Performance Predictions for a Numerical Relativity Package

in Grid Environments

Matei Ripeanu' Adriana Iamnitchi' Tan Foster!?

'Department of Computer Science
The University of Chicago

2 Mathematics and Computer Science Division

Argonne National Laboratory

Abstract

The Cactus software package is suitable for a class of scientific applications that are tightly coupled,
have regular space decompositions, and involve huge memory and processor time requirements. Cactus
has proved to be a valuable tool for astrophysicists, who first initiated its development. However, today’s
fastest supercomputers are not powerful enough to perform realistic large-scale astrophysics simulations
with Cactus. Instead, we must turn to innovative resource environments—in particular, computational
Grids—to satisfy this need for computational power. Our paper addresses issues related to the execution
of applications such as Cactus in Grid environments. We focus on two types of Grids: a set of geo-
graphically distributed supercomputers and a collection of one million Internet-connected workstations.
We study the application performance on traditional systems, validate the theoretical results against

experimental data, and predict performance in the two new environments.

1 Introduction

Historically, large scientific simulations have been performed exclusively on dedicated supercomputer systems.
In many cases, however, a single supercomputer is not capable of simulating a real problem in reasonable
time. A solution to this huge need for resources is provided by Grid computing [10], a new field that is
distinguished from conventional distributed computing by its focus on the large-scale sharing of Internet-
connected resources. Computational Grids are collections of shared resources customized to the needs of
their users: they may be collections of resources for data-intensive applications, collections of powerful

supercomputers, or simply opportunistic collections of idle workstations. To facilitate access to a potentially

very large number of resources, computational Grids provide the necessary tools for resource discovery,
resource allocation, security, and system monitoring.

Experiments on large pools of Internet-connected resources have been successful. For example, the
recent, solution of a decades-old quadratic assignment problem on 1,000 computers distributed across the
United States and Europe [4] demonstrated the benefits of using pooled environments. Because of the
characteristics of this new environment, however, not all applications seem at first sight to be capable of
exploiting it fully. One such example is the class of tightly coupled, synchronous applications, which is
sensitive to communication characteristics.

We evaluate the performance of a tightly coupled scientific application, a classic 5-point stencil computa-
tion, on two computational Grids: a pool of geographically distributed supercomputers (like those presented
in [5]) and a pool of one million workstations [8]. Our goals are to determine what factors limit performance,
to analyze the benefits of different algorithm tunings, and to design a performance prediction model.

To better understand our test application (presented in Section 2), we first study its behavior in sequential
execution (Section 3.1). We then use the sequential execution measurements (Section 3.2) for building and
validating the parallel performance model for two different supercomputer architectures, one based on shared
memory and the other on message passing. The performance model, validated on supercomputers, is later
adapted to a pool of supercomputers (Section 4.1) and on Internet computing (Section 4.2). We predict the
application efficiency in both environments and study the factors that limit performance. We also show that

existing application tunings are ineffective with currently available wide-area networks.

2 Application Description: Cactus Code

Cactus [1] was originally developed as a framework for finding numerical solutions to the Einstein equations
of general relativity and has since evolved into a general-purpose, open source problem solving environment
that provides a unified, modular, and parallel computational framework for scientists and engineers.

The name Cactus comes from the application design: a central core (flesh) connects to application mod-
ules (thorns) through an extensible interface. Thorns can implement specialized scientific or engineering
applications and more standard computational tasks, such as parallel I/O, data distribution, and check-
pointing. Parallelism and portability are achieved by hiding system- or library-dependent features under
thorn abstraction APIs. For example, the abstraction of parallelism allows one to plug in different thorns
that implement an MPI-based unigrid domain decomposition with very general ghost-zone capabilities, or an
adaptive mesh domain decomposer, or a PVM version of the same libraries. A properly prepared scientific
application thorn will work without changes with any of these parallel domain decomposition thorns, which

were developed to support new software or hardware technologies.

We analyze an application that simulates the collision of two black holes. As in most astrophysics
applications, the computational core of this simulation is a system of dozens of coupled, nonlinear Einstein
equations. They are characterized by a high computation/communication ratio: the hyperbolic equations
contain thousands of terms to be evaluated, while the only communications required are in computing finite
differences for numerical derivatives.

