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Abstract

High-speed wide area networks are expected to enable
innovative applications that integrate geographically
distributed, high-performance computing, database,
graphics, and networking resources. However, there
is as yet little understanding of the higher-level ser-
vices required to support these applications, or of the
techniques required to implement these services in a
scalable, secure manner. We report on a large-scale
prototyping effort that has yielded some insights into
these issues. Building on the hardware base provided
by the I-WAY, a national-scale Asynchronous Transfer
Mode (ATM) network, we developed an integrated man-
agement and application programming system, called
I-Soft. This system was deployed at most of the 17 I-
WAY sites and used by many of the 60 applications
demonstrated on the I-WAY network. In this arti-
cle, we describe the I-Soft design and report on lessons
learned from application experiments.

1 Introduction

Recent developments in high-performance networks,
computers, information servers, and display technolo-
gies make it feasible to design network-enabled tools
that incorporate remote compute and information re-
sources into local computational environments, and
collaborative environments that link people, comput-
ers, and databases into collaborative sessions. The de-
velopment of such tools and environments raises nu-
merous technical problems, including the naming and
location of remote computational, communication, and
data resources; the integration of these resources into
computations; the location, characterization, and se-

lection of available network connections; the provision
of security and reliability; and uniform, efficient access
to data.

Previous research and development efforts have pro-
duced a variety of candidate “point solutions” [19].
For example, DCE, CORBA, Condor [16], Nimrod [1],
and Prospero [18] address problems of locating and/or
accessing distributed resources; file systems such as
AFS [17], DFS, and Truffles [4] address problems of
sharing distributed data; tools such as Nexus [10],
MPI [14], PVM [11], and Isis [2] address problems
of coupling distributed computational resources; and
low-level network technologies such as Asynchronous
Transfer Mode (ATM) promise gigabit/sec communi-
cation. However, little work has been done to inte-
grate these solutions in a way that satisfies the scalabil-
ity, performance, functionality, reliability, and security
requirements of realistic high-performance distributed
applications in large-scale internetworks.

It is in this context that the I-WAY project [6]
was conceived in early 1995, with the goal of pro-
viding a large-scale testbed in which innovative high-
performance and geographically-distributed applica-
tions could be deployed. This application focus, ar-
gued the organizers, was essential if the research com-
munity was to discover the critical technical problems
that must be addressed to ensure progress, and to gain
insights into the suitability of different candidate solu-
tions. In brief, the I-WAY was an ATM network con-
necting supercomputers, mass storage systems, and ad-
vanced visualization devices at 17 different sites within
North America. It was deployed at the Supercom-
puting conference (SC’95) in San Diego in December
1995, and used by over 60 application groups for ex-
periments in high-performance computing, collabora-
tive design, and the coupling of remote supercomputers



and databases into local environments.
A central part of the I-WAY experiment was the de-

velopment of a management and application program-
ming environment, called I-Soft. The I-Soft system was
designed to run on dedicated I-WAY point of presence
(I-POP) machines deployed at each participating site,
and provided uniform authentication, resource reser-
vation, process creation, and communication functions
across I-WAY resources. In this article, we describe
the techniques employed in I-Soft development and we
summarize the lessons learned during the deployment
and evaluation process. The principal contributions
are the design, prototyping, preliminary integration,
and application-based evaluation of the following novel
concepts and techniques:

1. Point of presence machines as a structuring and
management technique for wide-area distributed
computing.

2. A computational resource broker that uses sched-
uler proxies to provide a uniform scheduling envi-
ronment that integrates diverse local schedulers.

3. The use of authorization proxies to construct a
uniform authentication environment and define
trust relationships across multiple administrative
domains.

4. Network-aware parallel programming tools that
use configuration information regarding topology,
network interfaces, startup mechanisms, and node
naming to provide a uniform view of heterogeneous
systems and to optimize communication perfor-
mance.

The rest of this article is as follows. In Section 2,
we review the applications that motivated the develop-
ment of the I-WAY and describe the I-WAY network.
In Section 3, we introduce the I-WAY software architec-
ture, and in Sections 4–8 we describe various compo-
nents of this architecture and discuss lessons learned
when these components were used in the I-WAY ex-
periment. In Section 9, we discuss some related work.
Finally, in Section 10, we present our conclusions and
outline directions for future research.

