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Abstract

Modern networked computing environments and applications often require—or can
benefit from—the use of multiple communication substrates, transport mechanisms, and
protocols, chosen according to where communication is directed, what is communicated,
or when communication is performed. We propose techniques that allow multiple com-
munication methods to be supported transparently in a single application, with either
automatic or user-specified selection criteria guiding the methods used for each commu-
nication. We explain how communication link and remote service request mechanisms
facilitate the specification and implementation of multimethod communication. These
mechanisms have been implemented in the Nexus multithreaded runtime system, and we
use this system to illustrate solutions to various problems that arise when implement-
ing multimethod communication. We also illustrate the application of our techniques by
describing a multimethod, multithreaded implementation of the Message Passing Inter-
face (MPI) standard, constructed by integrating Nexus with the Argonne MPICH library.
Finally, we present the results of experimental studies that reveal performance character-
istics of multimethod communication, the Nexus-based MPI implementation, and a large
scientific application running in a heterogeneous networked environment.

1 Introduction

Increasingly, high-performance applications need to exploit heterogeneous collections of com-
puting resources interconnected via high speed networks. Examples of such applications include
coupled modules [30, 31], collaborative environments [9, 10] and computations that couple spe-
cialized data sources to supercomputers for processing and visualization [28]. These applications
are heterogeneous not only in in their computational requirements, but also in the types of data
that they communicate. One significant consequence of this changing environment is an increase
in the number of communication methods that can usefully be employed in networked compu-
tations. For example, different communications may use different network interfaces, low-level
protocols, and data encodings, and may have different quality of service requirements. These
developments introduce challenging problems for developers of parallel programming tools. In
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particular, techniques are required that allow communication operations to be specified in-
dependently of the methods used to implement them, and that support both automatic and
programmer-assisted method selection. In addition, mechanisms are required for identifying
applicable methods and for incorporating multiple communication methods into an implemen-
tation.

No existing system addresses all of these issues. Various tools support computing in hetero-
geneous environments [1, 4, 32], but most do not exploit or expose the heterogeneous nature of
the network or applications. The p4 [5] and PVM [20] communication libraries can use different
low-level methods in heterogeneous environments, but the set of methods used is not extensible.
The x-kernel [33] and Horus [40] allow new protocols to be constructed by composing primitive
elements, but do not support automatic discovery or dynamic reconfiguration of communication
methods.

In this paper, we introduce new techniques for constructing heterogeneous computations
in which communication patterns and the methods used to perform these communications can
change dynamically, in both time and space. We first examine the principal factors motivating
multimethod communication and present requirements that tools supporting multimethod com-
munication should satisfy. We then explain how a structure called a communication startpoint
can provide a concise, mobile representation of both the target of a communication operation
and the methods used to perform that operation. We describe a simple algorithm for selecting
automatically from among applicable methods when the startpoint is received from a remote
location. We also explain how our architecture supports manual selection of communication
methods. We describe a single-sided communication mechanism called a remote service re-
quest, and explain how this mechanisms can be used to implement both point-to-point and
streaming protocols. These techniques have all been implemented in the context of the Nexus
multithreaded runtime system [19], and we use the architecture of the Nexus implementation
to illustrate the presentation.

In evaluating these techniques, we must necessarily be concerned with both their generality
and the efficiency with which they can be implemented. With respect to generality, we note
that Nexus has been used to implement a variety of parallel languages and communication
libraries [6, 14, 10]. We describe here an implementation of the standard Message Passing
Interface (MPI) [24], constructed by adapting the MPICH [23] implementation of MPI to use
Nexus communication primitives [16]. This implementation allows an MPI program to execute
unchanged in heterogeneous environments, with communication method selected according to
default rules, depending on the source and destination of the message being sent. We also
explain how the Nexus implementation of MPI benefits from access to Nexus multithreading
mechanisms. This MPI implementation was used extensively in the - WAY wide area computing
experiment [8], where it and other Nexus-based tools [6, 10] supported multiple applications on
a wide range of networks and computers, including IBM SP2, Intel Paragon, Cray C90, and SGI
Power Challenge. We address the question of efficiency by reporting the results of experimental
studies using both simple benchmark programs and a large scientific application; these allow
us to quantify the performance characteristics of the Nexus implementations of multimethod
communication and MPI.



2 Multimethod Communication

We first discuss why multimethod communication is important, develop a set of requirements
for an implementation, and describe the communication link and remote service request mech-
anisms that we use to support multimethod communication.

2.1 Motivation

We review situations in which we may want to support multiple communication methods in
a single application. These examples show that it can be necessary to vary the methods
used for a particular communication according to where communication is directed, what is
communicated, and even when communication is performed.

o Transport mechanisms. While the Internet Protocol provides a standard transport mech-
anism [7], parallel computers and local area networks often support alternative, more effi-
cient mechanisms: for example, shared memory, a vendor-specific communication library
such as IBM’s Message Passing Library (MPL), or MessageWay over a local Asynchronous
Transfer Mode (ATM) switch. In a wide area environment, optimized protocols can be
employed in an ordered network. The ability to use a mixture of specialized transport
mechanisms and TCP can be crucial to application performance.

o Network protocols. Particularly in a wide area environment, we may want to use spe-
cialized protocols such as UDP, IP multicast, reliable multicast, and Realtime Transport
Protocol (RTP) for selected data, such as shared state updates and video, while at the
same time using reliable point-to-point protocols (e.g., TCP/IP) for other data.

o Quality of service (QoS). Future ATM-based networks will support channel-based QoS
reservation and negotiation [35]. High-performance multimedia applications will likely
want to reserve several channels providing different QoS. For example, a multimedia
application might use a high-reliability, low-bandwidth channel for control information,
and a lower-reliability, high-bandwidth channel for image data.

o Interoperability of tools. Parallel applications must increasingly interoperate with other
communication paradigms, such as CORBA and DCE. In heterogeneous environments,
an MPI program may need to interoperate with other MPI implementations. In each
case, different protocols must be used to communicate with different processes.

o Security. Different mechanisms may be used to authenticate or protect the integrity or
confidentiality of communicated data [36], depending on where communication is directed
and what is communicated. For example, control information might be encrypted outside
a site, but not within, while data is not encrypted in either case.

o Time-varying properties. Many of the choices listed above can vary over time in both
predictable and unpredictable fashions. Users may want to write programs that can
adapt to anticipated or unanticipated network outages, or that can take advantage of
lower network loads at night or the availability of dedicated networks via reservation
systems.