A basic module implements unigrid domain decomposition. It decomposes a global domain over processors
and places an overlap region (referred to as a ghost-zone) on each processor. For each time step, each processor
first updates its local interior grid points, then synchronizes the boundary values. This communication
pattern allows us to trade communication costs for replicated computation. Specifically, with increased
ghost-zone size, the communication granularity increases significantly at the cost of replicated computation
and increased memory usage. Thus, the number of messages (and hence the communication latency costs)
is reduced, while the total amount of data exchanged remains constant. We shall see later the costs and

benefits of this approach on different architectures.

3 Analysis of the Application Execution on Traditional Architec-
tures

To better understand the characteristics of our application, we analyze its sequential and parallel execution
on two supercomputers: a shared-memory machine (Silicon Graphics Origin2000) and a message-passing
supercomputer (8-way SMP IBM SP, (2-switch). The sequential execution analysis is relevant not only for
obtaining performance numbers (e.g., execution time per grid point) used later in the parallel model, but
also for understanding and avoiding unexpected behavior on multiple processors.

We then build a model for the parallel execution and validate it against real data. We also investigate
the influence of ghost-zone size and other parameters on performance. We adapt the parallel model in
Section 4 for predicting performance in the two computational Grids considered: a pool of Internet-connected

supercomputers and a pool of a million Internet-connected workstations.

3.1 Sequential Execution

From its execution on the two machines, we obtain data about the simulation’s memory usage, effective
cache usage, and execution time per grid point. This data is then used to validate our theoretical model.

We present here only those numeric results relevant for our study:

1. Memory usage: Memory requirements are the biggest constraint for running high resolution simula-

tions. We determined the maximum number of grid points that can be handled by one processor with

its associated memory without severe performance penalties. For this, we first found that memory
requirements are a linear function of the number of grid points of the locally allocated problem. For a

3D space of z X y x z grid points, memory requirements are Memse, = 16 + 512 x 10~%zyz (MB).

2. Execution time: In our test application the amount of computation per grid point is constant and
independent of the location of the grid point in the problem space. Initialization costs are negligible
compared with the total computation over a relatively large number of iterations. Hence, the execution
time is proportional to the number of grid points: T,q = t.xyz. We validated this model for various
values of z, y and z and determined that ¢. = 17us/grid point on a RISC10000 processor (250 MHz,
32 KB data and 32 KB instruction primary cache, 4MB secondary cache) and t. = 24us/grid point
on a Power3 processor (222 MHz, 64 KB shared data and instruction primary cache, 4 MB secondary

cache).

3. Cache usage: Figure 1 reveals the sensitivity of the application performance to the problem space

shape.

3

—— O2K(64x64x2)
SP (64x64x2)
O2K(L61Z)
O2K(4LXALNZ)
SP(61X61x2)

5
8

2
8

Time per gridpoint per iteration (microsec)
microsec. per gridpoint per iteration

S5 8885 I L IBHLEIBBIREEBBEREE L8 2L

Problem shape (X x Y x 2) Grid points on Z axis

Figure 1: Execution time (in ps) per grid point on Figure 2: Execution time (in us) per grid point on
RISC10000. The problem size (number of grid points) is RISC10000 and Power3 processors. The = and y dimen-

(approximately) constant, but the shape varies. sions of the problem space are constant, while z varies.

To explore this behavior further, we traced execution time per grid point, varying z and keeping z
and y fixed (Figure 2). For most values of and y the execution time is in the expected range. For
some specific and y values, however, the execution time grows strongly on both architecture. Using
hardware counters, we determined that this behavior is generated by cache conflicts: the pattern of
larger execution time when z is a multiple of 32 is due to secondary cache misses, while primary cache
conflicts generate the smaller peaks when z is a multiple of 8. In our subsequent tests, we tried to

avoid configurations that lead to inefficient cache usage.

3.2 Parallel Execution

Communication among processors differentiates the parallel from the sequential algorithm. The use of ghost-
zones decreases the number of messages exchanged, but only at the cost of replicated work: the grid points
within a ghost-zone are computed multiple times, on different processors.

In the rest of this section we analyze communication costs and execution time. We present the efficiency
of the parallel algorithm as demonstrated by the experiments, and we explain the differences from our
theoretical model. We observe that on the architectures considered, increasing the size of the ghost-zones

does not improve performance.

