

Design and Evaluation of a Resource Selection Framework
for Grid Applications

Chuang Liu* Lingyun Yang* Ian Foster*# Dave Angulo*

* Department of Computer Science, University of Chicago, Chicago, IL 60637, USA
Math & Computer Science Division, Argonne National Laboratory, Argonne, IL 60439, USA.

[chliu, lyang, foster, dangulo]@cs.uchicago.edu

Abstract

While distributed, heterogeneous collections of
computers (“ Grids”) can in principle be used as a
computing platform, in practice the problems of first
discovering and then organizing resources to meet
application requirements are difficult. We present a
general-purpose resource selection framework that
addresses these problems by defining a resource
selection service for locating Grid resources that match
application requirements. At the heart of this framework
is a simple, but powerful, declarative language based on
a technique called set matching, which extends the
Condor matchmaking framework to support both single-
resource and multiple-resource selection. This
framework also provides an open interface for loading
application-specific mapping modules to personalize the
resource selector. We present results obtained when this
framework is applied in the context of a computational
astrophysics application, Cactus. These results
demonstrate the effectiveness of our technique.

1 Introduction

The development of high-speed networks (10 Gb/s
Ethernet, optical networking) makes it feasible, in
principle, to execute even communication-intensive
applications on distributed computation and storage
resources [22]. In heterogeneous environments,
however, the discovery and configuration of suitable
resources for applications remain challenging problems.
Like others [1, 6, 11, 21, 23, 28], we postulate the
existence of a resource selector service responsible for
selecting Grid resources appropriate for a particular

problem run based on that run’s characteristics;
organizing those resources into a virtual machine with an
appropriate topology; and potentially also assisting with
the mapping of the application workload to virtual
machine resources. These three steps� selection,
configuration, and mapping� can be interrelated, as it is
only after a mapping has been determined that the
selector can determine whether one selection is better
than another.

Many projects have addressed the resource selection
problem. Systems such as NQE [8], PBS [19], LSF [33],
I-SOFT [16], and Load Leveler [20] process user-
submitted jobs by finding resources that have been
identified either explicitly through a job control language
or implicitly by submitting the job to a particular queue
that is associated with a set of resources. This manually
configured queue hinders the dynamic resource
discovery. Globus [10] and Legion [7], on the other
hand, present resource management architectures that
support resource discovery, dynamical resource status
monitor, resource allocation, and job control. These
architectures make it easy to create high-level
schedulers. Legion also provides a simple, generic
default scheduler, but Dail et al. [12] show that this
default scheduler can easily be outperformed by a
scheduler with special knowledge of the application.

The AppLeS framework [6] guides the
implementation of application-specific scheduler logic,
which determines and actuates a schedule customized for
the individual application and the target computational
Grid at execution time. Petitet et al. developed a more
modular resource selector for a ScaLAPACK application
[23]. Since they embed application-specific details in the
resource selection module, however, their tools cannot
easily be used for other applications. MARS [18], SEA
[29] and DOME [4] target particular classes of
application. (MARS and SEA target applications that can

be represented by dataflow-style program graph, and
DOME targets SIMD applications.) Furthermore, neither
the user nor resource owner can control the resource
selection process in these systems.

Condor [21] provides a general resource selection
mechanism based on the ClassAd language [24], which
allows users to describe arbitrary resource requests and
resource owners to describe their resources. A
matchmaker [25] is used to match user requests with
appropriate resources. When multiple resources satisfy a
request, a ranking mechanism sorts available resources
based on user-supplied criteria and selects the best
match. Because the ClassAd language and the
matchmaker were designed for selecting a single
machine on which to run a job, however, they cannot
easily be applied when a job requires multiple resources.

To address these problems, we define a set-extended
ClassAds language that allows users to specify aggregate
resource properties (e.g., total memory, minimum
bandwidth). We also present an extended set-matching
matchmaking algorithm that supports one-to-many
matching of set-extended ClassAds with resources.
Based on these mechanisms, we present a general-
purpose resource selection framework that can be used
by different kinds of application.

Within this framework, both application resource
requirements and application performance models are
specified declaratively, in the ClassAd language, while
mapping strategies can be determined by user-supplied
code. (An open interface is provided that allows users to
load the application-specific mapping module to
customize the resource selector.) The resource selector
locates sets of resources that meet user requirements,
evaluates them based on specified performance model
and mapping strategies, and returns a suitable collection
of resources, if any are available. We also present results
obtained when this technique was applied in the context
of a nontrivial application, Cactus [2, 3].