2 The I-WAY Experiment

For clarity, in this article we refer consistently to the
I-WAY experiment in the past tense. However, we em-
phasize that many I-WAY components have remained
in place after SC’95 and that follow-on systems are be-
ing designed and constructed.

2.1 Applications

A unique aspect of the I-WAY experiment was its
application focus. Previous gigabit testbed experi-
ments focused on network technologies and low-level
protocol issues, using either synthetic network loads or
specialized applications for experiments (e.g., see [8]).
The I-WAY, in contrast, was driven primarily by the
requirements of a large application suite. As a result of
a competitive proposal process in early 1995, around 70
application groups were selected to run on the I-WAY
(over 60 were demonstrated at SC’95). These applica-
tions fell into three general classes [6]:

1. Many applications coupled immersive virtual envi-
ronments with remote supercomputers, data sys-
tems, and/or scientific instruments. The goal of
these projects was typically to combine state-of-
the-art interactive environments and backend su-
percomputing to couple users more tightly with
computers, while at the same time achieving dis-
tance independence between resources, developers,
and users.

2. Other applications coupled multiple, geographi-
cally distributed supercomputers in order to tackle
problems that were too large for a single supercom-
puter or that benefited from executing different
problem components on different computer archi-
tectures.

3. A third set of applications coupled multiple virtual
environments so that users at different locations
could interact with each other and with supercom-
puter simulations.

Applications in the first and second classes are pro-
totypes for future “network-enabled tools” that en-
hance local computational environments with remote
compute and information resources; applications in the
third class are prototypes of future collaborative envi-
ronments.

2.2 The I-WAY network

The I-WAY network connected multiple high-end
display devices (including immersive CAVETM and
ImmersaDeskTM virtual reality devices [5]); mass stor-
age systems; specialized instruments (such as micro-
scopes); and supercomputers of different architectures,
including distributed memory multicomputers (IBM
SP, Intel Paragon, Cray T3D, etc.), shared-memory
multiprocessors (SGI Challenge, Convex Exemplar),
and vector multiprocessors (Cray C90, Y-MP). These



devices were located at 17 different sites across North
America.

This heterogeneous collection of resources was con-
nected by a network that was itself heterogeneous. Var-
ious applications used components of multiple networks
(e.g., vBNS, AAI, ESnet, ATDnet, CalREN, NREN,
MREN, MAGIC, and CASA) as well as additional con-
nections provided by carriers; these networks used dif-
ferent switching technologies and were interconnected
in a variety of ways. Most networks used ATM to
provide OC-3 (155 Mb/sec) or faster connections; one
exception was CASA, which used HIPPI technology.
For simplicity, the I-WAY standardized on the use of
TCP/IP for application networking; in future exper-
iments, alternative protocols will undoubtedly be ex-
plored. The need to configure both IP routing tables
and ATM virtual circuits in this heterogeneous environ-
ment was a significant source of implementation com-
plexity.

3 I-WAY Infrastructure

We now describe the software (and hardware) infras-
tructure developed for I-WAY management and appli-
cation programming.

3.1 Requirements

We believe that the routine realization of high-
performance, geographically distributed applications
requires a number of capabilities not supported by
existing systems. We list first user-oriented require-
ments; while none has been fully addressed in the I-
WAY software environment, all have shaped the solu-
tions adopted.

1. Resource naming and location. The ability to
name computational and information resources in
a uniform, location-independent fashion and to lo-
cate resources in large internets based on user or
application-specified criteria.

2. Uniform programming environment. The ability
to construct parallel computations that refer to
and access diverse remote resources in a manner
that hides, to a large extent, issues of location,
resource type, network connectivity, and latency.

3. Autoconfiguration and resource characterization.
The ability to make sensible configuration choices
automatically and, when necessary, to obtain in-
formation about resource characteristics that can
be used to optimize configurations.

4. Distributed data services. The ability to access
conceptually “local” file systems in a uniform fash-
ion, regardless of the physical location of a com-
putation.