3.2.1 Communication Costs

The values corresponding to each grid point in the problem space are updated with each iteration based on
values of the neighboring grid points. Therefore, neighboring processors communicate their border values at
each iteration. In order to reduce the number of messages exchanged, larger chunks of data can be sent at
once. A ghost-zone of depth g > 1 decreases the frequency of messages from 1 message per iteration to 1
message every g iterations. Let us consider g, = g, = g, = g for simplicity, although Cactus does support
different, ghost-zone sizes for each direction.

For brevity, we analyze only the 3D problem decomposition on a 3D processor topology: each processor
is allocated a volume of grid points and has neighbors on all three axes. However, depending on its location,
a processor has 6, 5, 4, or 3 neighbors. To model the location of a processor with respect to its neighboring
processors, we use the notation N} € {1,2}, which denotes the number of neighbors of the processor p on
the i axis (¢ € {z,y,z}). For example, for a corner processor in a 3D topology, N, = N, = N, = 1.

Over I iterations, for a ghost-zone size of g and § bytes sent per grid point, the amount of data (in bytes)
sent by a processor is:

V= g x L = I6(Nyyz + Nyxz + N, zy). (1)

We consider a simple latency/bandwidth communication cost model: the cost of sending a message of
length L between any two processors is t,,sq = t5 + L X t,,, where ¢, is the message start-up time and ., is
the cost for sending one byte of data. This model does not account for the complex interconnection network
that modern supercomputers use, but we chose it for its simplicity. We shall discuss later the implications
of this choice.

During the execution of I iterations, each processor sends and receives é(NI + N, + N.) messages. If

the link connecting any two neighbors is not shared, the total time spent communicating is

I
Teomm = —(Nz + Ny + N)ts + 2t (Noyz + Nyxz + Nay)d (2)
g

3.2.2 Execution Time

Each processor spends its time on useful work, communication (2), and redundant work. We ignore idle
time due to synchronization, assuming perfect load balance (identical processors and identical work load per
Processor).

Redundant work is the work done on the grid points of the ghost-zones. In every iteration i < I replicated
work is done on (¢ modulo g) lines of the ghost-zone. Therefore, in each of the é phases replicated work is

done for Z?;llj(ﬂ?y +yz+x2) = g(ggl)

(zy + yz + zz) grid points. For 3D decomposition, because each

processor has two ghost-zones on each direction, the time spent on replicated work over I iterations is

I -1
=L 991
g

> (zy +yz + x2) = It.(g — 1)(2y + y2z + 22).

(3)

For z = y = z and a regular 3D decomposition, the total overhead time over I iterations is

I
Toverhead = Teomm +Tr = 65753 + 12[tw3726 + 3[tc(g — 1)5[72.

3.2.3 Optimal Ghost-Zone Size

We determined the optimal ghost-zone size for which the overhead introduced by parallelism is minimum.

1

Toverhead (4) is minimum when gpin = 2

%. However, if g > 1, then = < 2% For a realistic problem size
(z in the range 50 to 100 grid points, limited by the available memory) and for s, t. of the two supercomputers
considered, this condition is not met. Therefore the execution time increases with increasing ghost-zone size.

We have validated this conclusion by measuring the execution time on eight processors on an Origin2000

and IBM SP with different ghost-zone sizes. The experimental data (Figure 3) confirms our result: execution

time grows with ghost-zone size on both supercomputers.

100%
> 86pD—v—Fr—"1+—"-—F"FT —~
3 v = B
c 84} - Origin 2000 —2— | > 95% 7
o >
= - c
© - (3]
g 82r 7 0 90% A
= y=a =
5 P m
o 85% -
£ —=—IBM SP - Model
5 80% - = IBM SP - Real
3 o O2K - Real
] 04
3 75% —e— 02K - Model
]
& 70% : :
% 7 ! ! ! ! ! ! 2 4 8 16 32 64 128 256
1 2 3 4 5 5 7 8 # processors
Ghost zone depth(points)
Figure 3: Average time per iteration as a function of Figure 4: Efficiency: constant problem size per proces-

ghost-zone size.

sor, variable number of processors.

The explanation for this result is that latency-related costs are smaller than redundant computation costs.
The use of larger ghost-zones to increase performance is justifiable on architectures where i— > 5000. Since
t. is always on the order of tens of microseconds, ghost-zones with g > 1 make sense only in environments

with very large (more than 100 ms) latency.