The rest of this article is organized as follows. In
Section 2, we present the set-extended ClassAd language
and the set matching mechanism. In Section 3, we
describe the resource selector framework. In Section 4,
we describe a performance model and mapping strategy
for the Cactus application used in our case study. In
Section 5, we present experimental results. Finally, we
summarize our work and discuss future directions.

2 Set-Extended ClassAds and Matching

We describe here our set-extended ClassAd language
and set-matching algorithm.

2.1 Condor ClassAds and Matchmaking

A ClassAd (Classified Advertisement) [24] is a
mapping from attribute names to expressions. Attribute
expressions can be simple constants or a function of
other attributes. A protocol is defined for evaluating an
attribute expression of one ClassAd with respect to
another ClassAd. For example, the expression
“other.size > 3” in one ClassAd evaluates to true if the
other ClassAd has an attribute named “size” and the
value of that attribute is an integer greater than three.
ClassAds can be used to describe arbitrary entities. In the
current context, they are used to describe resources and
user requests.

Condor matchmaking [25] takes two ClassAds and
evaluates one with respect to the other. Two ClassAds
match if each ClassAd has an attribute named
“ requirements” that evaluates to true in the context of
the other ClassAd. (This symmetry distinguishes
matchmaking from other commonly used selection
mechanisms such as LDAP and relational queries. In this
respect, matchmaking has similarities to unification
[27].) A ClassAd can also include an attribute named
“ rank” that evaluates to a numeric value representing the
quality of the match. When matchmaking is used for
resource selection, the matchmaker evaluates a ClassAd
request with respect to every available resource ClassAd
and then selects a matching resource with highest rank.

2.2 Set-Extended ClassAd Syntax

In set matching, a successful match is defined as
occurring between a single set request and a ClassAd set.
The essential idea is as follows. The set request is
expressed in set-extended ClassAd syntax, which is
identical to that of a normal ClassAd except that it can
indicate both set expressions, which place constraints on
the collective properties of an entire ClassAd set (e.g.,
total memory size) and individual expressions, which
apply individually to each ClassAd in the set (e.g.,
individual per-resource memory size). The set-matching
algorithm attempts to construct a ClassAd set that
satisfies both individual and set constraints. This set of
ClassAds is returned if the set match is successful.

Set-extended ClassAds extend ClassAds as follows.
(We emphasize that this syntax and other aspects of the
set-matching framework continue to evolve.)

• A Type specifier is supplied for identifying set-
extended ClassAds: the expression Type=” Set”
identifies a set-extended ClassAd.

• Three aggregation functions, Max, Min, and
Sum, specify aggregate properties of ClassAd
sets.

• A Boolean function Suffix(V, L) returns true if
a member of list L is the suffix of scalar value
V.

• The function SetSize returns the number of
elements within the current ClassAd set.

The aggregation functions are as follows.
• Max(expression) returns the maximum value

returned by expression when applied to each
ClassAd in a set.

• Min(expression) returns the minimum value of
expression in a ClassAd set.

• Sum(expression) returns the sum of the values
returned by expression when it is applied to
each ClassAd in a set. For example,
Sum(other.memory)>5GB requires that the total
memory of the resources selected be greater
than 5 GB.

Aggregation functions might be used as follows. If a
job consists of several independent subtasks that run in
parallel on different machines, its execution time on a
resource set is decided by the subtask that ends last.
Thus, we might specify the rank of the resource set to be
Rank=1/Max(execution-time), which means that the rank
of the resource set is decided by the longest subtask
execution time.

A user can use the Suffix function to constrain
within particular domains the resources considered when
performing set matching. For example,
Suffix(other.hostname, {“ ucsd.edu” , “ utk.edu” }) returns
true if other.hostname=“ torc1.cs.utk.edu” because
“ utk.edu” is the suffix of “ torc1.cs.utk.edu.”

2.3 Set-Matching Algorithm

The set-matching algorithm evaluates a set-extended
ClassAd against a set of ClassAds and returns a ClassAd
set that has highest rank. It comprises two phases.

In the filtering phase, individual ClassAd are
removed from consideration based on individual
expressions in the request. For example, the expression

"other.os==redhat6.1 && other.memory>=100M"
removes any ClassAd that specifies an operating system
other than Linux Redhat v6.1 and/or with less than 100
Mb of memory. A Suffix expression can also be used in
this phase, as discussed above. A set-matching
implementation can index ClassAds to accelerate such
filtering operations.