2.2

Application-specific protocols. Finally, we note that certain applications may wish to
employ specialized protocols for certain data. For example, an application might compress
image data when transferring it across the country.

Requirements

Given the recognition that multimethod communication is important, we face the challenge

of developing tools and techniques that allow programmers to use multiple communication

methods efficiently without introducing overwhelming complexity. From the user’s point of

view,

Two

the following requirements are of particular importance.

Separate specification of communication interface and communication method. Ease-of-
use and portability concerns demand that programmers be able to specify communica-
tions using a single abstraction (whether message passing, remote procedure call, etc.),
independently of the actual method used to effect a particular communication.

Automatic selection. Ease-of-use and portability concerns also demand that automatic
selection mechanisms be provided, so that reasonable performance can be achieved when
programmers lack the expertise, motivation, or time to guide communication method
selection. Ideally, the rules or heuristics used to guide selection should be easily modified
by systems developers or interested programmers.

Manual selection. Developers of performance-critical applications will sometimes require
manual selection mechanisms that allow them to obtain information on available methods
and override automatic selections. Automatic and manual selection methods need to
coexist. For example, automatic selection might be used to determine whether to use
shared memory or TCP /IP between two computers, while manual selection could be used
to specify that data is to be compressed before communication.

Parameterized methods. For some communication methods, it will be important to allow
programmers to manage low-level behavior by specifying values for key parameters. For
example, a TCP protocol might allow a programmer to specify socket buffer sizes.

Feedback. Programmers require method-specific feedback mechanisms if they are to eval-
uate the effectiveness of automatic selection or tune manual selections. For example, the
Realtime Transport Control Protocol used in conjunction with RTP provides feedback on
frame loss rate and jitter. Programmers require access this information.

additional requirements arise at the implementation level.

Environment enquiry. Implementations of multimethod communication require enquiry
functions that they can use to obtain the environmental information needed to deter-
mine which methods are applicable in particular situations. For example, shared-memory
communication is appropriate only if directed to another process within the same shared
address space.

Compositionality. Implementations of multimethod communication must permit the co-
existence of multiple methods within a single application. This is a nontrivial problem, as
different methods may use quite different mechanisms for initiating and processing com-
munications. Mechanisms are also required for configuring an executable with a particular
set of communication methods and/or dynamically loading method implementations.
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Figure 1: The communication link and its role in communication. The figure shows three
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2.3 Communication Primitives

The preceding discussion has identified requirements for an implementation of multimethod
communication. These requirements can be satisfied in a variety of ways. We present an
approach based on the communication link and remote service request mechanisms, and explain
why we believe this approach to be superior to the most obvious alternative, namely point-to-
point communication and communicators.

With our primitives, communication flows from a communication startpoint to a commu-
nication endpoint. (Earlier papers on the Nexus communication primitives [19] used the term
global pointer to describe a startpoint and provided an implicitly defined endpoint. We intro-
duce the terms startpoint and endpoint because we find them more descriptive.) A startpoint is
bound to an endpoint to form a communication link. Many startpoints can be bound to a single
endpoint, in which case incoming communication is merged as in typical point-to-point message
passing systems. Similarly, many endpoints can be bound to a single startpoint, resulting in a
multicast communication pattern. Both startpoints and endpoints can be created dynamically;
the startpoint has the additional property that it can be moved between processors using the
communication operations we now describe.

Communication links are used in conjunction with asynchronous remote service requests
(RSRs) which invoke actions on remote objects. An RSR is specified by providing a startpoint,
an RSR handler identifier and a data buffer, which is constructed using PVM [20] style put
routines. Issuing an RSR causes the data buffer to be transfered from the startpoint to the
bound endpoint, after which the routine specified by the handler is executed, potentially in
a new thread of control. Both the data buffer and endpoint-specific data are available to the
RSR handler.

Key to the communication link’s utility is the mobility of the startpoint. A process can
bind a startpoint to a local endpoint and then communicate that startpoint to other processes,
providing the other processes with a handle that they can use to perform RSRs back to the
local endpoint. A process can create multiple handles, referring to different endpoints, hence
allowing communications intended for different purposes to be distinguished.

The communication link mechanism is naturally extended to encapsulate how as well as
where communication is to be performed. It suffices to associate with a startpoint information
about the methods that can be used to communicate to the bound endpoint. A process receiving



such a startpoint then has all the information required to communicate with the referenced
object, even in a heterogeneous system.

Associating communication methods with communication links provides fine-grained control
over how communication is achieved. We illustrate this point with three scenarios.

o Networks with asymmetric bandwidth. In a cable modem, different methods may be used
for incoming and outgoing communication. This situation can be represented explicitly
by a pair of communication links.

o Multi-protocol networks. Consider a system in which two low-level protocols are available,
with one protocol better suited for small, latency-sensitive communications, and the other
for large communications. We can represent this situation by creating two communication
links to the same address space, with each link defined to use a different protocol. We
can then optimize application performance by using one link for synchronization functions
and the other for data transfer.

e Streaming protocols. Multi-media applications often require specialized, stream-oriented
protocols (e.g., MPEG compression) for audio and video data. This requirement can
be satisfied by defining a link that uses a stream-oriented protocol. Each RSR on this
communication link transfers a block of video data, which is incorporated incrementally
and asynchronously into the appropriate buffer in the destination process.

