
Enabling Technologies for Web-Based Ubiquitous Supercomputing

Ian Foster and Steven Tuecke
Mathematics and Computer Science Division

Argonne National Laboratory
Argonne, IL 60439, U.S.A.
{foster,tuecke}@mcs.anl.gov

http://www.mcs.anl.gov/globus/

Abstract

We use the term ubiquitous supercomputing to re-
fer to systems that integrate low- and mid-range com-
puting systems, advanced networks, and remote high-
end computers with the goal of enhancing the computa-
tional power accessible from local environments. Such
systems promise to enable new applications in areas as
diverse as smart instruments and collaborative environ-
ments. However, they also demand tools for transport-
ing code between computers and for establishing flex-
ible, dynamic communication structures. In this pa-
per, we propose that these requirements be satisfied by
enhancing the Java programming language with global
pointer and remote service request mechanisms from
a communication library called Nexus. Java supports
transportable code; Nexus provides communication sup-
port. We explain how this NexusJava library is imple-
mented and illustrate its use with examples.

1 Introduction

Rapid advances in networking technologies have
made it possible to construct computations that inte-
grate resources located at multiple geographically dis-
tributed locations. Various high-end networking exper-
iments have demonstrated convincingly that important
new classes of applications become possible in such en-
vironments [2]. Typically, these applications exploit
high-speed networks to assemble in one (virtual) place
collections of resources that would not otherwise be
accessible to users, such as scientific instruments, su-
percomputers, databases, and people.

Most work on high-performance distributed comput-
ing has originated within the high-performance com-
puting community, and these origins are reflected in
the types of applications considered and the techniques

used to construct these applications. Supercomputers
are highly visible, and programs typically use message
passing to transfer data between program components.
The user interfaces with the application from a local
system—or, in many cases, from a high-end display
device [2]. While effective, these techniques have the
drawback that they hinder the widespread dissemina-
tion of the technology, for example because sophisti-
cated software systems must be installed at each par-
ticipating site [5].

An alternative model for high-performance dis-
tributed computing focuses on making the power of
remote supercomputers accessible to users in a com-
pletely transparent manner. The goal is to support
the development of applications that execute locally
(whether on a low-end PC or high-end workstation)
and exploit remote supercomputing resources to pro-
vide enhanced services. We use the term ubiquitous
supercomputing to denote this type of computing, be-
cause by coupling low-cost local devices with remote
supercomputer resources, it combines aspects of ubiq-
uitous computing [10] and traditional supercomputing.

This paper is concerned with the question of the
tools that might be used to construct ubiquitous su-
percomputing systems and applications. We explain
how a combination of the Java programming language
and two simple mechanisms—the global pointer and
remote service request—can be used to satisfy these
requirements.

2 Ubiquitous Supercomputing

We review the types of applications that might be
constructed in a ubiquitous supercomputing system.

Smart instruments. The utility of many scientific
instruments can be enhanced significantly by the use

1



of computational techniques. For example, in the case
of an imaging device, computers can be used to en-
hance images, to annotate images with hints as to “sig-
nificant” features, to locate “similar” images, to pro-
vide comparisons of observation and theory, or to in-
tegrate information from several imaging modalities.
Such techniques have been used to a limited extent for
some time; however, in general, only fairly limited com-
putation could be performed because it was not feasible
to co-locate a high-end computer with the instrument.
The advent of high-speed networks makes it feasible to
use a single supercomputer to serve many instruments,
with the result that the computational power accessible
to a single instrument increases dramatically. Quasi-
real-time computer-enhanced imaging becomes possi-
ble.

Lee et al. [9] have developed an interesting exam-
ple of this type of application. In this system, the
instrument in question is a weather satellite: a rela-
tively “dumb” instrument that takes pictures at mul-
tiple wavelengths. Data from the satellite is received
at the ground station and passed over a wide area net-
work to a supercomputer where it is enhanced by a
cloud detection algorithm to obtain three-dimensional
images of cloud location. These images are then passed
to a display device, allowing scientists to browse the
computer-enhanced images almost in real-time.

Smart applications. Similar techniques can be used
to enhance the utility of desktop applications. Cur-
rently, these may have sophisticated user interfaces but
perform relatively simple computations. The ability to
connect to substantially greater computing resources
can allow desktop applications to perform more de-
manding computations. For example, a future spread-
sheet might connect to a model of the U.S. economy
when evaluating investment strategies, or to a climate
model when evaluating risk management strategies for
an agricultural concern. A system for preparing audio-
visual presentations might reach over the network to
search massive image banks for pictures matching a
specified textual description, or might exploit external
computing resources to render a video clip.