In the set construction phase, the algorithm seeks to
identify a ClassAd set that best meets application
requirements. As the number of possible ClassAd sets is
large (exponential in the number of ClassAds to be
matched), it is not typically feasible to evaluate all
possible combinations. Instead, we use the following

greedy heuristic algorithm to construct a set from the
ClassAds remaining after Phase 1 filtering.

CandidateSet = NULL;
BestSet=NULL;
LastRank = -1; Rank = 0;
while (ClassAdSet != NULL)
{
 Next = { X : X in ClassAdSet & & for all Y in ClassAdSet,
 rank(X+CandidateSet) > rank(Y+CandidateSet); }
 ClassAdSet = ClassAdSet - Next;
 CandidateSet = CandidateSet + Next;
 Rank = rank(CandidateSet);
 If (requirements(CandidateSet)==true & & Rank > LastRank)

BestSet=CandidateSet;
LastRank=Rank;

}
if BestSet ==NULL return failure
else return BestSet

The algorithm repeatedly removes the “best”
resource remaining in the ClassAd pool (“best” being
determined by the rank of the resulting set) and adds it to
the “candidate set.” If the “candidate set” fulfills the
specified requirements and has higher rank than the “best
set” so far, the “candidate set” become the new “best
set.” This process stops when the ClassAd pool is empty.
The algorithm returns the “best set” that satisfies the
user’s request, or failure if no such resource set is found.

This algorithm can adapt to different kinds of
requests. It checks whether the candidate ClassAd fulfills
the requirements expressed in the request and calculates
the rank of the resource set based on the evaluation of
the two expressions named as “ requirements” and “rank”
in the request ClassAd. Thus, by these two expressions,
the user can instruct the matching algorithm to select a
resource set with particular characteristics (as long as
these characteristics can be described by expressions).
This algorithm can also help the user choose the ClassAd
set on which an application can get a preferred
performance, for example, one on which the application
can finish its work before a deadline.

The greedy nature of our algorithm means that it is
not guaranteed to find a best solution if one exists. The
set-matching problem can be modeled as an optimization
problem under some constraints. Since this problem is
NP-complete in some situations, it is difficult to find a
general algorithm to solve the problem efficiently when
the number of resources is large. Our work provides an
efficient algorithm with complexity O(N2) with rank
computation as the basic operation, where N is the
number of ClassAds after the filtering phase.

3 Resource Selection Framework

We have implemented a general-purpose resource
selection framework based on the set-matching

technique. It accepts user resource requests and finds a
set of resources with highest rank based on resource
information from a Grid information service. An open
interface allows users to customize the resource selector
by specifying an application-specific mapping module.

3.1 System Architecture

The architecture of our resource selection system is
shown in Figure 1. Grid information service
functionality is provided by the Monitoring and
Discovery Service (MDS-2) component [9, 15] of the
Globus ToolkitTM [17]. MDS provides a uniform
framework for discovering and accessing system
configuration and status information such as the compute
server configuration and CPU load. The Network
Weather Service (NWS) [30-32] is a distributed system
that periodically monitors and dynamically forecasts the
performance of various network and computational
resources. Grid Index Information Service (GIIS) and
Grid Resource Information Service (GRIS) [15]
components of MDS provide resource availability and
configuration information.

Resource
Monitor

Set Matcher

Mapper

RSS

App

Resource
Request

Result

GRISes

GIIS

MDS

Resource
Information

NWS

Figure 1: Resource selector architecture

The Resource Selector Service (RSS) comprises
three modules. The resource monitor acts as a GRIS, in
the terminology of [9]; it is responsible for querying
MDS to obtain resource information and for caching this
information in local memory, refreshing only when
associated time-to-live values expire. The set matcher
uses the set-matching algorithm to match incoming
application requests with the best set of available
resources. The performance of some applications, such
as Cactus, is tightly related to resource topology and
workload allocation. Thus, it is necessary to map the
workload to the resources before judging whether those
resources are good or bad. The mapper decides the
resource topology and the allocation of application
workload to resources.

Because the mapping strategy is tightly related to a
particular application, it is difficult to find an efficient
general mapping algorithm suitable for all applications.
In addition, it is not yet clear how to express mapping

constraints within ClassAds. Thus, we currently
incorporate the mapper as a user-specified dynamic link
library that communicates with the set matching process
by instantiating certain ClassAd variables: e.g., Rlatency
and Rbandwidth in the example in the next section.