An alternative approach to multimethod communication is to use two-sided message passing
primitives, rather than single-sided remote service requests, and to associate method choices
with group constructs such as MPI communicators [24]. This is not an unreasonable approach,
but is less flexible than communication links and RSRs. We use the three scenarios above to
explain why. First, we note that two-sided communication as found in first-generation libraries
such as PVM provides, in effect, just a single endpoint per node. This structure complicates
solutions to the first and second scenario described above. The second-generation MPI system
introduces a communicator mechanism that allows for the creation of unique communication
contexts. Each communicator behaves like a separate endpoint in our primitives and can—as we
describe below—utilize a specific communication method. However, a communicator must be
created by a collective operation and cannot be transferred between nodes, limiting its utility
for multimethod communication. In [18], we propose an extension to MPI communicators
that overcomes this limitation. However, a second limitation of two-sided communication that
cannot be overcome is that the protocol for synchronizing and extracting data at the receive
side of the transfer is defined by the communication model. That is, data must be extracted
by a matching receive. This rigidity hinders implementation of the third scenario.

3 Architecture

We now turn our attention to the techniques used to implement multimethod communication.
We describe these techniques in the context of Nexus [19], a portable, multithreaded communi-
cation library designed for use by parallel language compilers and higher-level communication
libraries. In addition to communication links and remote service requests, Nexus provides sup-
port for lightweight threading, which, as we shall explain, can simplify the implementation
of multimethod communication. For pragmatic reasons, Nexus thread support is based on a
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Figure 2: Nexus data structures used to support multimethod communication. The figure
shows the startpoint, communication descriptor table, communication object, function table,
and communication module. The data structures are explained in the text.

subset of the POSIX threads standard [27]; it supports thread creation, termination, and syn-
chronization. Nexus also supports the ability to create multiple address spaces, or contexts,
within a single node. On some systems, contexts may be implemented as processes; on others,
as separate code and data segments within a single process.

3.1 Multimethod Communication Architecture

We first describe the software architecture used to support multiple communication methods.
In particular, we explain how communication methods are represented, how the set of methods
available in a particular process is determined, and how communication method information
is associated with communication startpoints. In the process, we describe the structures il-
lustrated in Figure 2: the communication module, communication descriptor, communication
object, communication function table, and startpoint.

Communication module and function table. A communication method is implemented
within Nexus by a communication module. A communication module is accessed via a standard
interface (see Table 1), which includes communication-oriented functions, an initialization func-
tion, enquiry functions to return the method name and parameter information, and functions
used to construct communication descriptors and communication objects.

Several methods are provided for determining which communication modules are required
in a particular executable. When building the Nexus library, a default set of modules can be
defined as a configuration parameter; this information is propagated to the executable as a static
table of module names. The composition and ordering of this default set can be overridden by



Table 1: A subset of the Nexus communication module interface

increment reference count
decrement reference_count
communication descriptor
communication object

poll

blocking poll
init_remote_service request
set_buffer size

send _remote_service request

Name Purpose

method name Return communication method name
init Initialize communication module
shutdown Shutdown communication module

Reference counting on communication
object

Construct communication descriptor

Construct communication object

Nonblocking poll

Blocking poll

Initiate remote service request

Set RSR buffer size

Perform RSR

entries in an external resource database. Additional information can be provided via command
line arguments or function calls.

The Nexus system incorporates communication modules into a computation by first in-
voking an enquiry function on each required module. This function returns a function table
that provides access to the module’s implementation of the standard interface functions (Fig-
ure 2). The initialization function included in this table is invoked subsequently to perform
any initialization required to use the module. For example, a module that uses TCP/IP com-
munication might use the initialization component to set up a select call to detect incoming
communications.

Communication descriptor. FEach communication module defines a function that returns
a communication descriptor containing the information required to access the context in which
the function is called, using the communication method in question. For example, when using
MPL to communicate between nodes on IBM SP multicomputers, we require both a node
number and a globally unique session identifier. The unique identifier is used to distinguish
between different SP partitions, and can be constructed from the hostname, the IP address of
node 0 in the partition, and the time on node 0. On the Intel Paragon, the descriptor also
includes the name of the process with which we want to communicate. This is because on the
Paragon, several parallel computations can execute concurrently on the same processors.

As these examples show, the size of the communication descriptor depends on the method
used, but is normally small: three to five words is typical. Table 2 shows the information
contained in this descriptor for a variety of communication methods.

Communication descriptor table.
tion required to communicate with a particular context using a particular method. Hence, a
context can create a complete specification of the various methods that it supports, simply by

A communication descriptor contains all the informa-

creating one communication descriptor for each of its communication modules. A communica-
tion descriptor table is a concise and easily communicated representation of this information,
in which the various descriptors are concatenated as a contiguous byte array.



Table 2: Contents of the communication descriptor for different communication methods

Type Communication descriptor contents
IBM SP2 (MPL) Node #, unique session identifier
Intel Paragon (Nx) | Node #, unique session identifier, process id

TCP/IP Host name, port #

Shared memory Machine name, shmem pool addr, queue entry in pool

Communication object. Each communication module defines a function that can be applied
to a communication descriptor to obtain a communication object. This structure represents an
active connection involving the associated method. It contains the information contained in
the communication descriptor, plus a pointer to the associated function table and any state
information needed to represent the active connection. For example, a communication object
for a TCP connection would contain the file descriptor for the TCP socket. The communication
object also contains a reference to the function table created when the communication module
was initialized.