Simple examples of this sort of tool have already
been constructed. To name just two examples, the
Network Enabled Optimization System (NEOS) allows
users to submit optimization problems electronically to
an optimization server, while NetSolve allows desktop
applications written in MatLab to pass computation-
ally demanding tasks to high-performance computers.
In both these cases, access to networked resources is far
from seamless; however, these systems are suggestive of
how future “smart applications” might work.

Collaborative environments. Collaborative envi-
ronments are computer systems that enhance people’s
ability to collaborate with people at remote locations.
A wide variety of such systems exist, ranging from
systems focused on enhancing people’s ability to cre-
ate shared documents (e.g., Lotus Notes) to those de-
signed to permit more free-form electronic discussions
in shared virtual spaces (e.g., MUDs). Advanced col-
laborative environments enable users to collaborate in
the manipulation of complex virtual spaces, which may
furthermore incorporate entities corresponding to su-
percomputer simulations. For example, the Boiler-
Maker system [3] allows engineers at multiple locations
to participate in the placement of injection devices in
a simulated combustion system. The complete sys-
tem comprises multiple display devices and a super-
computer, connected by high-speed networks.

Looking further into the future, Gelertner posits
the widespread deployment of what he calls Mirror
Worlds [8], computer models of interesting aspects of
reality designed to make those aspects of reality more
readily visible to people—and perhaps also to simplify
management. (Examples might include a city govern-
ment, hospital, or traffic system.) These systems would
include advanced computer models, data assimilation
from many sensors, and collaborative capabilities al-
lowing explorers of a mirror world to communicate with
each other.

3 Ubiquitous Computing Technologies

To a significant extent, the hard technical problems
underlying the applications described in the preceding
section are those of distributed computing. However,
two aspects of these applications complicate the pic-
ture. First, to a much greater extent than in most
distributed applications, these applications are per-
formance focused. For example, a supercomputer-
enhanced microscope that is intended to provide real-
time response needs to be able to acquire computa-
tional resources rapidly when an image is available, and
then transfer large amounts of data to that resource for
processing. The second difference is that true ubiquity
demands tools that can be deployed quasi-universally.
Many of the example applications referred to above re-
quire that sophisticated software be installed locally
before a user can exploit remote computing capabil-
ities. This requirement severely limits our ability to
disseminate the technology.

The Web provides a compelling case study for how
to achieve universal access to a highly distributed ser-
vice. The beauty of the Web is of course that anyone
with a browser can use it to access information any-

2



where in the world. The key to this universal access is
the provision of a low-cost, standard interface mecha-
nism (the browser) that is dynamically extensible (we
just upload an HTML document) to reflect the charac-
teristics of a remote data source.

While tremendously flexible as a tool for locating
and browsing multimedia data, the original Web pro-
tocols were constrained by the fact that a browser could
not perform computation: it could only fetch and dis-
play data. The Java programming language represents
one interesting step towards overcoming this limitation.
Java is a simple object-oriented programming language
(basically a C++ subset) augmented with standard li-
braries for graphics, communications, and other func-
tions. Java programs can be compiled to byte codes to
obtain a portable, reasonably compact representation
suitable for communication over networks. A process
receiving Java byte codes can execute them by using an
interpreter or just-in-time compiler. Java interpreters
have been embedded in various Web browsers, making
it possible for users to create Web pages that perform
various simple computations.

While Java has significant advantages as a language
for ubiquitous computing, it is sadly lacking in the im-
portant area of communication. (It also has other sig-
nificant shortcomings, for example in the security area,
however these are beyond the scope of this article.) The
Java library provides only basic support for communi-
cation using low-level UDP and TCP protocols. The
lack of higher-level communication mechanisms greatly
complicates the implementation of applications such as
those described above.