5. Trust management. Authentication, authoriza-
tion, and accounting services that operate even
when users do not have strong prior relationships
with the sites controlling required resources.

6. Confidentiality and integrity. The ability for a
computation to access, communicate, and process
private data securely and reliably on remote sites.

Solutions to these problems must be scalable to large
numbers of users and resources.

The fact that resources and users exist at different
sites and in different administrative domains introduces
another set of site-oriented requirements. Different
sites not only provide different access mechanisms for
their resources, but also have different policies govern-
ing their use. Because individual sites have ultimate
responsibility for the secure and proper use of their re-
sources, we cannot expect them to relinquish control
to an external authority. Hence, the problem of devel-
oping management systems for I-WAY–like systems is
above all one of defining protocols and interfaces that
support a negotiation process between users (or bro-
kers acting on their behalf) and the sites that control
the resources that users want to access.

The I-WAY testbed provided a unique opportunity
to deploy and study solutions to these problems in a
controlled environment. Because the number of users
(few hundred) and sites (around 20) were moderate, is-
sues of scalability could, to a large extent, be ignored.
However, the high profile of the project, its application
focus, and the wide range of application requirements
meant that issues of security, usability, and generality
were of critical concern. Important secondary require-
ments were to minimize development and maintenance
effort, both for the I-WAY development team and the
participating sites and users.

3.2 Design overview

In principle, it would appear that the requirements
just elucidated could be satisfied with purely software-
based solutions. Indeed, other groups exploring the
concept of a “metacomputer” have proposed software-
only solutions [3, 12]. A novel aspect of our approach
was the deployment of a dedicated I-WAY Point of
Presence, or I-POP, machine at each participating site.
As we explain in detail in the next section, these ma-
chines provided a uniform environment for deployment



of management software, and also simplified validation
of security solutions by serving as a “neutral” zone un-
der the joint control of I-WAY developers and local
authorities.

Deployed on these I-POP machines was a software
environment, I-Soft, providing a variety of services, in-
cluding scheduling, security (authentication and audit-
ing), parallel programming support (process creation
and communication), and a distributed file system.
These services allowed a user to log on to any I-POP
and then schedule resources on heterogeneous collec-
tions of resources, initiate computations, and commu-
nicate between computers and with graphics devices—
all without being aware of where these resources were
located or how they were connected.

In the next four sections, we provide a detailed dis-
cussion of various aspects of the I-POP and I-Soft de-
sign, treating in turn the I-POPs, scheduler, security,
parallel programming tools, and file systems. The dis-
cussion includes both descriptive material and a critical
presentation of the lessons learned as a result of I-WAY
deployment and demonstration at SC’95.

4 Point of Presence Machines

We have explained why management systems for I-
WAY–like systems need to interface to local manage-
ment systems, rather than manage resources directly.
One critical issue that arises in this context is the phys-
ical location of the software used to implement these
interfaces. For a variety of reasons, it is desirable that
this software execute behind site firewalls. Yet this
location raises two difficult problems: sites may, justi-
fiably, be reluctant to allow outside software to run on
their systems; and system developers will be required
to develop interfaces for many different architectures.

The use of I-POP machines resolve these two prob-
lems by providing a uniform, jointly administered phys-
ical location for interface code. The name is chosen by
analogy with a comparable device in telephony. Typ-
ically, the telephone company is responsible for, and
manages, the telephone network, while the customer
owns the phones and in-house wiring. The interface be-
tween the two domains lies in a switchbox which serves
as the telephone company’s “point of presence” at the
user site.

4.1 I-POP design

Figure 1 shows the architecture of an I-POP ma-
chine. It is a dedicated workstation, accessible via the
Internet and operating inside a site’s firewalls. It runs
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Figure 1. An I-WAY Point of Presence (I-POP)
machine

a standard set of software supplied by the I-Soft de-
velopers. An ATM interface allows it to monitor and,
in principle, manage the site’s ATM switch; it also al-
lows the I-POP to use the ATM network for manage-
ment traffic. Site-specific implementations of a sim-
ple management interface allow I-WAY management
systems to communicate with other machines at the
site to allocate resources to users, start processes on
resources, and so forth. The Andrew distributed file
system (AFS) [17] is used as a repository for system
software and status information.