3.2.4 Efficiency

We used efficiency values to validate our performance models. For g = 1, P processors, and a problem space

of 2% grid points per processor, maximum efficiency is

Toey 1

- 6t 128,68 °
Px Tpm“ L+ z3t. zte

Enae = (5)

Equation (5), in which predicted efficiency is independent of the number of processors and therefore of
the number of data flows, shows the limitations of the simplified communication model used: the model
ignores the fact that links within a supercomputer’s interconnection network are shared and assumes that
interconnections switches scale linearly. For a more accurate prediction, we used a competition for bandwidth
model [7] adapted to the interconnection characteristics of the two supercomputers: we identified shared
hardware components, computed the number of competing flows, and used manufacturer’s performance
specifications. For these experiments we used a memory-constrained model: the problem size per processor
remains constant while the number of processors increases up to 256. Figure 4 compares experimental
results with our predictions. Although our communication models are simplistic, the test results match the
predictions within a 10% range. Other models, such as the hyperbolic model in [15], could lead to more

accurate predictions.

4 Predicted Performance in a Grid Environment

We considered two different computational Grids. The first was a collection of supercomputers connected by
a Grid middleware infrastructure such as the Globus toolkit [9]. We used this existing computational Grid
to validate our approach on performance predictions. The second Grid environment we analyzed was a very

large collection of workstations likely to be used in the near future.

4.1 Performance on a Pool of Supercomputers

Our objective was to predict Cactus performance on a pool of supercomputers. [5] presents an experiment

where a small number of processors from supercomputers located thousands of miles apart are coupled

together to perform a Cactus simulation. We assumed a similar architecture with potentially tens of super-
computers each providing hundreds of processors.

We predicted the application efficiency on this architecture and studied the application and environment
characteristics that limit performance. We also investigated ways to increase performance by tuning applica-
tion parameters and improving the code. For example, we evaluated the benefits of using larger ghost-zone
size for intersupercomputer communication to offset latency costs, while maintaining minimal ghost-zone
size for intrasupercomputer communication.

We made the following assumptions and notations:

e Greek letters describe functions/values at supercomputer level while the corresponding Latin alphabet
letters describe values at processor level. For example, O.omm is the communication time between

supercomputers, while T, is the communication time between processors.

e Supercomputers are identical, with the same number of processors and computational power. This
assumption is realistic because a set of heterogeneous machines can behave in a 1D decomposition as
a set of identical processors if loaded proportionally to their computational powers. For this reason
we added into Cactus an irregular data distribution mechanism and implemented the additional load

balancing algorithms.

e The problem space is decomposed using a 1D decomposition among supercomputers and a 3D decom-
position among the processors of each supercomputer. The choice of 1D decomposition was motivated
by the limited number of supercomputers that are realistically likely to be simultaneously available to

a group in the near future. However, it is easy to extend the model to a 2D or 3D decomposition.

e Supercomputers are connected through identical network links to the Internet. We assumed the traffic

between any two supercomputers to be limited by these links and not by the Internet backbone.

e We used the same linear model for communication costs: the cost of sending a message of L bytes
from a supercomputer to another is 65 + 6, L seconds. We assumed that the communication cost of

transferring data over a link is independent of the number of concurrent TCP connections.

e Each supercomputer is assigned a grid space of size X xY x Z. Since we assumed a 3D regular partition

. . . X Y VA . .
at supercomputer level, each processor was assigned a grid space of size = X —= X == (which is
p p : p g grid sp 75 X 7 X 75 (

x Xy x z). We assumed S supercomputers each having P processors. We assumed ghost-zone depth G
for intersupercomputer communication and ghost-zone depth g for intrasupercomputer communication.
Inside supercomputers, the total number of grid points per processor is constant, regardless of the size

of the allocated ghost-zone. This ensures load balance at the processor level.

To build the performance model for the architecture described above, we assumed that each supercom-
puter is a computational entity that obeys the performance model described in Section 3.2. Hence, we
modeled a supercomputer as a “faster” processor with a “big” associated memory. This superprocessor is
characterized by the time needed to update one grid point 8. (the equivalent of ¢. presented in Section 3.2).