We argue that communication facilities for Java
should satisfy four basic requirements. (1) Asynchrony.
While synchronous remote procedure call (RPC) is
appropriate for many distributed applications, par-
ticularly those with a client-server structure, high-
performance ubiquitous supercomputing applications
also require mechanisms that do not enforce synchro-
nization between sender and receiver, such as asyn-
chronous remote function invocation and—in some
cases—point-to-point communication (message pass-
ing). (2) Symmetry. “Clients” (user Java programs)
and “servers” (remote processes) need to be able to be
equal partners in a computation. Not only should a
client be able to call procedures in a server, but vice
versa also. (3) Global names. The ability to create
references to objects and then communicate those ref-
erences between objects proves to be extremely useful
in practice, making it possible to create complex, dis-
tributed data structures and to write programs that
operate on these data structures in a uniform fash-
ion, independently of object location. Note that what

is required here is a global name space, not a global
address space. (4) High performance. We require
techniques that permit high-performance implementa-
tions. This requirement means not only that our tech-
niques should not introduce performance bottlenecks,
but they should permit us to write programs that can
adapt their behavior to the often complex heteroge-
neous systems in which they can be expected to oper-
ate.

As we explain in the next section, we propose to
meet these requirements by developing a Java bind-
ing for a communication library called Nexus that pro-
vides remote object reference (called, in Nexus, a global
pointer) and asynchronous remote method invocation
(in Nexus, remote service request) mechanisms.

4 Nexus

Nexus is a communication library developed at Ar-
gonne National Laboratory and the California Insti-
tute of Technology to support applications that require
mechanisms for asynchronous communication, multi-
threading, and dynamic resource management in het-
erogeneous environments [7].

Nexus services provide direct support for light-
weight threading, address space management, commu-
nication, and synchronization. The Nexus interface
is structured in terms of five basic abstractions, illus-
trated in Figure 1: nodes, contexts, threads, global
pointers, and remote service requests. A computation
executes on a set of nodes, and consists of a set of
threads, each executing in an address space called a
context. For the purpose of this paper, it suffices to
assume that a context is equivalent to a process, and a
node is equivalent to a particular computer.

A global pointer (GP) is a name that can refer to
a memory location (or object) located anywhere in a
distributed system. GPs are used in conjunction with
asynchronous remote service requests (RSRs) to invoke
actions at remote locations. An RSR takes a GP, a
procedure name, and data; transfers the data to the
context referenced by the GP; and remotely invokes the
specified procedure, providing the data and the local
portion of the GP as arguments. GPs can be passed
as arguments to RSRs, hence allowing global names to
be propagated between processes.

Experience indicates that Nexus mechanisms can be
implemented efficiently on a wide range of parallel and
networked computer systems [7]. An interesting aspect
of the implementation is that it incorporates mecha-
nisms for configuring and selecting between multiple
communication methods; these allow programs to ex-
ecute efficiently in heterogeneous environments, and

3



make it possible to use different communication pro-
tocols for different communication structures [6]. Fur-
thermore, Nexus has been used to implement a vari-
ety of different parallel and distributed programming
tools providing different interaction models, including
remote procedure call (in CC++ [1] and nPerl, an RPC
library for the Perl scripting language), multimedia
streams (in CAVEcomm [4]) and message-passing (the
Message Passing Interface [6]).

Nexus mechanisms satisfy each of the requirements
introduced above. The RSR provides an asynchronous
communication substrate, on which can be layered a
variety of more sophisticated interaction methods. The
global pointer makes it easy to specify symmetric struc-
tures, as a “client” can easily pass a global pointer to
a “server,” hence allowing the server to invoke pro-
cedures in the client. Global pointers also provide a
global name space. Finally, Nexus mechanisms have
been shown to permit high-performance implementa-
tions.

5 A Java Binding for Nexus

We have constructed a Java binding for Nexus: that
is, an interface to Nexus mechanisms that allows Java
programs to create and exchange global pointers and
to perform remote service requests to methods defined
in objects referenced by these global pointers. (Nexus
thread, condition, and mutex functions are not needed
in this library, since these capabilities are provided di-
rectly by Java.) This binding also allows Java pro-
grams to communicate with other programs that em-
ploy Nexus mechanisms.

As we shall explain, the Java binding provides di-
rect access to the relatively low-level Nexus interface;
this interface can then be used to build higher-level
Java communication libraries for specific purposes. In
the following, we first introduce the low-level interface
and then sketch the techniques that might be used to
implement higher-level constructs.

We implement the Java binding as a Nexus-
compatible library written entirely in Java. This means
that Nexus code can run within any system that
incorporates a Java interpreter or just-in-time com-
piler. The library comprises four basic classes: Nexus,
which supports initialization, argument handling, han-
dler registration, global pointer creation, and attach-
ment to other processes; GlobalPointer, which im-
plements the Nexus global pointer abstraction, for use
in remote service requests; PutBuffer, which provides
mechanisms for buffer packing; and GetBuffer, which
provides buffer unpacking mechanisms. We shall use
a simple example to illustrate the use of the various

functions defined in these classes. (NexusJava func-
tion prototypes are generally equivalent to those of the
Nexus C library.)