Development, maintenance, and auditing costs are
significantly reduced if all I-POP computers are of the
same type. In the I-WAY experiment, we standardized
on Sun SPARCStations. A standard software config-
uration included SunOS 4.1.4 with latest patches; a
limited set of Unix utilities; the Cygnus release of Ker-
beros 4; AFS; the I-WAY scheduler; and various se-
curity tools such as Tripwire [15], TCP wrappers, and
auditing software. This software was maintained at a
central site (via AFS) and could be installed easily on
each I-POP; furthermore, the use of Tripwire meant
that it was straightforward to detect changes to the
base configuration.

The I-POP represented a dedicated point of pres-
ence for the I-WAY at the user site. It was jointly
managed: the local site could certify the I-POP’s soft-
ware configuration, and could disconnect the I-POP to
cut access to the I-WAY in the event of a security prob-
lem; similarly, the I-WAY security team could log ac-
cesses, check for modifications to its configuration, and
so forth. The dedicated nature of the I-POP meant
that its software configuration could be kept simple,
facilitating certification and increasing trust.



4.2 I-POP discussion

Seventeen sites deployed I-POP machines. For the
most part the effort required to install software, inte-
grate a site into the I-WAY network, and maintain the
site was small (in our opinion, significantly less than
if I-POPs had not been used). The fact that all I-
POPs shared a single AFS cell proved extremely useful
as a means of maintaining a single, shared copy of I-
Soft code and as a mechanism for distributing I-WAY
scheduling information. The deployment of I-POPs
was also found to provide a conceptual framework that
simplified the task of explaining the I-WAY infrastruc-
ture, both to users and to site administrators.

While most I-POPs were configured with ATM
cards, we never exploited this capability to monitor
or control the ATM network. The principal reason was
that at many sites, the ATM switch to which the I-
POP was connected managed traffic for both I-WAY
and non–I-WAY resources. Hence, there was a natu-
ral reluctance to allow I-POP software to control the
ATM switches. These authentication, authorization,
and policy issues will need to be addressed in future
I-WAY–like systems.

We note that the concept of a Point of Presence
machine as a locus for management software in a het-
erogeneous I-WAY–like system is a unique contribution
of this work. The most closely related development is
that of the ACTS ATM Internetwork (AAI) network
testbed group: they deployed fast workstations at each
site in a Gigabit testbed, to support network through-
put experiments [8].

5 Scheduler

I-WAY–like systems require the ability to locate
computational resources matching various criteria in
a heterogeneous, geographically distributed pool. As
noted above, political and technical constraints make
it infeasible for this requirement to be satisfied by a
single “I-WAY scheduler” that replaces the schedulers
that are already in place at various sites. Instead,
we need to think in terms of a negotiation process by
which requests (ideally, expressible in a fairly abstract
form, e.g., “N Gigaflops,” or “X nodes of type Y, with
maximum latency Z”) are handled by an independent
entity, which then negotiates with the site schedulers
that manage individual resources. We coin the term
Computational Resource Broker (CRB) to denote this
entity. In an Internet-scale distributed computing sys-
tem, we can imagine a network of such brokers. In the
I-WAY, one was sufficient.

5.1 Scheduler design

The practical realization of the CRB concept re-
quires the development of fairly general user-to-CRB
and CRB-to-resource scheduler protocols. Time con-
straints in the I-WAY project limited what we could
achieve in each area. On the user-to-CRB side, we
allowed users to request access only to predefined dis-
joint subsets of I-WAY computers called virtual ma-
chines ; on the CRB-to-resource scheduler side, we re-
quired sites to turn over scheduling control of specified
resources to the I-WAY scheduler, which would then
use the resources to construct virtual machines. In
effect, our simple CRB obtained access to a block of
resources, which it then distributed to its users.

The scheduler that was defined to meet these re-
quirements provided management functions that al-
lowed administrators to configure dedicated resources
into virtual machines, obtain status information, and
so forth; and user functions that allowed users to list
available virtual machines and to determine status, list
queued requests, or request time on a particular virtual
machine.