3.2 Resource Request

The RSS accepts both synchronous and
asynchronous requests described by set-extended
ClassAds. It responds to a synchronous request with the
best available resource set that satisfies this ClassAd, or
“ failure” if no such resources are available. An
asynchronous request specifies a request lifetime value;
the RSS responds if and only if a resource set that
satisfies the specified ClassAd becomes available during
the specified lifetime.

A request may include five types of element:
• Type of Service: Synchronous or asynchronous.

• Job description: The characteristics of the job
to be run, for example, the performance model
of the job.

• Mapper: The mapper program to be used.

• Constraint: User resource requirements, for
example, memory capability, type of operating
system, software packages installed.

• Rank: Criteria for ranking matched resources.

We can use these five elements to describe a variety of
requests, as the following Cactus example shows.

1. [
2. ServiceType = "Synchronous";
3. Type="Set";
4. iter=100; alpha=0; x=100; y=100; z=100;
5. A=370; B=254; startup=30; C=0.0000138;
6. computetime = x*y*alpha/other.cpuspeed*A;
7. comtime = (other.RLatency+ y*x*B/other.RBandwidth
 +other.LLatency+y*x*B/other.Lbandwidth);
8. exectime = (computetime+comtime)*iter+startup;
9. Mapper = [type ="dll"; libname="cactus"; func="mapper"];
10. requirements =Suffix(other.machine, domains)
 && Sum(other.MemorySize) >= (1.757 + C*z*x*y);
11. domains={ cs.utk.edu, ucsd.edu} ;
12. rank=Min(1/exectime)

13.]

Lines 2 and 3 specify that this is a synchronous set-
matching request. Lines 4–8 are the job description
including the problem size and the Cactus performance
model. Line 8 models the execution time of every
subtask on a machine. Line 9 gives the name and
location of the mapping algorithm used for the
application. Line 10 specifies the resource constraints,
which state that (1) the total memory capability of the

resource set should be larger than the minimum size to
keep the computation in memory that is described by a
formula of the problem size, and (2) resources should be
selected from machines in the “cs.utk.edu” or
“ ucsd.edu” domain that is described in Line 11. Line 12
indicates that the reciprocal of the execution time of the
application is used as the criterion to rank candidate
resources. Because the execution time of the application
is decided by the subtask that finishes last, the rank of a
resource set is equal to the minimum value of the
reciprocal of the execution time of subtasks as specified
in Line 12. If multiple resource sets fulfill the
requirements, the resource set on which application gets
smallest execution time has the highest rank.

3.3 Resource Selection Result

The result returned by the resource selector
(expressed in XML) indicates the selected resources and
mapping scheme. For example, the following is a result
obtained for the Cactus application.

<virtualMachine>
 <result statusCode="200" statusMessage="OK"/>
 <machineList>
 <machine dns="torc2.cs.utk.edu" processor= 2 x= 20>
 <machine dns="torc3.cs.utk.edu" processor= 2 x= 15>
 <machine dns="torc6.cs.utk.edu" processor= 2 x= 15>
 </machineList>
</virtualMachine>

This returned resource set includes three machines,
each of which has two processors. These three machines
have one-dimensional topology, and the workload is
allocated to the machines according to the ratio
20:15:15.

4 Cactus Application

We applied our prototype in the context of a Cactus
application that simulates the 3D scalar field produced
by two orbiting sources [2, 3]. The solution is found by
finite differencing a hyperbolic partial differential
equation for the scalar field. This application
decomposes the 3D scalar field over processors and
places an overlap region on each processor. For each
time step, each processor updates its local grid point and
then synchronizes the boundary value.

4.1 Performance Model

In this Cactus experiment, we use the expected
execution time as the criterion to rank all the sets of
candidate resources. For a 3D space of X*Y*Z grid
points, the performance model is specified by the

following formulas, which describe the required memory
and estimated execution time.

 Memory size (MB) > = (1.757 + 0.0000138*X*Y*Z)

 Execution time = startup-time +
 (computation (0) + communication (0)) *
 slowdown(CPU load)

Function slowdown(CPU load) presents the
contention effect on the execution time of the
application. CPU load is defined as the number of
processes running on the machine. Figueira modeled the
effect of contention on a single-processor machine [13,
14]. Assuming that the CPU load is caused by CPU-
bounded processes and that the machine uses round-
robin scheduling method, we extended her work by
modeling the effect of contention on the dual-processor
machine. We found that the execution time is smaller if
we divide a job into two small subtasks than if we run
this job as one task on dual-processor machines. We
applied this allocation strategy to dual-processor
machines and obtained the following contention model,
which we validate in Section 5.1.

 slowdown(CPUload) =
 (2* CPUcount – 1 + CPUload)/(2*CPUcount –1)

This formula is applicable when the CPU count is equal
to one or two.