Communication objects are shared among startpoints that reference the same context and
use the same communication method.

Startpoint. As shown in Figure 2, a startpoint contains endpoint information, plus pointers
to the associated communication descriptor table and communication object. The communi-
cation object represents the communication method that is currently in use on this startpoint,
while the descriptor table represents the communication methods supported by the remote
context.

The information contained in communication descriptor tables is propagated between con-
texts as follows. To create a startpoint from a context A to an endpoint X in a second context
B, we first create a startpoint bound to X within context B, and then use an RSR to com-
municate the new startpoint to context A. (The bootstrapping problem of obtaining an initial
link from B to A is addressed by Nexus context creation functions, which return startpoints
bound to default endpoints in newly created contexts.)

When a startpoint is created in a context, the communication descriptor table representing
the methods supported by that context is attached to the startpoint. When the startpoint is
communicated to another context (e.g., from B to A), this descriptor table is passed with it.
Hence, any context receiving a startpoint also receives the information required to communicate
to the referenced endpoint. The context must then select one of the methods specified in the
descriptor table, and use this to construct a communication object. Subsequent operations
on the startpoint then occur via the communication object. The techniques used to select a
communication method are discussed below.

The startpoint implementation that we have described is very general, but makes startpoints
rather heavyweight entities. This is acceptable in a wide area context, where the cost of
communicating a few tens of bytes of descriptor table is insignificant. However, it can be
unacceptable in more tightly coupled systems. The Nexus implementation uses two different
optimizations to minimize replication and communication of descriptor data:

o Homogeneous communication. Contexts created as part of a fixed-sized partition within
a single parallel computer will typically use the same communication methods. In these



situations, a single descriptor table can be assembled and broadcast to all contexts when
the partition is created. No descriptor table need be attached to individual startpoints,
reducing storage requirements and communication costs. If the startpoint is passed to an
external context, an appropriate descriptor table must be attached.

o Heterogeneous communication with default descriptor table. Fach context in a Nexus
computation defines a default descriptor table. The first time a context A passes a
startpoint involving this default table to another context B. it attaches the default table;
on subsequent occasions, A omits the table, signaling that B should use the previously
communicated default.

These optimizations ensure that a distinct descriptor table need be attached to a startpoint
only when an application creates a nonstandard descriptor table, whether by adding specialized
method selection methods, reordering the methods on the table, or adding or deleting methods.

3.2 Selecting a Communication Method

We explained earlier how a startpoint received from another context has associated with it a
descriptor table identifying the methods supported by the referenced endpoint. Upon receipt
of a startpoint, a context must determine which of these methods is to be used for subsequent
communication using that startpoint. As explained in Section 2.2, we want to support both
automatic and manual method selection.

The current Nexus implementation uses a simple automatic selection rule: it selects the
first applicable method detected in a linear scan of a received descriptor table. A method
is “applicable” if it is supported by the context that receives the startpoint. The function
call applied to a descriptor to create a communication object also checks for applicability,
and returns a null value if the method is not applicable. The nature of the check is method
dependent. For example, if both the checking context and referenced context support MPL,
then we must also check that the two contexts are in the same partition on the same IBM SP.
The method descriptor contains the information required to perform this test.

Because we select communication methods by means of a linear scan of the communication
descriptor table, it suffices to order methods from “fastest” to “slowest” to ensure that the
“fastest” applicable method is always selected. The user can then influence the choice of
method by the communication descriptor table, for example by reordering entries or by adding
or deleting descriptors. Adding a descriptor causes the associated communication module to
be loaded if it is not already resident, while deleting a descriptor prevents subsequent selection
of the associated communication module.

We note that the selection method just described is suboptimal in environments in which
different methods are “faster” in different situations. For example, as noted above a “slower”
method might actually be faster for a particular message size. Or, while one network may
be “fastest” in terms of raw bandwidth, instantaneous network load may make some “slower”
network a better choice at a particular time. The framework that we describe can easily be
extended to support more sophisticated rules; the definition of such rules is a subject of current
research.

Figure 3 illustrates the techniques used to determine communication method selection. The
figure illustrates a network configuration in which three nodes are connected by an Ethernet;
nodes 1 and 2 are part of an IBM SP2 and hence are also connected by MPL. Node 0 has a
communication link to node 2. Because the startpoint was received from node 2, its attached
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Figure 3: Communication method selection in Nexus. See text for details.

descriptor table contains entries for both Ethernet (E) and MPL (M). However, node 0 supports
only Ethernet and so this method is used. The startpoint is then migrated to node 1. On arrival
at node 1, we determine that MPL is supported by both nodes and that both nodes are on the
same SP partition. Hence, the faster MPL is used.

3.3 Security as a Communication Method

Much of the discussion above has focused on the selection process as a choice between alternative
communication substrates. However, the advantages of multimethod communication extend
beyond communication protocols. We can use the same techniques to control other aspects of
communication, such as security.

In [17], we show how our multimethod communication architecture can be used to support
applications in which certain communication operations must encrypt data before sending it
over an open network. For these applications, it suffices to create an encrypting communication
method. (To avoid an explosion in the number of communication methods, Nexus allows an
arbitrary data transformation to be applied as part of a communication method. Encryption
can be implemented as one of these transformations.) The encrypting method can be applied
selectively, as can other communication methods.

3.4 Processing at Destination

In the preceding discussion, we have described the techniques used to represent and select
communication methods when initiating a communication. We now address the question of
how remote service requests (RSRs) are processed at the endpoint. We must first explain some
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details regarding how Nexus handles messages. A Nexus context must typically be prepared
to process RSRs received from multiple sources and communicated with different methods.
Frequently, different sources or communication methods may require different operating system
(OS) mechanisms, although multiple sources and methods can also be multiplexed onto a single
mechanism. For example, on an IBM SP2, specialized mpc_status and mpc_recv calls are used
to detect and receive incoming MPL messages, while Unix select and read calls are used for
TCP communications.