The scheduler implementation was structured in
terms of a single central scheduler and multiple lo-
cal scheduler daemons. The central scheduler dae-
mon maintained the queues and tables representing the
state of the different virtual machines, and was respon-
sible for allocating time on these machines on a first-
come, first-served basis. It also maintained state infor-
mation on the AFS file system, so as to provide some
fault tolerance in the case of daemon failures. The cen-
tral scheduler communicated with local scheduler dae-
mons, one per I-POP, to request that operations be
performed on particular machines. Local schedulers
performed site-dependent actions in response to three
simple requests from the central scheduler.

• Allocate resource. This request enables a local
scheduler to perform any site-specific initialization
required to make a resource usable by a speci-
fied user, for example, by initializing switch con-
figurations so that processors allocated to a user
can communicate, and propagating configuration
data.

• Create process. This request asks a local sched-
uler to create a process on a specified processor,
as a specified user: it implements, in effect, a Unix
remote shell, or rsh, command. This provides
the basic functionality required to initiate remote
computations; as we discuss below, it can be used
directly by a user, and is also used to implement
other user-level functions such as ixterm (start an



X-terminal process on a specified processor), ircp
(start a copy process on a specified processor), and
impirun (start an MPI program on a virtual ma-
chine).

• Deallocate resource. This request enables a local
scheduler to perform any site-specific operations
that may be required to terminate user access to a
resource: for example, disabling access to a high-
speed interconnect, killing processes, or deleting
temporary files.

5.2 Scheduler discussion

The basic scheduler structure just described was de-
ployed on a wide variety of systems (interfaces were
developed for all I-WAY resources) and was used suc-
cessfully at SC’95 to schedule a large number of users.
Its major limitations related not to its basic structure
but to the too-restrictive interfaces between user and
scheduler and scheduler and local resources.

The concept of using fixed virtual machines as
schedulable units was only moderately successful. Of-
ten, no existing virtual machine met user requirements,
in which case new virtual machines had to be config-
ured manually. This difficulty would have been avoided
if even a very simple specification language that allowed
requests of the form “give me M nodes of type X and
N nodes of type Y ” had been supported. This feature
could easily be integrated into the existing framework.
The development of a more sophisticated resource de-
scription language and scheduling framework is a more
difficult problem and will require further research.

A more fundamental limitation related to the often
limited functionality provided by the non–I-WAY re-
source schedulers with which local I-WAY schedulers
had to negotiate. Many were unable to inquire about
completion time of scheduled jobs (and hence expected
availability of resources) or to reserve computational
resources for specified timeslots; several sites provided
timeshared rather than dedicated access. In addition,
at some sites, networking and security concerns re-
quired that processors intended for I-WAY use be spe-
cially configured. We compensated either by dedicat-
ing partitions to I-WAY users or by timesharing rather
than scheduling. Neither solution was ideal. In par-
ticular, the use of dedicated partitions meant that fre-
quent negotiations were required to adapt partition size
to user requirements, and that computational resources
were often idle. The long-term solution probably is
to develop more sophisticated schedulers for resources
that are to be incorporated into I-WAY–like systems.
However, applications also may need to become more

flexible about what type and “quality” of resources
they can accept.

We note that while many researchers have ad-
dressed problems relating to scheduling computational
resources in parallel computers or local area networks,
few have addressed the distinctive problems that arise
when resources are distributed across many sites. Le-
gion [13] and Prospero [18] are two exceptions. In par-
ticular, Prospero’s “system manager” and “node man-
ager” processes have some similarities to our central
and local managers. However, neither system supports
interfaces to other schedulers: they require full control
of scheduled resources.

6 Security

Security is a major and multifaceted issue in I-
WAY–like systems. Ease-of-use concerns demand a
uniform authentication environment that allows a user
to authenticate just once in order to obtain access to
geographically distributed resources; performance con-
cerns require that once a user is authenticated, the au-
thorization overhead incurred when accessing a new
resource should be small. Both uniform authentication
and low-cost authorization are complicated in scalable
systems, because users will inevitably need to access re-
sources located at sites with which they have no prior
trust relationship.