Execution Time. Using the model described in Section 3.2.2, we calculated the time spent for useful

work on a problem of size X X Y X Z on a supercomputer with P processors as

Oseq = 0. XY Z. (6)
The same amount of time is spent by each processor solving its part of the problem 3%/13 X 3%/]3 X 3%/13 but

working in parallel with efficiency E:

From (6) and (7), we have

be =25 (8)

Communication Costs. For each message sent from a supercomputer to another, communication time
is Oumsg = 05 + 0, L. Over I iterations there are é communication phases, in which each supercomputer

sends two messages of L = GXY§ bytes each. Incoming and outgoing messages share the communication

link. Therefore, the time spent communicating is

216,

I
Ocomm = 7 X 2(6 + WuGXY) = + 416, XY§. (9)

Replicated Work. Consider that each processor has ghost-zones of depth g and each supercomputer
has ghost-zones of depth G. This is meant to accommodate the variation in communication costs (inter-
supercomputer vs. intrasupercomputer). Since replicated time on the processor ghost-zones (of size g) is
already included in the model through the efficiency value E, the time spent by each supercomputer on
doing replicated work is a function of (G — g). In each iteration replicated work is done on (G — ¢) XY grid
points. Each supercomputer has at most two ghost-zones. The total time spent doing replicated work over
I iterations is therefore

0, = 2I6.(G —)XY (10)

For S identical supercomputers with P processors each and a problem space of SX x Y x Z grid points,

each supercomputer has to solve a X x Y x Z grid point problem. Total execution time for [iterations is

20,1
Opar = Oseq + Ocomm + Op = 10, XY Z + 2 + 410, XY S + 20.1(G — g) XY (11)

4.1.1 Optimal Ghost-Zone Size

3,
From (11) maximum efficiency E' is obtained for Gop = 14/ w = - \31/1_3\ / z— This validates our intuition
that larger intersupercomputer communication latency requires larger ghost-zones while slower processors
or larger problems would require smaller ghost-zones. For 6, = 35ms (usual value for coast-to-coast links),

supercomputer efficiency E = 90%, t. ~ 20us, P = 1024 and x = y = z = 60 grid points per processor, the

maximum overall efficiency is obtained for G,p: = 2.

0.9 T T T T T T
Replicated work ———
0.8 - .

& Communication (latency) --------

= 071 B

=)

® 06 _ .

o > 06F . e .

g 05 - B s T

2 05 F Tt E

2 04} R e f T

£ T o4l I

5 - - .

g’ 03 0.3 | E
02 E ’ L
0.1 - B 01 | R -

0 e b Lo L L 0 I I I I I I I I I
2 4 6 8 10 12 14 100 200 300 400 500 600 700 800 900 1000
Ghostzone size (points) Processors per supercomputer

Figure 5: Components of parallel overhead time. Giga- Figure 6: Cactus achievable efficiency on a pool of su-

bit links connect supercomputers to the Internet. percomputers with in-place networks.

As Figure 5 shows, the overhead due to replicated work (©,.) or to latency is small when compared to
the overhead introduced by network bandwidth. In fact, the current Cactus implementation does not allow
G # g. We introduced a different ghost-zone size for inter-computer communication to evaluate its potential
benefits for the overall performance. The results presented suggest that using different ghost-zones sizes for
supercomputer communication does increase overall efficiency. However, Figure 5 shows that more than 95%
overhead is due to limited network bandwidth even in the optimistic scenario when each supercomputer has
1 gigabit connection to the outside world. We would need links one order of magnitude faster to obtain

significant savings by allowing deeper ghost-zones.

4.1.2 Predicted Efficiency

In our model the overall efficiency is the product of the efficiency of a single supercomputer and the efficiency

of the collection of supercomputers. For G = g = 1, we have

Ouey _qy L, W 46,6VF°

overall € S x Opar (E a:yztc 2t

). (12)
We validated (12) with two experiments executed on supercomputers across the United States. The

experimental setup, including details on the middleware infrastructure used (Globus and MPICH-G2), is

10

presented in [3]. The first experiment used two supercomputers with up to 64 processors each. The second,
large-scale experiment involved four supercomputers of a total of 1,500 processors (described in [2]). In both
cases the results measured were at most 15% less than our predictions. We believe this difference is due
mostly to the highly variable behavior of the wide area network.