The techniques used to detect and process incoming RSRs have to trade off fast RSR re-
sponse time against overheads incurred at the destination processor [19]. Threads can simplify
implementation. If an OS allows a thread to block on a system call, then a specialized com-
munication server thread may be created for each OS5 mechanism. This thread will be enabled
only when an RSR is available. If an OS does not provide this capability, we use explicit
probe operations performed by a single communication server thread. Various combinations of
round-robin scheduling, priorities, and explicit yields in user code can provide some degree of
control over the frequency with which the server thread is scheduled [19].

When using probe operations to detect RSRs, complex tradeoffs can arise if probes for differ-
ent communication methods have very different costs. For example, on many MPPs, the probe
operation used to detect communication from another processor is cheap, but a TCP select
is expensive. (On the SP2, mpc_status and select cost around 10 and 100 usecs, respec-
tively.) Our current Nexus implementation addresses these issues by causing more expensive
probes to be performed less frequently than inexpensive probes. We examine the performance
implications of this technique in Section 5. We can also imagine an adaptive algorithm that
varies polling frequency according to observed RSR frequency from different sources. Or, we
can introduce a dedicated proxy process responsible solely for receiving incoming messages on
the “slow” mechanism; this proxy can then forward them to other processes using the “fast”
mechanism.

Special techniques are required when multiple communication methods are multiplexed over
a single OS mechanism. For example, if we define a communication method that compresses
communicated data, then a destination process may receive RSRs communicated using both
the regular uncompressed method and the specialized compressed method. These cases can
be addressed by referring to the endpoint specified in the message; the endpoint structure will
indicate whether the data should be uncompressed.

4 An MPI Implementation

In previous sections, we have sought to demonstrate that communication links, remote service
requests, and multithreading are convenient mechanisms for specifying multimethod communi-
cation. We must now address the question of whether these mechanisms are useful for practical
parallel programming tasks. We do so by demonstrating that Nexus mechanisms can be used
to construct an implementation of the widely-used Message Passing Interface (MPI) standard.
This implementation provides both multimethod communication and multithreading in an MPI
context and, as we show in Section 5, has good performance characteristics.

We emphasize that an implementation of MPI is not the only application of Nexus mecha-
nisms; it is certainly not the programming model for which Nexus is best suited. Other systems
that use Nexus facilities include parallel object-oriented languages (for example, CC++ [6] and
Fortran M [14]), parallel scripting languages (nPerl), and communication libraries (CAVEcomm [10]
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and a Java library). We consider MPI here because it is a well-known model, and also because
it might appear that single-sided communication is ill-suited to implementing MPI’s two-sided
communication.

4.1 MPI and MPICH

We first review important features of MPI and of the MPICH implementation on which this
work is based.

The Message Passing Interface defines a standard set of functions for interprocess communi-
cation [24]. It defines functions for sending messages from one process to another (point-to-point
communication), for communication operations that involve groups of processes (collective com-
munication, such as reduction), and for obtaining information about the environment in which
a program executes (enquiry functions). The communicator construct combines a group of
processes and a unique tag space, and can be used to ensure that communications associated
with different parts of a program are not confused.

MPICH [23] is a portable, high-performance implementation of MPIL. It is structured in
terms of an abstract device interface (ADI) that defines low-level communication-related func-
tions that can be implemented in different ways on different machines [21, 22]. The Nexus
implementation of MPI is constructed by providing a Nexus implementation of this device.
The use of the ADI simplifies implementation, but has some performance implications, which
we discuss below.

4.2 Implementing the Abstract Device Interface

Figure 4 illustrates the structure of the MPICH implementation of MPI. Higher-level functions
such as those relating to communicators and collective operations are implemented by a device-
independent library, defined in terms of point-to-point communication functions provided by
the ADI. To achieve high performance, the ADI provides a rich set of communication functions
supporting different communication modes. A typical implementation of the ADI will map
some functions directly to low-level mechanisms, and implement others via library calls. The
mapping of MPICH functions to ADI mechanisms is achieved via macros and preprocessors,
not function calls. Hence, the overhead associated with this organization is often small or
nonexistent [23].

The ADI provides a fairly high-level abstraction of a communication device: for example, it
assumes that the device handles the buffering and queuing of messages. The lower-level channel
interface defines simpler functions for moving data from one processor to another. For example,
it defines MPID_SendControl and MPID_SendChannel functions that can be used to implement
the MPI function MPI_Send. On the destination side, the test MPID ControlMsgAvail and
function MPID RecvAnyControl are provided, and can be used to implement MPI Recv. Differ-
ent protocols can be selected; the best in many circumstances sends both the message envelope
(tag, communicator, etc.) and data in a single message, up to a certain data size, and then
switches to a two-message protocol so as to avoid copying data.

The Nexus implementation of the channel device implements channel device send functions
as RSRs to “enqueue message” handlers; these handlers place data in appropriate queues, or
copy directly to a receive buffer if a receive has already been posted. As this brief description
shows, the mapping from ADI to Nexus is quite direct; the tricky issues relate mainly to avoiding
extra copy operations. The principal overheads relative to MPICH comprise an additional
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Figure 4: The Nexus implementation of MPI is constructed by defining a Nexus instantiation
of the MPICH channel device, a specialization of the abstract device interface.