6.1 Security design

When developing security structures for the I-WAY
software environment, we focused on providing a uni-
form authentication environment. We did not address
in any detail issues relating to authorization, account-
ing, or the privacy and integrity of user data. Our goal
was to provide security at least as good as that existing
at the I-WAY sites. Since all sites used clear-text pass-
word authentication, this constraint was not especially
stringent. Unfortunately, we could not assume the ex-
istence of a distributed authentication system such as
Kerberos (or DCE, which uses Kerberos) because no
such system was available at all sites.

Our basic approach was to separate the authenti-
cation problem into two parts: authentication to the
I-POP environment and authentication to the local
sites. Authentication to I-POPs was handled by using
a telnet client modified to use Kerberos authentica-
tion and encryption. This approach ensured that users
could authenticate to I-POPs without passing pass-
words in clear text over the network. The scheduler
software kept track of which user id was to be used
at each site for a particular I-WAY user, and served



as an “authentication proxy,” performing subsequent
authentication to other I-WAY resources on the user’s
behalf. This proxy service was invoked each time a
user used the command language described above to
allocate computational resources or to create processes.

The implementation of the authentication proxy
mechanism was integrated with the site-dependent
mechanisms used to implement the scheduler inter-
face described above. In the I-WAY experiment, most
sites implemented all three commands using a privi-
leged (root) rsh from the local I-POP to an associated
resource. This method was used because of time con-
straints and was acceptable only because the local site
administered the local I-POP, and the rsh request was
sent to a local resource over a secure local network.

6.2 Security discussion

The authentication mechanism just described
worked well in the sense that it allowed users to au-
thenticate once (to an I-POP) and then access any I-
WAY resource to which access was authorized. The
“authenticate-once” capability proved to be extremely
useful and demonstrated the advantages of a common
authentication and authorization environment.

One deficiency of the approach related to the de-
gree of security provided. Root rsh is an unaccept-
able long-term solution even when the I-POP is totally
trusted, because of the possibility of IP-spoofing at-
tacks. We can protect against these attacks by using
a remote shell function that uses authentication (for
example, one based on Kerberos [20] or PGP, either
directly or via DCE). For similar reasons, communica-
tions between the scheduling daemons should also be
authenticated.

A more fundamental limitation of the I-WAY au-
thentication scheme as implemented was that each user
had to have an account at each site to which access was
required. Clearly, this is not a scalable solution. One
alternative is to extend the mechanisms that map I-
WAY user ids to local user ids, so that they can be
used to map I-WAY user ids to preallocated “I-WAY
proxy” user ids at the different sites. The identity of
the individual using different proxies at different times
could be recorded for audit purposes. However, this
approach will work only if alternative mechanisms can
be developed for the various functions provided by an
“account.” The formal application process that is typ-
ically associated with the creation of an account serves
not only to authenticate the user but also to estab-
lish user obligations to the site (e.g., “no commercial
work” is a frequent requirement at academic sites) and
to define the services provided by the site to the user

(e.g., backup policies). Proxy accounts address only
the authentication problem (if sites trust the I-WAY).
Future approaches will probably require the develop-
ment of formal representations of conditions of use, as
well as mechanisms for representing transitive relation-
ships. (For example, a site may agree to trust any user
employed by an organization with which it has formal-
ized a trust relationship. Similarly, an organization
may agree on behalf of its employees to obligations as-
sociated with the use of certain resources.)

7 Parallel Programming Tools

A user who has authenticated to an I-POP and ac-
quired a set of computational resources then requires
mechanisms for creating computations on these re-
sources. At a minimum, these mechanisms must sup-
port the creation of processes on different processors
and the communication of data between these pro-
cesses. Because of the complexity and heterogeneity
of I-WAY–like environments, tools should ideally also
relieve the programmer of the need to consider low-
level details relating to network structure. For exam-
ple, tools should handle conversions between different
data representations automatically, and be able to use
different protocols when communicating within rather
than between parallel computers. At the same time,
the user should be able to obtain access to low-level in-
formation (at an appropriate level of abstraction) when
it is required for optimization purposes.

