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Abstract 

While distributed, heterogeneous collections of 
computers (“ Grids” ) can in principle be used as a 
computing platform, in practice the problems of first 
discovering and then organizing resources to meet 
application requirements are difficult. We present a 
general-purpose resource selection framework that 
addresses these problems by defining a resource 
selection service for locating Grid resources that match 
application requirements. At the heart of this framework 
is a simple, but powerful, declarative language based on 
a technique called set matching, which extends the 
Condor matchmaking framework to support both single-
resource and multiple-resource selection. This 
framework also provides an open interface for loading 
application-specific mapping modules to personalize the 
resource selector. We present results obtained when this 
framework is applied in the context of a computational 
astrophysics application, Cactus. These results 
demonstrate the effectiveness of our technique. 

 

1 Introduction 

The development of high-speed networks (10 Gb/s 
Ethernet, optical networking) makes it feasible, in 
principle, to execute even communication-intensive 
applications on distributed computation and storage 
resources [22].  In heterogeneous environments, 
however, the discovery and configuration of suitable 
resources for applications remain challenging problems. 
Like others [1, 6, 11, 21, 23, 28], we postulate the 
existence of a resource selector service responsible for 
selecting Grid resources appropriate for a particular 

problem run based on that run’s characteristics; 
organizing those resources into a virtual machine with an 
appropriate topology; and potentially also assisting with 
the mapping of the application workload to virtual 
machine resources. These three steps� selection, 
configuration, and mapping� can be interrelated, as it is 
only after a mapping has been determined that the 
selector can determine whether one selection is better 
than another. 

Many projects have addressed the resource selection 
problem. Systems such as NQE [8], PBS [19], LSF [33], 
I-SOFT [16], and Load Leveler [20] process user-
submitted jobs by finding resources that have been 
identified either explicitly through a job control language 
or implicitly by submitting the job to a particular queue 
that is associated with a set of resources. This manually 
configured queue hinders the dynamic resource 
discovery. Globus [10] and Legion [7], on the other 
hand, present resource management architectures that 
support resource discovery, dynamical resource status 
monitor, resource allocation, and job control. These 
architectures make it easy to create high-level 
schedulers. Legion also provides a simple, generic 
default scheduler, but Dail et al. [12] show that this 
default scheduler can easily be outperformed by a 
scheduler with special knowledge of the application. 

The AppLeS framework [6] guides the 
implementation of application-specific scheduler logic, 
which determines and actuates a schedule customized for 
the individual application and the target computational 
Grid at execution time. Petitet et al. developed a more 
modular resource selector for a ScaLAPACK application 
[23]. Since they embed application-specific details in the 
resource selection module, however, their tools cannot 
easily be used for other applications. MARS [18], SEA 
[29] and DOME [4] target particular classes of 
application. (MARS and SEA target applications that can 



be represented by dataflow-style program graph, and 
DOME targets SIMD applications.) Furthermore, neither 
the user nor resource owner can control the resource 
selection process in these systems.   

Condor [21] provides a general resource selection 
mechanism based on the ClassAd language [24], which 
allows users to describe arbitrary resource requests and 
resource owners to describe their resources. A 
matchmaker [25] is used to match user requests with 
appropriate resources. When multiple resources satisfy a 
request, a ranking mechanism sorts available resources 
based on user-supplied criteria and selects the best 
match. Because the ClassAd language and the 
matchmaker were designed for selecting a single 
machine on which to run a job, however, they cannot 
easily be applied when a job requires multiple resources.  

To address these problems, we define a set-extended 
ClassAds language that allows users to specify aggregate 
resource properties (e.g., total memory, minimum 
bandwidth). We also present an extended set-matching 
matchmaking algorithm that supports one-to-many 
matching of set-extended ClassAds with resources. 
Based on these mechanisms, we present a general-
purpose resource selection framework that can be used 
by different kinds of application. 