32 bytes of Nexus header information (we expect to reduce this to 16 bytes in the near future),
which must be formatted and communicated; the decoding and dispatch of the Nexus handler
on the receiving node; and a small number of additional function calls. We quantify these costs
in Section 5. Most are artifacts of the channel device, and will be avoided in the near future
by a redesign of the MPICH ADI.

Finally, we observe that the Nexus implementation of MPI is structured so that Nexus
thread management functions and MPI communication functions can both be used in the same
program. This coexistence is simplified by the fact that the MPI specification is thread safe.
That is, there is no implicit internal state that prevents the execution of MPI functions from
being interleaved. The Nexus library addresses other thread safety issues, ensuring that only one
thread at a time accesses nonthread-safe system components, such as communication devices
and I/0O libraries on many systems.

4.3 MPI Added Value

The Nexus implementation of MPI provides three benefits over and above those provided by
MPICH: multimethod communication, interoperability with other Nexus applications, and mul-
tithreading.

The automatic selection of communication methods is supported directly in the Nexus im-
plementation of MPI. An interesting question is how to support manual control of method
selection in an MPI framework. We propose that this be achieved via MPI’s caching mecha-
nism, which allows the programmer to attach to communicators, and subsequently modify and
retrieve, arbitrary key/value pairs called attributes. An MPI implementation can be extended
to recognize certain attribute keys as denoting communication method choices and parameter
values. For example, a key TCP_BUFFER_SIZE might be used to specify the buffer size to be used
on a particular communicator.

A second benefit that accrues from the Nexus implementation of MPI is interoperability
with other Nexus-based tools. For example, in the -WAY networking experiment [8], numerous
applications used the CAVEcomm [10] client-server package to transfer data among one or
more virtual reality systems and a scientific simulation running on a supercomputer. When
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the simulation itself was developed using MPI, the need arose to integrate the polling required
to detect communication from either source. This integration was achieved within Nexus, as
described in Section 3.4.

The third benefit that accrues from the use of Nexus is access to multithreading. The
concurrent execution of multiple lightweight threads within a single process is a useful tech-
nique for masking variable latencies, exploiting multiprocessors, and providing concurrent access
to shared resources. Various approaches to the integration of multithreading into a message-
passing framework have been proposed [2, 12, 18, 37, 39, 13, 25, 42]. The Nexus implementation
of MPI supports a particularly simple and elegant model that does not require that explicit
thread identifiers be exported from MPI processes. Instead, threads are created and manipu-
lated with Nexus functions, and inter-thread communication is performed using standard MPI
functions, with tags and/or communicators being used to distinguish messages intended for dif-
ferent threads. The MPI/Nexus combination can be used to implement a variety of interesting
communication structures. For example, we can create two communicators and communicate in-
dependently on each from separate threads, using either point-to-point or collective operations.
Or, several threads can receive on the same communicator and tag value. In a multiprocessor,
the latter technique allows us to implement parallel servers that process requests from multi-
ple clients concurrently. Nexus support for dynamic resource management and multithreading
also provides a framework for implementing new features proposed for MPI-2, such as dynamic
process management, single-sided communication, and multicast.

The multithreaded MPI also has its limitations. In particular, it is not possible to define a
collective operation that involves more than one thread per process. This functionality requires

extensions to the MPI model [18, 26, 37].

5 Performance Studies

We have conducted a variety of experiments to evaluate the performance of both our multi-
method communication mechanisms and the Nexus implementation of MPI. All experiments
were conducted on the Argonne IBM SP2, which is configured with Power 1 rather than the
more common Power 2 processors. These processors are connected via a high-speed multistage
crossbar switch and are organized by software into disjoint partitions. Processors in the same
partition can communicate by using either TCP or IBM’s proprietary Message Passing Library
(MPL), while processors in different partitions can communicate via TCP only. Both MPL and
TCP operate over the the high-speed switch and can achieve maximum bandwidths of about 36
and 8 MB/sec, respectively. TCP communications incur the high latencies typically observed in
other environments, and so multiple SP partitions can be used to provide a controlled testbed
for experimentation with multimethod communication in networked systems.

5.1 Multimethod Communication Performance

Our first experiments evaluate the performance of the Nexus implementation of multimethod
communication. Our benchmark program, pphandle, simply bounces a vector of fixed size
back and forth between two processors a large number of times. This process is repeated to
obtain one-way message latency for a variety of message sizes. Message transfer is effected by
an RSR to the remote node, with the RSR handler invoking an RSR back on the originating
node. This extremely simple code typifies the behavior of a program placing data in a remote
location, as no new threads are created to execute handlers. We note that this single-threaded,
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synchronous scenario represents a worst case situation for a multithreaded, one-sided commu-
nication system, in that threads cannot be used to advantage and a native message-passing
code has complete knowledge of when data will arrive. To provide a basis for comparison,
we also evaluate an MPL program that implements the same communication pattern using
point-to-point communication.

We measure performance for pphandle using both Nexus and a single-threaded version
of Nexus called NexusLite. (The former case corresponds to test case H-to-H in [19].) In
NexusLite, user programs cannot create multiple threads, and probe operations are performed
within the computation thread rather than within a separate communication server thread. In
addition, there is no need to protect communication operations with locks to ensure mutual
exclusion. Hence, NexusLite results provide insights into multithreading costs.

For Nexus, we measure pphandle performance over MPL both in a system in which only
MPL communication is supported, and in a system in which both MPL and TCP are supported.
In the latter case, the select calls used to check for pending TCP communications introduce
additional overhead, and so we measure performance for a variety of TCP probe frequencies.