7.1 Parallel tools design

The irsh and ixterm commands described above al-
low authenticated and authorized users to access, and
initiate computation on, any I-WAY resource. Several
users relied on these commands alone to initiate dis-
tributed computations that then communicated by us-
ing TCP/IP sockets. However, this low-level approach
did not hide (or exploit) any details of the underlying
network.

To support the needs of users desiring a higher-
level programming model, we adapted the Nexus mul-
tithreaded communication library [10] to execute in an
I-WAY environment. Nexus supports automatic con-
figuration mechanisms that allow it to use information
contained in resource databases to determine which
startup mechanisms, network interfaces, and protocols
to use in different situations. For example, in a vir-
tual machine connecting IBM SP and SGI Challenge
computers with both ATM and Internet networks,
Nexus uses three different protocols (IBM proprietary
MPL on the SP, shared-memory on the Challenge, and



TCP/IP or AAL5 between computers), and selects ei-
ther ATM or Internet network interfaces, depending on
network status. We modified the I-WAY scheduler to
produce appropriate resource database entries when a
virtual machine was allocated to a user. Nexus could
then use this information when creating a user compu-
tation. (Nexus support for multithreading should, in
principle, also be useful—for latency hiding—although
in practice it was not used for that purpose during the
I-WAY experiment.)

Several other libraries, notably the CAVEcomm vir-
tual reality library [7] and the MPICH implementation
of MPI, were extended to use Nexus mechanisms [9].
Since MPICH is defined in terms of an “abstract point-
to-point communication device,” an implementation of
this device in terms of Nexus mechanisms was not
difficult. Other systems that use Nexus mechanisms
include the parallel language CC++ and the paral-
lel scripting language nPerl, used to write the I-WAY
scheduler.

7.2 Parallel tools discussion

The I-WAY experiment demonstrated the advan-
tages of the Nexus automatic configuration mecha-
nisms. In many cases, user were able to develop appli-
cations with high-level tools such as MPI, CAVEcomm,
and/or CC++, without any knowledge of low-level de-
tails relating to the compute and network resources
included in a computation.

A significant difficulty revealed by the I-WAY exper-
iment related to the mechanisms used to generate and
maintain the configuration information used by Nexus.
While resource database entries were generated auto-
matically by the scheduler, the information contained
in these entries (such as network interfaces) had to be
provided manually by the I-Soft team. The discov-
ery, entry, and maintenance of this information proved
to be a significant source of overhead, particularly in
an environment in which network status was changing
rapidly. Clearly, this information should be discovered
automatically whenever possible. Automatic discov-
ery would make it possible, for example, for a parallel
tool to use dedicated ATM links if these were available,
but to fall back automatically to shared Internet if the
ATM link was discovered to be unavailable. The devel-
opment of such automatic discovery techniques remains
a challenging research problem.

The Nexus communication library provides mecha-
nisms for querying the resource database, which users
could have used to discover some properties of the ma-
chines and networks on which they were executing. In
practice, few I-WAY applications were configured to

use this information; however, we believe that this sit-
uation simply reflects the immature state of practice
in this area, and that users will soon learn to write
programs that exploit properties of network topology,
etc. Just what information users will find useful re-
mains to be seen, but presumably enquiry functions
that reveal the number of machines involved in a com-
putation and the number of processors in each ma-
chine would definitely be required. One application
that could certainly benefit from access to informa-
tion about network topology is the I-WAY MPI im-
plementation. Currently, this library implements col-
lective operations using algorithms designed for mul-
ticomputer environments; presumably, communication
costs can often be reduced by using communication
structures that avoid intermachine communication.

8 File Systems

I-WAY–like systems introduce three related require-
ments with a file-system flavor. First, many users
require access to various status data and utility pro-
grams at many different sites. Second, users running
programs on remote computers must be able to ac-
cess executables and configuration data at many dif-
ferent sites. Third, application programs must be able
to read and write potentially large data sets. These
three requirements have very different characteristics.
The first requires support for multiple users, consis-
tency across multiple sites, and reliability. The second
requires somewhat higher performance (if executables
are large), but does not require support for multiple
users. The third requires, above all, high performance.
We believe that these three requirements are best sat-
isfied with different technologies.