Our example comprises the simple client and server
programs in Figures 2 and 3, respectively. The client
performs a single remote service request to the server.
The client terminates immediately after generating the
request, and the server terminates immediately after
performing the request. This trivial example does not
really demonstrate the expressiveness of NexusJava,
but does have the pedagogical advantage of introducing
most NexusJava features.

The client begins by instantiating and initializ-
ing a Nexus object. This must be done before any
other NexusJava operations are performed. The client
then attaches to the server using the Nexus.attach()
method. This method takes as its argument a URL
specifying the hostname and port on which the server
is listening; it returns a GlobalPointer referencing an
object in the server process.

Once the client has attached to the server, it can
use the GP to invoke methods defined in the remote
object that this pointer references. For example, the
procedure call server handler() invokes a remote
procedure called server handler, passing as its argu-
ment the single integer 10. It calls low-level Nexus
routines to (a) initiate the remote service request; (b)
construct a buffer containing the integer argument;
and (c) complete the RSR. The client then uses the
GlobalPointer.destroy() method to destroy the GP
to the server; this action severs the connection between
the client and server. Finally, the client shuts down
NexusJava by calling the destroy current context()
method on the Nexus object. This action cleanly termi-
nates any threads and other state that are maintained
by this object.

The server program, like the client, first instanti-
ates and initializes a Nexus object. Then, it regis-
ters the set of handler names for which it will accept
messages. The registration is performed by the rou-
tine register my handlers(), which creates an ar-
ray of Handler objects in which each element de-
scribes a handler. This description includes the han-
dler name (e.g., “server handler”), a handler id (e.g.,
42), a flag specifying whether this handler should be
invoked in a newly created thread or in an existing
thread, the HandlerInterface object to call when
an RSR arrives for this handler, and a local han-
dler id that can be used for quick dispatch of the
handler within that HandlerInterface object. The
Nexus.register handlers() method is then called
with the Handler array to inform the Nexus object of
the handlers for which RSRs are to be accepted.

4



N O D E

Context

N O D E

Context Context

Thread

GP
GPGP int i;int i;

int j;

Thread Thread Thread Thread Thread

Figure 1. Nodes, Contexts, Threads, and Global Pointers

public class ExampleClient {
private Nexus nexus;
public static void main (String args[]) {

ExampleClient n = new ExampleClient(); n.start(args);
}
public void start(String args[]) {

GlobalPointer gp;
nexus = new Nexus();
args = nexus.init(args, "nx", null);
try { gp = nexus.attach("x-nexus://cosmo.mcs.anl.gov:1234/");

call_server_handler(gp, 10);
gp.destroy();

} catch (Exception e) e.printStackTrace();
nexus.destroy_current_context(false);

}
public void call_server_handler(GlobalPointer gp, int i) {

PutBuffer buffer;
try { buffer = gp.init_remote_service_request("server_handler", 42);

buffer.set_buffer_size(buffer.sizeof_int(1), 1);
buffer.put_int(i);
buffer.send_remote_service_request();

} catch (Exception e) e.printStackTrace();
}

}

Figure 2. Example: Client program which demonstrates initialization, packing a buffer, and sending
an RSR.

5



public class ExampleServer implements HandlerInterface, AttachApprovalInterface {
private Nexus nexus;
private GlobalPointer this_gp;
public static void main (String args[]) {

ExampleServer n = new ExampleServer(); n.start(args);
}
public void start(String args[]) {

nexus = new Nexus();
args = nexus.init(args, "nx", null);
register_my_handlers();
this_gp = nexus.global_pointer(this);
nexus.allow_attach(1234, this);
wait_for_client(); nexus.disallow_attach(1234);
this_gp.destroy(); nexus.destroy_current_context(false);

}
public void register_my_handlers() {

Handler h[] = new Handler[2];
h[0] = new Handler("server_handler",42,Handler.NEXUS_HANDLER_TYPE_THREADED,this,0);
h[1] = new Handler("other_handler",53,Handler.NEXUS_HANDLER_TYPE_NONTHREADED,this,1);
nexus.register_handlers(h);

}
public void invoke_handler(String name,int id,int local_id,Object addr,GetBuffer buf) {

switch (local_id) {
case 0:

try { int i = buf.get_int();
server_handler(i);

} catch (Exception e) e.printStackTrace();
break;

case 1:
other_handler();
break;

}
}
public GlobalPointer attach_approval(String url) {

return(this_gp);
}
private synchronized void wait_for_client() {

try { wait(); } catch (Exception e) e.printStackTrace();
}
private synchronized void server_handler(int i) {

System.out.println("server_handler() got i="+i);
try { notify(); } catch (Exception e) e.printStackTrace();

}
private void other_handler() {}

}

Figure 3. Example: Server program which demonstrates handler registration, handler invocation,
and buffer unpacking.