Figure 5 shows the results obtained for the experiments just described. Looking first at
small message times, we see that the MPL program is the fastest, taking 61.4 psec for a zero-
length message. NexusLite and Nexus take 82.8 and 112.4 usec respectively when configured to
use MPL communication only. We have documented Nexus overheads elsewhere [19]. Briefly,
the principal sources of the 21.4 psec difference between NexusLite and MPL are the setup and
communication of the 32-byte header contained in a Nexus message (about 8 psec) and the
lookup and dispatch of the handler on the receive side (about 7 usec). The additional 29.6 usec
overhead associated with full Nexus is due to locking needed for thread safety and the use of a
probe rather than a blocking receive to detect the incoming message.

The upper two lines in the left-hand graph are for NexusLite and Nexus when configured to
support TCP as well as MPL communication. These data show the impact of the slower TCP on
MPL performance. For a zero-byte message, costs are 156.1 usec and 188.8 psec, respectively:
about 75 psec more than the corresponding times without TCP. Because incoming RSRs may
arrive on either a socket or in an MPL message, both Nexus and NexusLite probe for messages
from both sources. If the MPL probe fails the first time, the more expensive select call must
be made before a second MPL probe is performed, which has the effect of increasing the average
time that it takes to detect availability of an MPL message.

Looking at the large message sizes, we see that NexusLite overheads become insignificant
for larger messages. In the threaded Nexus, overheads remain; we believe that we can eliminate
these, but have not yet completed this investigation. Of greater interest is the fact that the
inclusion of TCP support continues to degrade MPL communication performance even for large
messages. We hypothesize that this is because repeated kernel calls in the user code (due to
select calls) slow down the process of transferring data from the IBM SP2’s communication
device to user space.

We conducted a second set of experiments using a benchmark ppmulti in which two in-
stances of pphandle run concurrently (Figure 6). One instance executes the pphandle algo-
rithm over MPL while the other executes it over TCP. The two programs execute until the
MPL pphandle has performed a fixed number of roundtrips, and the one-way latency for each
pair is then computed. The experiment was repeated for a range of TCP polling frequencies,
expressed in terms of a parameter skip poll, denoting the number of select calls skipped be-
tween each poll. Figure 7 shows the results of these experiments. The performance of the MPL
instance of pphandle is degraded significantly by the concurrently executing TCP instance. As
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Figure 5: One-way message latency as a function of message size, as measured with both a
low-level MPL program and the pphandle benchmark, using various versions of Nexus. On
the left, we show data for message sizes in the range 0-1000, and on the right a wider range of
sizes. See the text for details.

we might expect, MPL performance improves with increasing skip_poll, while TCP perfor-
mance degrades. Interestingly, a modest skip _poll value provides a significant improvement
in MPL performance, while not impacting TCP performance very badly.

5.2 MPI Performance

We next report on experiments that evaluate the performance of the Nexus implementation of
MPI. We used the MPI mpptest program [23], which incorporates a “ping-pong” benchmark
equivalent to pphandle. We executed this program using MPICH and with the Nexus imple-
mentation of MPI, in the latter case evaluating NexusLite and Nexus, both with MPL support
only, and with MPL and TCP support. Figure 8 shows our results.

The graph on the left shows that MPICH takes 83.8 psec for a zero-length message. This is
comparable with the 82.8 usec achieved by pphandle, suggesting that MPICH and NexusLite
are implemented at a similar level of optimization. The NexuslLite implementation of MPI
incurs an overhead of around 60 psec for a zero-length message; the graph on the right shows
that for larger messages, the overhead becomes insignificant. We have outlined the sources
of these overheads in Section 4.2; as we note there, most can be eliminated by improving the
MPICH ADI. The jump in the MPICH numbers at 200 bytes is an artifact of the protocols
used in the low-level MPL implementation, and is visible in this graph but not in Figure 5
because we plot more points here. Notice the corresponding jump in the Nexus plots at around
170 bytes; the offset is due to the additional header information associated with a Nexus RSR.

5.3 Climate Model Performance

In our final experiment, we used a substantial, communication-intensive parallel application to
provide a real-world evaluation of both MPICH/Nexus and our multimethod communication
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Figure 6: Configuration for the ppmulti communication benchmark. Two pphandle programs
run concurrently, one within an IBM SP2 partition using MPL, and the other between two
partitions, using TCP.
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Figure 7: One-way message latency as a function of skip_poll for the MPL and TCP instances
of pphandle executed in the ppmulti benchmark described in the text. The graph on the left
is for zero-length messages, and the graph on the right is for 10 KB messages.
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Figure 8: One-way message latency as a function of message size, for various implementations
of MPI described in the text. The two graphs show results for small and large messages,
respectively.

support. The application is a climate model that couples a large atmosphere model (the
Parallel Community Climate Model [11]) with an ocean model (from U. Wisconsin). In brief,
the two components execute concurrently, perform considerable internal communication, and
periodically exchange boundary information such as sea surface temperature and various fluxes.
In the configuration used for these experiments, the atmosphere model operates with its time
step accelerated by a factor of six, and runs on 16 processors while the ocean model runs on 8
processors. Information is exchanged every two atmosphere time steps (every one ocean time
step).

We measured execution times for the coupled model when using MPICH over MPL, MPI
on NexusLite with MPL support only, MPI on NexusLite with TCP support only, and MPI on
NexusLite with both MPL and TCP support. For the latter case, we measured performance
both in one partition and in two partitions, with the two-partition run placing the two model
components in separate partitions (Figure 9) so that MPL was used within each component
and TCP for intercomponent communication. The two-partition configuration is a good ap-
proximation to a heterogeneous system comprising two IBM SP2’s connected by a fast network.
Results are provided in the MPI on Nexuslite case for a variety of different polling management
strategies. In the “manual” strategy, polling is explicitly disabled except when in the coupler;
hence, this represents a best case. In the “forwarder” case, a proxy processor (Section 3.4)
is used to handle TCP communications (see [15] for details). Finally, we present results for a
variety of skip_poll values.