Computation(0) and communication(0), the
computation time and communication time of the Cactus
application in the absence of contention, can be
calculated by formulas described in [26]. We incur a
startup time when initiating computation on multiple
processors in a Grid environment. In these experiments,
this time was measured to be approximately 40 seconds
when machines are from different clusters (sites) and 25
seconds when machines are in the same cluster.

4.2 Mapping Algorithm

We decompose the workload in the Z direction and
decide the resource topology by using the following
heuristic.

1. Pick the machine with the highest CPU speed as
the first machine of the line.

2. Find the machine that has the highest
communication speed with the last machine in
the line, and add it to the end of the line.

3. Continue Step 2 to extend the line until all
machines are in the line.

We thus attempt to minimize WAN communications
by putting machines from the same cluster or domain in
adjacent locations.

The mapper then allocates the workload to these
resources. Our strategy is to allocate workload to each

processor in a fashion inversely proportional to the
predicted execution time on that processor.

5 Experimental Results

To verify the validity of our RSS and the mapping
algorithm developed for the Cactus application, we
conducted experiments in the context of the Cactus
application on the GrADS [5] test bed, which comprises
workstation clusters at universities across the United
States (including the University of Chicago, UIUC, UTK,
UCSD, Rice University, and USC/ISI). We tested the
execution time prediction function, the Cactus mapping
strategy, and the set-matching algorithm.

5.1 Execution Time Prediction Test

As noted above, our mapping strategy is based on
the predicted Cactus execution time, which we also use
for ranking the candidate resource sets (see Section 3.2).

We tested the execution time prediction function both
without and with communication time.

5.1.1. Computation Time Prediction Test. When the
Cactus application runs on only one machine, there is no
communication cost. To validate our computation time
prediction function, we ran the Cactus application on one
machine and compared the predicted computation time
with the measured computation time. We did the
experiments with diverse configurations, including (1)
different problem sizes (20*20*20, 50*50*50,
100*100*100), (2) different clusters (UTK cluster,
UIUC cluster, and UCSD cluster), (3) different CPU
speeds (cmajor.cs.uiuc.edu 266 MHz, mystere.ucsd.edu
400 MHz, torc.cs.utk.edu 547 MHz), (4) different
numbers of processors (UIUC and UCSD machines have
1 processor, UTK machines have 2 processors), and (5)
different CPU loads.

cmajor.cs.uiuc.edu (single-processor, PII 266 MHz)

 Problem size: 20*20*20
 cmajor.cs.uiuc.edu (single-processor, PII 266 MHz)

 Problem size: 50*50*50

mystere.ucsd.edu (single-processor, PII 400 MHz)

Problem size: 50*50*50
torc1.cs.utk.edu (dual-processor, PIII 547 MHz)

Problem size: 100*100*100

Figure 2: Measured (points) vs. predicted (line) computation times (in seconds) for Cactus on a single
node for different problem sizes and machines, as a function of CPU load

Figure 2 illustrates the predicted computation time
and the measured computation time of the Cactus
application with different CPU loads and various
machine configurations. The results show that the
computation time prediction function gives acceptable
prediction in all cases. The error in this experiment was
within 6.2% on average.

5.1.2. Computation and Communication Time. To test
our execution time prediction function (which includes
both computation time and communication time), we ran
the Cactus application on various machine combinations
and compared the measured execution time with the
predicted execution time. We conducted experiments
with various configurations, including (1) different
problem sizes (100*100*100, 120*120*240,
140*140*280, 160*160*320, 200*200*400, and
220*220*420), (2) different clusters (UCSD cluster and
UTK cluster), (3) different CPU speeds (o.ucsd.edu 400
MHz, torx.cs.utk.edu 547 MHz), (4) different numbers
of processors (UCSD machines have 1 processor, UTK
machines have 2 processors), and (5) different machine
combinations.

