.0040 
m=3, T=48h 914 2200 3.93 7.76 0.410 0.0052 
 

Figure 14 compares these data-sharing graphs 
with a selection of well-known, small-world graphs, 
including citations network, power grid, movie actors, 
Internet, Web [16]. Axes represent ratios between the 
metrics of interest of these graphs and random graphs 
of the same size. As above, for our data sharing 
graphs, each point in the plot represents averages for 
all graphs constructed using one similarity criterion.  

 

Figure 14: Comparing Kazaa’s data-sharing 
graphs with a selection of well-known, small-world 
graphs, including citations network, power grid, movie 
actors, Internet, Web. 

 
5. Summary 

 
We present a study of current (early 2003) Kazaa 

traffic, which has been dominating the Internet traffic 
for the past two years. We confirm previous findings 
that Kazaa traffic is highly concentrated around a 
small minority of large, popular items. We find 
however, that this concentration is even more 
pronounced than previously reported. This is a strong 
indication that caching can bring significant savings in 
this context. 

We study the dynamics of network content to 
better understand both the dynamics of the user 
community and of its tastes, and the potential for 
caching. We are interested in the rate of apparition of 
new content, as well as in the stability properties of 
sets of the most popular items. Based on detailed logs 
of several weeks of Kazaa traffic, we measure the rate 
at which new files are encountered in the Kazaa 
network, and use it to estimate the rate at which new 
files are created and entered into Internet circulation. 
We also discover that the set of popular files is 
composed of two subsets: a small number of files are 
constantly popular while the rest lose their popularity 
within days.  We note that a longer experimentation 
period and further analysis are required to quantify 
these conclusions. 

Additionally, based on the intuition of virtual 
relationships between users that employ similar 
subsets of data, we model the network as a 
data-sharing graph and uncover its small world 
characteristics.  We believe that the small-world 
characteristics of the data-sharing graph can be 
exploited to build efficient data-location and 
data-delivery mechanisms  
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