6



After registering the handlers, the server next calls
Nexus.allow attach() to indicate that it is pre-
pared to accept incoming RSRs. It then suspends in
wait for client, processing subsequent attachment
or RSR requests as call backs. Attachment requests
result in calls to the attach approval() method
in the AttachApprovalInterface object passed as
the second argument to allow attach(). The
attach approval() method returns a GP to a local
object, which will be returned to the attacher. The
server may also decide to deny the attachment request,
in which case it must return null.

RSR requests (for example, to server handler)
cause the invoke handler() method (part of the
HandlerInterface provided by ExampleServer) to be
called by NexusJava. This method (a) uses the han-
dler name, id, and local id to figure out which of this
object’s methods should be invoked, (b) unpacks the
GetBuffer to get the arguments for the method, and
(c) calls that method with the arguments.

As mentioned above, handlers can be either
threaded or non-threaded. When an RSR arrives for
a threaded handler, a new Java thread is created by
NexusJava and the invoke handler()method is called
from within this new thread. There are no restrictions
on what this handler may do. NexusJava also sup-
ports a more efficient but restricted form of handler
invocation. If a handler is registered as non-threaded,
NexusJava does not create a new thread. Instead, it
calls invoke handler() directly from its pre-existing,
internal communications thread. This approach avoids
the cost of thread creation and switching during han-
dler dispatch. However, the user must guarantee that a
handler registered as nonthreaded will not block (wait)
on any operation that may require another RSR han-
dler invocation to unblock (notify) the first handler.

Once the server receives the RSR and calls the
server handler() method, this method will notify
the main thread waiting in wait for client(). The
server then disallows additional attachments by calling
Nexus.disallow attach() and shuts down NexusJava
using Nexus.destroy current context().

In summary, the NexusJava library makes the full
power of Nexus available to Java programs, which can
use Nexus mechanisms to create global pointers to
objects, pass these references between processes, use
RSRs to invoke methods defined in remote objects, and
so forth.

6 Higher-Level Interfaces

As noted above, a wide variety of higher-level inter-
action models can be layered on top of the low-level

Nexus mechanisms. Here, we discuss techniques that
can be used to implement a RPC model. The basic
idea is to use IDL-like techniques to generate auto-
matically the code responsible for registering handlers,
marshalling arguments to remote method calls, demar-
shalling arguments, and dispatching method invoca-
tions. Similar techniques are used in other systems,
notably CC++ [1] and CORBA.

Figures 2 and 3 make fairly clear what is involved. In
the ExampleClient class, the call server handler()
method is essentially a stub that encapsulates the
argument marshalling and other bookkeeping re-
quired to perform a remote method invocation to the
server handler() in the ExampleServer. Similarly,
in the ExampleServer class, the invoke handler()
method is essentially a stub that demarshalls the argu-
ments from the buffer and calls the appropriate method
(such as server handler()) locally.

These stub methods can be generated automatically
in a number of different ways. The CORBA approach
could be followed, whereby a high-level Interface Defi-
nition Language (IDL) is used to describe the methods
to which you wish to perform remote invocations. An
IDL compiler is then used to convert automatically this
IDL specification into Java stub code. A disadvantage
of this approach is that the definition and compilation
of explicit interfaces can be rather complex. Since the
Java source to byte-code compiler is implemented in
Java, and since Java classes can be loaded on-the-fly,
an intriguing alternative is to generate the appropriate
stubs on-the-fly when doing handler registration.

7 Other Approaches

The Java community has seen several recent at-
tempts to provide higher level communication in Java.
The two most important (and interesting) are CORBA-
based products by several companies and JavaSoft’s
Remote Method Invocation (RMI) package.

The Common Object Request Broker Architecture
(CORBA) provides standard mechanisms for exporting
objects for remote use, for locating remote objects, and
for invoking methods in remote objects. As mentioned
above, objects export interfaces defined using an IDL,
which is compiled into language specific stubs for use
in remote method invocation. IDL to Java mappings
have been defined, and several companies have released
an IDL compiler. These products allow Java objects to
communicate with other remote objects that have been
written in Java or another language.