Figure 3 shows both the predicted and measured
execution time for the Cactus application when run in
seven different configurations of problem size and
machines:

1. 100*100*100 on torc

2. 120*120*120 on torc1 and torc5

3. 140*140*280 on torc1 and torc5

4. 160*160*320 on torc1 and torc5

5. 180*180*360 on torc1, torc3, and torc5

6. 200*200*400 on torc1, torc3, and torc5

7. 230*220*420 on torc1, torc3, torc5, o.ucsd.edu

The error is, on average, 13.13%. The time

prediction formula works well except for problem size
160*160*320, where the predicted time is much greater
than the execution time (error=59%). We monitored the
CPU load of the machines on which the application had
run during the experiments. We found that a competing
application had been running on torc1 and torc5 when
the resource selector collected system information to
predict the execution time and this application
terminated before our application run. We therefore
believe that the reason for this large error rate is that the
CPU load information we used to predict the
performance of application does not reflect the real CPU
load when the application ran.

Figure 3. Predicted vs. real execution time for
Cactus, in seven different configurations. See
text for details.

5.2 Mapping Strategy Test

In the mapping strategy experiment, we evaluated
the benefit gained from our mapping strategy. As
mentioned in Section 4.2, the mapping strategy put
machines with a high bandwidth connection into
adjacent positions in the topological arrangement.
Clearly, this one-dimensional arrangement minimizes the
communication via WAN and thus reduces the total
communication cost. In this section, we focused on how
well the workload allocation strategy works. In
particular, we tested whether the execution time of the
Cactus application with allocation given by the mapper
is shorter than its execution time with any other
allocation strategy.

Figure 4. Execution times for different workload
allocations on two machines.

0

100

200

300

400

500

600

700

E
xe

cT
im

e(
s)

1 2 3 4 5 6 7

Experiments

Predicted time Execution time

We tested the workload allocation strategy on two
machines (dralion.ucsd.edu and cirque.ucsd.edu). One
machine (dralion) has a CPU speed of 450 MHz and no
CPU load during the experiment. The other machine
(cirque) has a CPU speed of 500 MHz and a CPU load of
2 during the experiment. We set up the Cactus
application with a 3D space of 100*100*200 grid points
and one-dimensional decomposition. According to our
workload allocation strategy, the best performance was
obtained when the workload was allocated on the two
machines in the proportion of 146:54 (dralion:cirque) in
the Z direction. We ran the Cactus application with this
workload allocation and its variations (obtained by
moving the division point to the right and left) and
compared the execution time of the application with
other workload allocation strategies.

The execution time for different workload
allocations is shown in Figure 4. We can see that the
execution time with the allocation given by the mapper
is very close to optimal (only 1.2% higher than optimal).
Moreover, the execution time increases when the
deviation from our workload allocation scheme
increases. Thus we can say that the workload allocation
strategy works well.

5.3 Resource Selection Algorithm Test

To validate the resource selection algorithm, we
asked the resource selector to select a set of machines for
the Cactus application from a pool of three candidates.
We also measured the execution time for the Cactus
application on all possible machine combinations and
used that information to determine whether the resource
selector made the best choice. We performed this
experiment both on machines from a single cluster and
on machines from different clusters.

Figure 5. Execution time on all combinations of
three candidate machines from a single cluster

In the single cluster experiment, the three machines
are: { mystere, o, saltimbanco} .ucsd.edu. We number the
seven possible machine combinations as follows:

1. mystere, o, saltimbanco
2. o, mystere
3. saltimbanco, mystere
4. o, saltimbanco
5. o
6. saltimbanco
7. mystere

These machines are connected via 100 Mbps
Ethernet and thus communication costs between
machines are relatively small. Our results, presented in
Figure 5, show that the lowest execution time is for the
first of the seven combinations: all three machines.
Happily, our resource selector also identifies this
combination as the best.

In the two-cluster experiment, the machines are
torc6.cs.utk.edu and { o, saltimbanco} .ucsd.edu. We
number the seven combinations as follows.

1. torc6, o, saltimbanco [BOTH]
2. torc6, saltimbanco [BOTH]
3. o. saltimbanco [UCSD]
4. torc6, o [BOTH]
5. saltimbanco [UCSD]
6. o [UCSD]
7. torc6 [UTK]

In this case, the high cost of inter-cluster communication
resulted in the resource selector selecting the single
(high-speed) UTK machine. The results in Figure 6
confirm that this was the right choice.

Figure 6. Execution time on all combinations of
three candidate machines from two clusters.