In Figure 6 we consider the existing network infrastructure in our test bed (f; = 35 ms and 8,, = 1us) and
show the variation of the predicted efficiency FE,yerqn With the number of processors. We also plot efficiency
for an application configuration that is five times more computationally intensive (t. = 100us) and for an
application-observed bandwidth of 10 MB/s (6, = 0.1us). Although in our test we have not benefited from
the 10 MB/s application-observed bandwidth, this is easily achievable with currently deployed networks. It
is interesting to note that efficiency as high as 83% could be obtained if all supercomputers were connected
to the Internet by using gigabit links.

From Equation (12) above and from Figure 6, we observe that overall efficiency Eyyerqn increases with
the sequential execution time per grid point and with the decrease in communication costs. Even with new,
more computationally demanding numerical algorithms, since the processors are increasingly powerful, we

believe that a real improvement in efficiency is possible only through efficient use of “fatter” network pipes.

4.2 Internet Computing

There are over 200 million PCs around the world, many as powerful as early 1990s supercomputers. Every
large institution has hundreds or thousands of such systems. Internet computing [8] is motivated by the
observation that at any moment millions of these computers are idle. With this assumption, using com-
puter cycles and data storage on these computers becomes virtually free provided satisfactory middleware
infrastructure and network connectivity exist.

Computational Grids provide the middleware infrastructure: dependable, consistent, and pervasive access
to underlying resources. The continuous growth of the Internet is going to provide the necessary connectivity.
Internet demand has been doubling each year for more than a decade now. This has caused backbone network
capacity to grow at an even faster rate [13]. Moreover, it is estimated that in the near future we will witness
an explosion in network capacity [6]. Optical technologies that are driving this transition will also transform
the physical structure of the Internet from one based on backbone networks carrying thousands of (virtual)
network flows through dozens of large pipes to one based on backbone “clouds” consisting of thousands of
possible optical paths, each with the capacity to carry traffic of multigigabits per second.

The available middleware infrastructure and the soon-to-be-available network connectivity bring the
vision of a general-purpose 1 million processor Internet computing system (megacomputer) closer to reality.

Megacomputers might be the world’s first petaops (10> FLOPS) computing systems. For application such

11

as Cactus, however, increased computational power might prove to be less significant than aggregating the
memory of millions of computers that will allow solving problems of unprecedented scale and resolution.

The design of the megacomputer is indeed challenging because it requires the synthesis of Internet pro-
tocols, high-performance computing, and commodity software technologies in a scalable, reliable computing
system. We do not investigate these issues here, but we do estimate the performance Cactus could obtain
in such an environment.

We considered the processor space divided in “clusters”: groups of computers on the same gigabit local-
area or campus network. They might also be PCs using DSL (ADSL, HDSL) or cable modem technologies
within the same geographical area (and thus probably using the same provider’s POP). We assumed that
communication within a cluster is low delay, high bandwidth. A shared hub allows communication with other
clusters. We imagined a cluster to have hundreds to thousands of machines. To minimize communication,
we used a 3D decomposition among clusters. Even with this problem decomposition aimed at minimizing
intercluster communication (and thus the number of flows that traverse cluster boundaries), the networking
infrastructure must deal with an enormous number of flows. For a cluster of size P there are 6v/P2 com-
munication flows going out. Given TCP’s limited ability to fairly and efficiently deal with large number of
simultaneous flows ([12, 14]) some mending is needed at the network transport level. Possible solutions are
to use TCP concentrator nodes for intercluster communication, use an improved TCP protocol (along the
lines of RFC2140), or simply replace TCP with a future transport protocol.

We analyzed the performance of a megacomputer using the same model as in preceding sections. Instead

of describing the whole process in detail, we summarize our conclusions:

e Efficiency of 30-35% can be obtained in these environments even without modifying Cactus’s tightly
coupled computational pattern. This might seem low, but considering the huge aggregated computa-
tional power of this environment, the result is more than one order of magnitude larger than the fastest
supercomputer available today. We assumed 1,000 clusters with 1,000 machines each. We considered
a two-level hierarchy of gigabit LANs within a cluster and nonshared OC48 links among clusters.
We picked conservative values for the application’s uniprocessor execution rates (100 MFLOPS) and

grid-point processing time (20 us).

e The application is extremely sensitive to communication costs. Hence, simple improvements such as
overlapping computation and communication will bring up to 100% improvements in efficiency. Com-
munication sensitivity also means that we should consider network performance issues when making

load-balancing decisions.