The I-Soft system supported only the first of these
requirements. An AFS cell (with three servers for reli-
ability) was deployed and used as a shared repository
for I-WAY software, and also to maintain scheduler sta-
tus information. The AFS cell was accessible only from
the I-POPs, since many I-WAY computers did not sup-
port AFS, and when they did, authentication problems
made access difficult. The only assistance provided for
the second and third requirements was a remote copy
(ircp) command that supported the copying of data
from one machine to another.

While the AFS system was extremely useful, the
lack of distributed file system support on I-WAY nodes
was a serious deficiency. Almost all users found that
copying files and configuration data to remote sites
was an annoyance, and some of the most ambitious
I-WAY applications had severe problems postprocess-
ing, transporting, and visualizing the large amounts of



data generated at remote sites. Future I-WAY–like sys-
tems should support something like AFS on all nodes,
and if necessary provide specialized high-performance
distributed data access mechanisms for performance-
critical applications.

9 Related Work

In preceding sections, we have referred to a num-
ber of systems that provide point solutions to problems
addressed in I-Soft development. Here, we review sys-
tems that seek to provide an integrated treatment of
distributed system issues, similar or broader in scope
than I-Soft.

The Distributed Computing Environment (DCE)
and Common Object Request Broker Architecture
(CORBA) are two major industry-led attempts to pro-
vide a unifying framework for distributed computing.
Both define (or will define in the near future) a stan-
dard directory service, remote procedure call (RPC),
security service, and so forth; DCE also defines a
Distributed File Service (DFS) derived from AFS. Is-
sues such as fault tolerance and interoperability be-
tween languages and systems are addressed. In gen-
eral, CORBA is distinguished from DCE by its higher
level, object-oriented architecture. Some DCE mecha-
nisms (RPC, DFS) may well prove to be appropriate
for implementing I-POP services; CORBA directory
services may be useful for resource location. However,
both DCE and CORBA appear to have significant de-
ficiencies as a basis for application programming in I-
WAY–like systems. In particular, the remote procedure
call is not well-suited to applications in which perfor-
mance requirements demand asynchronous communi-
cation, multiple outstanding requests, and/or efficient
collective operations.

The Legion project [13] is another project develop-
ing software technology to support computing in wide-
area environments. Issues addressed by this wide-
reaching effort include scheduling, file systems, secu-
rity, fault tolerance, and network protocols. The I-Soft
effort is distinguished by its focus on high-performance
systems and by its use of I-POP and proxy mechanisms
to enhance interoperability with existing systems.

10 Conclusions

We have described the management and application
programming environment developed for the I-WAY
distributed computing experiment. This system in-
corporates a number of ideas that, we believe, may
be useful in future research and development efforts.

In particular, it uses point of presence machines as a
means of simplifying system configuration and man-
agement, scheduler proxies for distributed scheduling,
authentication proxies for distributed authentication,
and network-aware tools that can exploit configuration
information to optimize communication behavior. The
I-Soft development also took preliminary steps towards
integrating these diverse components, showing, for ex-
ample, how a scheduler can provide network topology
information to parallel programming tools.

The SC’95 event provided an opportunity for intense
and comprehensive evaluation of the I-Soft and I-POP
systems. I-Soft was a success in that most applications
ran successfully at least some of the time; the network
rather than the software proved to be the least reliable
system component. Specific deficiencies and limita-
tions revealed by this experience have been detailed in
the text. More generally, we learned that system com-
ponents that are typically developed in isolation must
be more tightly integrated if performance, reliability,
and usability goals are to be achieved. For example,
resource location services in future I-WAY–like systems
will need low-level information on network characteris-
tics; schedulers will need to be able to schedule network
bandwidth as well as computers; and parallel program-
ming tools will need up-to-date information on network
status.

We are now working to address some of the crit-
ical research issues identified in I-Soft development.
The Globus project, involving Argonne, Caltech, the
Aerospace Corporation, and Trusted Information Sys-
tems, is addressing issues of resource location (com-
putational resource brokers), automatic configuration,
scalable trust management, and high-performance dis-
tributed file systems. In addition, we and others are
defining and constructing future I-WAY–like systems
that will provide further opportunities to evaluate man-
agement and application programming systems such as
I-Soft.
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