0

50

100

150

200

250

300

350

E
xe

c
T

im
e

(s
)

1 2 3 4 5 6 7

Combination
0

50

100

150

200

250

300

E
xe

c
T

im
e

(s
)

1 2 3 4 5 6 7

Combination

6 Conclusion and Future Work

Grids enable the aggregation of computational
resources to achieve higher performance and/or lower
cost, than can be achieved on a single system. The
heterogeneous and dynamic nature of Grids, however,
leads to numerous technical problems, of which resource
selection is one of the most challenging.

We have presented a general-purpose resource
selection framework that provides a common resource
selection service for different kinds of application. This
framework combines application characteristics and real-
time status information to identify a suitable resource set.
A set-extended ClassAd language is used to express
resource requests, and a new technique called set
matching is used to identify suitable resources. We have
used an application, Cactus, to validate the design and
implementation of the resource selection framework,
with promising results.

Our framework should adapt to different
applications and computational environments. Further
experiments on other kinds of application are needed to
validate and improve our work. We also plan to provide
more mapping algorithms for different kinds of
application.

Acknowledgments

We are grateful to Alain Roy and Jennifer M.
Schopf for many suggestions, and to our colleagues
within the GrADS project for providing access to testbed
resources. This work was supported in part by the Grid
Application Development Software (GrADS) project of
the NSF Next Generation Software program, under
Grant No. 9975020.

References

1. Abramson, D., Giddy, J. and Kotler, L., High Performance
Modeling with Nimrod/G: Killer Application for the
Global Grid? In Proceedings of the International Parallel
and Distributed Processing Symposium, 2000

2. Allen, G., Benger, W., Dramlitsch, T., Goodale, T., Hege,
H., Lanfermann, G., Merzky, A., Radke, T., Seidel, E. and
Shalf, J. Cactus Tools for Grid Applications. Journal of
Cluster Computing (4). 179-188. 2001.

3. Allen, G., Goodale, T., Lanfermann, G., Seidel, E., Benger,
W., Hege, H.-C., Merzky, A., Mass'o, J., Radke, T. and
Shalf, J. Solving Einstein's Equation on Supercomputers.
IEEE Computer (32). 52-59. 1999.

4. Arabe, J.N.C., Beguelin, A., Lowekamp, B., Seligman, E.,
Starkey, M. and Stephan, P., DOME: Parallel Programming
in a Heterogeneous Multi-User Environment. In
Proceedings of the 10th International Parallel Processing

Symposium, (Honolulu, Hawaii, 1996), IEEE Computer
Society, 218-224

5. Berman, F., Chien, A., Cooper, K., Dongarra, J., Foster, I.,
Gannon, D., Johnsson, L., Kennedy, K., Kesselman, C.,
Mellor-Crummey, J., Reed, D., Torczon, L. and Wolski, R.
The GrADS Project: Software Support for High-Level Grid
Application Development. International Journal of High
Performance Computing Applications, 15 (4). 327-344.
2001.

6. Berman, F. and Wolski, R., The AppLeS project: A Status
Report. In Proceedings of the 8th NEC Research
Symposium, (Berlin, Germany, 1997)

7. Chapin, S.J., Katramatos, D., Karpovish, J. and Grimshaw,
A., Resource Management in Legion. In Proceedings of the
5th Workshop on Job Scheduling Strategies for Parallel
Processing (JSSPP '99), (San Juan, Puerto Rico, 1999)

8. Cray, R. Document number in-2153 2/97. Cray Research,
1997.

9. Czajkowski, K., Fitzgerald, S., Foster, I. and Kesselman,
C., Grid Information Services for Distributed Resource
Sharing. In 10th IEEE International Symposium on High
Performance Distributed Computing, (2001), IEEE Press,
181-184

10. Czajkowski, K., Foster, I., Karonis, N., Kesselman, C.,
Martin, S., Smith, W. and Tuecke, S., A Resource
Management Architecture for Metacomputing Systems. In
Proc. IPPS/SPDP '98 Workshop on Job Scheduling
Strategies for Parallel Processing, (1998), 62-82

11. Dail, H. A Modular Framework for Adaptive Scheduling in
Grid Application Development Environments Computer
Science, University of California San Diego,
2002.http://grail.sdsc.edu

12. Dail, H., Obertelli, G. and Berman, F., Wolski, R.,
Grimshaw, A., Application-Aware Scheduling of a
Magnetohydrodynamics Application in the Legion
Metasystem. In Proceedings of the 9th Heterogeneous
Computing Workshop, (Cancun, Mexico, 2000)