The JavaSoft Remote Method Invocation (RMI)
product is similar in spirit to the CORBA approach,
with two significant differences. First, it uses Java in-

7



terface definitions instead of a language-neutral IDL
specification to produce stub code. Second, RMI does
not use standard CORBA methods for object location
and method invocation. However, once a reference to
a remote object has been obtained, both Java imple-
mentations of CORBA and RMI allow methods to be
invoked on that object using essentially the same syn-
tax as normal, local Java method invocations.

These mechanisms can be used to provide Nexus-like
functionality, namely the abilities to obtain references
to remote objects and to use those references to invoke
methods within those objects. The JavaSoft CORBA
and RMI products are better integrated into Java than
NexusJava. However, they also have significant limi-
tations. Neither CORBA nor RMI support the fully
asynchronous operations provided in Nexus. CORBA
does not support the concept of a “global pointer” and
hence cannot define a global name space. RMI sup-
ports a “remote object” construct that has some sim-
ilarities to the global pointer, but is Java specific and
does not support interfaces to other systems.

8 Conclusions

We have shown how the Nexus global pointer and re-
mote service request mechanisms can be incorporated
into Java by defining appropriate Java classes. The
resulting system makes it possible to construct the ex-
tremely flexible communication structures enabled by
Nexus, without compromising the transportability of
Java code. The techniques also support interoperabil-
ity with other Nexus-based applications. Our next
steps in this area will be to experiment with the use
of NexusJava for a range of ubiquitous supercomput-
ing applications. We are also interested in developing
higher-level interfaces to Nexus mechanisms by using
some of the techniques introduced above.

Our work on Nexus forms part of a larger project
called Globus that is developing techniques for con-
structing high-performance distributed applications.
We expect availability of NexusJava to increase sig-
nificantly the range of applications for which Globus
services are useful.

Acknowledgments

The Nexus library used to construct NexusJava has
been developed jointly with Carl Kesselman. This work
was supported in part by the Mathematical, Informa-
tion, and Computational Sciences Division subprogram
of the Office of Computational and Technology Re-
search, U.S. Department of Energy, under Contract
W-31-109-Eng-38.

References

[1] K. M. Chandy and C. Kesselman. CC++: A
declarative concurrent object oriented program-
ming notation. In Research Directions in Object
Oriented Programming. The MIT Press, 1993.

[2] T. DeFanti, I. Foster, M. Papka, R. Stevens, and
T. Kuhfuss. Overview of the I-WAY: Wide area
visual supercomputing. International Journal of
Supercomputer Applications, 1996. in press.

[3] Darin Diachin, Lori Freitag, Daniel Heath, James
Herzog, William Michels, and Paul Plassmann.
Remote engineering tools for the design of pollu-
tion control systems for commercial boilers. Inter-
national Journal of Supercomputer Applications,
10(2), 1996.

[4] T. L. Disz, M. E. Papka, M. Pellegrino, and
R. Stevens. Sharing visualization experiences
among remote virtual environments. In Interna-
tional Workshop on High Performance Computing
for Computer Graphics and Visualization, pages
217–237. Springer-Verlag, 1995.

[5] I. Foster, J. Geisler, W. Nickless, W. Smith, and
S. Tuecke. Software infrastructure for the I-WAY
high-performance distributed computing experi-
ment. In Proc. 5th IEEE Symp. on High Per-
formance Distributed Computing. IEEE Computer
Society Press, 1996.

[6] I. Foster, J. Geisler, and S. Tuecke. MPI on the I-
WAY: A wide-area, multimethod implementation
of the Message Passing Interface. In Proceedings of
the 1996 MPI Developers Conference. IEEE Com-
puter Society Press, 1996.

[7] I. Foster, C. Kesselman, and S. Tuecke. The Nexus
approach to integrating multithreading and com-
munication. Journal of Parallel and Distributed
Computing, 1996. To appear.

[8] David Gelertner. Mirror Worlds. Oxford Univer-
sity Press, 1991.

[9] C. Lee, C. Kesselman, and S. Schwab. Near-real-
time satellite image processing: Metacomputing
in CC++. Computer Graphics and Applications,
1996. to appear.

[10] Mark Weiser. Hot topics: Ubiquitous computing.
IEEE Computer, 26(10), October 1993.

8