To conclude, we estimate that Cactus could run at an execution rate of 35 TFLOPS on a megacomputer.

This is 25 times faster than the best execution rate achievable now [11] on a supercomputer. Based on

12

Moore’s law (which still holds, if we use the annual Gordon Bell awards to judge the power of the fastest
supercomputer worldwide) it will take seven years to have a supercomputer as powerful as the megacomputer
we imagined. Certainly, the assumptions we made about network connectivity and the omnipresence of Grid
environments will become reality well before then and offer a more powerful and low-cost alternative to

supercomputers.

5 Summary

We provided a detailed performance model of a scientific application, a typical finite differences algorithm,
and carefully validated it on two architectures: an IBM SP machine and an SGI Origin 2000.

We adapted our performance model for two computational Grids: an Internet-connected collection of
supercomputers and a megacomputer. We investigated the benefits of increasing ghost-zone depth for in-
creasing performance, and we determined that these are insignificant because of the high bandwidth-related
communication costs. We also determined that the limiting factor for efficiency is network bandwidth, which
is going to improve dramatically over the next few years.

Finally, we predicted Cactus performance in an Internet computing environment—one million Internet-
connected workstations. With better network connectivity than in place today and using computational

Grids, scientists will shortly have a powerful computational platform at a very low cost.

Acknowledgments

This material is based upon work supported by the National Science Foundation under Grant No. 9975020.

References

[1] G. Allen, W. Benger, C. Hege, J. Mass6, A. Merzky, T. Radke, E. Seidel, J. Shalf, Solving Einstein’s
Equations on Supercomputers, IEEE Computer 32(12), 1999.

[2] G. Allen, T. Dramlitsch, I. Foster, N. Karonis, M. Ripeanu, E. Seidel, B. Toonen. Supporting efficient
execution in heterogeneous distributed computing environments with Cactus and Globus. Supercomputing,

2001.

[3] G. Allen, T. Dramlitsch, I. Foster, T. Goodale, N. Karonis, M. Ripeanu, E. Seidel, B. Toonen. Cactus-G
toolkit: Supporting efficient execution in heterogeneous distributed computing environments, In Proceed-

ings of 4th Globus Retreat, July 2000.

13

[4] K. Anstreicher, N. Brixius, J.P. Goux, J. Linderoth, Solving Large Quadratic Assignment Problems
on Computational Grids, 17th International Symposium on Mathematical Programming, Atlanta, GA,

August 2000.

[5] W. Benger, I. Foster, J. Novotny, E. Seidel, J. Shalf, W. Smith, P. Walker, Numerical Relativity in a
Distributed Environment, Proceedings of the Ninth SIAM Conference on Parallel Processing for Scientific

Computing, March 1999.

[6] C. Catlett, I. Foster, The network meets the computer: Architectural implications of unlimited bandwidth,

Workshop on New Visions for Large-Scale Networks: Research and Applications, 2001.
[7] 1. Foster, Designing and Building Parallel Programs, Addison-Wesley, 1995.
[8] I. Foster, Internet Computing and the Emerging Grid, Nature 408(6815), 2000.

[9] I. Foster, C. Kesselman, Globus: A Metacomputing Infrastructure Toolkit, International Journal of Su-

percomputing Applications, 11(2), 1997.

[10] I. Foster, C. Kesselman, The Grid: Blueprint for a New Computing Infrastructure, Morgan Kaufmann,
San Francisco, CA, 1999.

[11] J. Makino, T. Fukushige, M. Koga, A 1.8/9 TFLOPS simulation of black holes in a galactic center in
GRAPE-6, In Supercomputing 2000.

[12] R. Morris, TCP behavior with many flows, IEEE International Conference on Network Protocols, At-
lanta, Georgia, October, 1997.

[13] A. Odlyzko, Internet growth: Myth and reality, use and abuse, Information Impacts Magazine, Novem-
ber, 2000.

[14] L. Qiu, Y. Zhang, S. Keshav, On Individual and Aggregate TCP Performance, Proceedings of 7th

International Conference on Network Protocols, Toronto, Canada, 1999.

[15] I. Stoica, F. Sultan, D. Keyes, A hyperbolic model for communications in layered parallel processing

environments, Journal of Parallel and Distributed Computing, 39(1):29-45, 1996.

14