13. Figueira, S.M. and Berman, F., Modeling the Effects of
Contention on the Performance of Heterogeneous
Application. In Proceedings of the Fifth IEEE International
Symposium on High Performance Distributed
Computing(HPDC 5), (Syracuse, NY, 1996), 392-401

14. Figueria, S.M. and Berman, F., Predicting Slowdown for
Networked Workstations. In Proceedings of the Sixth IEEE
International Symposium on High Performance Distributed
Computing(HPDC 6), (Portland, Oregan, 1997)

15. Fitzgerald, S., Foster, I., Kesselman, C., Laszewski, G.v.,
Smith, W. and Tuecke, S. A Directory Service for
Configuring High-performance Distributed Computations.
In Proc. 6th IEEE Symp. on High Performance Distributed
Computing, 1997, 365-375.

16. Foster, I., Geisler, J., Nickless, B., Smith, W. and Tuecke,
S., Software Infrastructure for the I-WAY High-

Performance Distributed Computing Experiment. In Proc.
5th IEEE Symp. on High Performance Distributed
Computing, (1996), IEEE Computer Society Press, 562-
571

17. Foster, I. and Kesselman, C. Globus: A Toolkit-Based Grid
Architecture. In Foster, I. and Kesselman, C. eds. The
Grid: Blueprint for a New Computing Infrastructure,
Morgan Kaufmann, 1999, 259-278.

18. Gehring, J. and Reinefeld, A. MARS-A Framework for
Minimizing the Job Execution Time in a Metacomputing
Environment. Future Generation Computer Systems, 12
(1). 87-99. 1996.

19. Henderson, R. and Tweten, D. Portable Batch System:
External reference specification. Ames Research Center,
1996.

20. I.B.M., C. IBM Load Leveler: User's Guide. Document
number SH26-7226_00, IBM Corporation. 1993.

21. Litzkow, M., Livny, M. and Mutka, M., Condor - A Hunter
of Idle Workstations. In Proceedings of the 8th
International Conference of Distributed Computing
Systems, (1998), 104-111

22. Messina, P. Distributed Supercomputing Applications. In
Foster, I. and Kesselman, C. eds. The Grid: Blueprint for a
New Computing Infrastructure, Morgan Kaufmann, 1999,
55-73.

23. Petitet, A., Blackford, S., Dongarra, J., Ellis, B., Graham
Fagg, Roche, K. and Vadhiyar, S. Numerical Libraries And
The Grid: The GrADS Experiments With ScaLAPACK.
International Journal of High Performance Computing
Applications, 15 (4). 2001.

24. Raman, R. ClassAds Programming Tutorial (C++). 2000,
http://www.cs.wisc.edu/condor/classad/c++tut.html.

25. Raman, R., Livny, M. and Solomon, M., Matchmaking:
Distributed Resource Management for High Throughput
Computing. In IEEE International Symposium on High
Performance Distributed Computing, (1998), IEEE Press

26. Ripeanu, M., Iamnitchi, A. and Foster, I. Performance
Predictions for a Numerical Relativity Package in Grid
Environments. International Journal of High Performance
Computing Applications, 15 (4). 2001.

27. Robinsin, J.A. A Machine-Oriented Logic Based on the
Resolution Principle. Journal of the ACM, 12 (1). 23-41.
1965.

28. Shao, G., Berman, F. and Wolski, R., Master/Slave
Computing on the Grid. In Proceedings of the 9th
Heterogeneous Computing Workshop, (Cancun, Mexico,
2000), 3-16

29. Sirbu, M.G. and Marinescu, D.C., A Scheduling Expert
Advisor for Heterogeneous Environments. In 6th
Heterogeneous Computing Workshop, (1997), IEEE Press

30. Wolski, R. Dynamically Forecasting Network Performance
Using the Network Weather Service. Journal of Cluster
Computing. 1998.

31. Wolski, R., Spring, N. and Hayes, J. The Network Weather
Service: A Distributed Resource Performance Forecasting
Service for Metacomputing. Journal of Future Generation
Computing Systems, 15 (5-6). 757-768. 1999.

32. Wolski, R., Spring, N. and Hayes, J., Predicting the CPU
Availability of Time-shared Unix Systems on the
Computational Grid. In Proceedings of the 8th High-
Performance Distributed Computing Conference, August,
1999, (1999)

33. Zhou, S., LSF: Load Sharing in Large-Scale Heterogeneous
Distributed Systems. In Workshop on Cluster Computing,
(1992)