Results are presented in Table 3. We see that considerable benefits result from the use of
multimethod communication: time per day is 51.5 secs (in an “optimal” case) vs. 65.9 secs
when only TCP is used. We also see that an appropriate choice of polling interval allows us to
come close to the “optimal” value (a value of 1000 seems to work well in this application), while
the use of a proxy is better than a naive polling approach, but less efficient than a selective
polling scheme.
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Figure 9: The Argonne/Wisconsin coupled ocean/atmosphere model in the configuration used
for our multimethod communication experiments, showing the two IBM SP partitions.

Table 3: Total execution time for the coupled model in different scenarios. Times are in seconds
per simulated day on 24 processors. See text for details

Scenario polling Configuration
management | 1 partition | 2 partitions
MPICH/MPL - 49.3 -
Nexus/TCP - 65.9 -
Nexus/MPL4+TCP manual - 51.5
Nexus/MPL4+TCP forwarder - 53.9
Nexus/MPL4+TCP 0 58.0 60.0
Nexus/MPL4+TCP 1 55.5 55.9
Nexus/MPL4+TCP 2 54.4 54.8
Nexus/MPL4+TCP 5 53.7 53.7
Nexus/MPL4+TCP 20 55.1 53.2
Nexus/MPL4+TCP 100 52.5 53.3
Nexus/MPL4+TCP 1000 52.3 52.4
Nexus/MPL4+TCP 7000 52.8 51.8
Nexus/MPL4+TCP 10000 52.8 52.9
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6 Related Work

Many researchers have proposed and investigated communication mechanisms for heterogeneous
computing systems (for example, [1, 4, 32]). However, this work has typically been concerned
with hiding heterogeneity by providing a uniform user-level interface rather than with exploiting
and exposing the heterogeneous nature of networks and applications.

Some communication libraries permit different communication methods to coexist. For
example, the Intel Paragon implementations of p4 and PVM support heterogeneous computing
by using the NX communication library for internal communication and TCP for external
communication [5, 20]; p4 supports NX and TCP within a single process, while PVM uses a
proxy process for TCP. In both systems, the choice of method is hard coded and cannot be
extended or changed without substantial reengineering.

The x-kernel [33] and the Horus distributed systems toolkit [40] both support the concurrent
use of different communication methods. In Horus, the primary motivation for multimethod
communication is to support various group communication mechanisms in a way that allows
applications to pay only for the services that they use [41]. The choice of method is associated
with a group, and typical methods include reliable and unreliable multicast, and ordered and
unordered delivery. Horus provides some support for varying the communication method as-
sociated with an entire group. However, it does not provide for automatic method selection or
for the migration of communication capabilities (with associated method information) between
processes.

In other respects, the x-kernel and Horus complement our work by defining a framework
that supports the construction of new protocols by the composition of simpler protocol ele-
ments. These mechanisms could be used within Nexus to simplify the development of new
communication modules. Early results with Horus suggest that these compositional formula-
tions simplify implementation, but can introduce overheads similar to those encountered when
layering MPICH on Nexus: additional message header information, function calls, and mes-
sages. Tschudin [38] and the Fox project [3] have explored similar concepts and report similar
results.

Active Messages (AM) [29] and Fast Messages (FM) [34] are communication systems based
on asynchronous handler invocation mechanisms similar to those used in Nexus. The latest AM
specification introduces an endpoint construct with some similarities to the Nexus endpoint.
However, the AM endpoint is a more heavyweight structure, incorporating both startpoint
and endpoint functionality. Another significant difference between AM and Nexus is that AM
handlers are used in request/reply pairs, rather than in a one-sided fashion as in Nexus. FM,
like Nexus, does not couple sender and receiver. However, it does not have any concept of
endpoint. Neither AM nor FM supports heterogeneity; both assume that a computation takes
place over a homogeneous, switched network. Thus Nexus is significantly different in scope

from both AM and FM.

7 Conclusions

We have described techniques for representing and implementing multimethod communication
in heterogeneous environments. These techniques use a startpoint construct to maintain infor-
mation about the methods that can be used to perform communications directed to a particular
remote location. Simple protocols allow this information to be propagated from one node to an-
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other, and provide a framework that supports both automatic and manual selection from among
available communication methods. A remote service request mechanism allows point-to-point
communication, remote memory access, and streaming protocols to be supported within this
framework.

We have used the example of the Nexus runtime system to illustrate the implementation of
the various techniques described in this paper. We also discuss how Nexus mechanisms can be
used to produce a multimethod, multithreaded implementation of the standard Message Passing
Interface (MPI). Performance studies with both Nexus and the Nexus implementation of MPI
provide insights into the costs associated with multimethod communication mechanisms.

The results reported in this paper suggest several directions for future work. An imme-
diate priority is to gain practical experience with additional communication methods. Com-
munication modules currently supported include local (intra-context), TCP socket, Intel NX
message-passing, IBM MPL, AAL-5 (ATM Adaptation Layer 5), Myricom, unreliable UDP,
shared memory, and encryption mechanisms. Streaming protocols and multicast will be con-
sidered next. While preliminary design work suggests that they fit the model well, practical
experience may suggest refinements.

We also note that Nexus performance can be refined further. The results presented here are
promising, in that they show that overheads associated with multimethod communication are
small and manageable. However, we know that these overheads can be reduced still further. In
particular, the only unavoidable overheads associated with the Nexus implementation of MPI
seem to be the few microseconds associated with handler dispatch and the use of probe rather
than blocking receive.

A third area of future investigation relates to the techniques used to select communication
methods. We plan to investigate more sophisticated heuristics for automatic method selection.
Further work is also required on the representation, discovery, and use of configuration data,
particularly in situations where it is subject to change.
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