Within this framework, both application resource 
requirements and application performance models are 
specified declaratively, in the ClassAd language, while 
mapping strategies can be determined by user-supplied 
code. (An open interface is provided that allows users to 
load the application-specific mapping module to 
customize the resource selector.) The resource selector 
locates sets of resources that meet user requirements, 
evaluates them based on specified performance model 
and mapping strategies, and returns a suitable collection 
of resources, if any are available. We also present results 
obtained when this technique was applied in the context 
of a nontrivial application, Cactus [2, 3]. 

The rest of this article is organized as follows. In 
Section 2, we present the set-extended ClassAd language 
and the set matching mechanism. In Section 3, we 
describe the resource selector framework. In Section 4, 
we describe a performance model and mapping strategy 
for the Cactus application used in our case study. In 
Section 5, we present experimental results. Finally, we 
summarize our work and discuss future directions. 

2 Set-Extended ClassAds and Matching 

We describe here our set-extended ClassAd language 
and set-matching algorithm.  

2.1 Condor ClassAds and Matchmaking  

A ClassAd (Classified Advertisement) [24] is a 
mapping from attribute names to expressions. Attribute 
expressions can be simple constants or a function of 
other attributes. A protocol is defined for evaluating an 
attribute expression of one ClassAd with respect to 
another ClassAd. For example, the expression 
“other.size > 3”  in one ClassAd evaluates to true if the 
other ClassAd has an attribute named “size”  and the 
value of that attribute is an integer greater than three. 
ClassAds can be used to describe arbitrary entities. In the 
current context, they are used to describe resources and 
user requests.  

Condor matchmaking [25] takes two ClassAds and 
evaluates one with respect to the other. Two ClassAds 
match if each ClassAd has an attribute named 
“ requirements”  that evaluates to true in the context of 
the other ClassAd. (This symmetry distinguishes 
matchmaking from other commonly used selection 
mechanisms such as LDAP and relational queries. In this 
respect, matchmaking has similarities to unification 
[27].) A ClassAd can also include an attribute named 
“ rank”  that evaluates to a numeric value representing the 
quality of the match. When matchmaking is used for 
resource selection, the matchmaker evaluates a ClassAd 
request with respect to every available resource ClassAd 
and then selects a matching resource with highest rank.  

2.2 Set-Extended ClassAd Syntax 

In set matching, a successful match is defined as 
occurring between a single set request and a ClassAd set. 
The essential idea is as follows. The set request is 
expressed in set-extended ClassAd syntax, which is 
identical to that of a normal ClassAd except that it can 
indicate both set expressions, which place constraints on 
the collective properties of an entire ClassAd set (e.g., 
total memory size) and individual expressions, which 
apply individually to each ClassAd in the set (e.g., 
individual per-resource memory size). The set-matching 
algorithm attempts to construct a ClassAd set that 
satisfies both individual and set constraints. This set of 
ClassAds is returned if the set match is successful.  

Set-extended ClassAds extend ClassAds as follows. 
(We emphasize that this syntax and other aspects of the 
set-matching framework continue to evolve.) 

• A Type specifier is supplied for identifying set-
extended ClassAds: the expression Type=” Set”  
identifies a set-extended ClassAd. 

• Three aggregation functions, Max, Min, and 
Sum, specify aggregate properties of ClassAd 
sets. 



• A Boolean function Suffix(V, L) returns true if 
a member of list L is the suffix of scalar value 
V. 

• The function SetSize returns the number of 
elements within the current ClassAd set. 

The aggregation functions are as follows. 
• Max(expression) returns the maximum value 

returned by expression when applied to each 
ClassAd in a set.  

• Min(expression) returns the minimum value of 
expression in a ClassAd set.  

• Sum(expression) returns the sum of the values 
returned by expression when it is applied to 
each ClassAd in a set. For example, 
Sum(other.memory)>5GB requires that the total 
memory of the resources selected be greater 
than 5 GB. 

Aggregation functions might be used as follows. If a 
job consists of several independent subtasks that run in 
parallel on different machines, its execution time on a 
resource set is decided by the subtask that ends last. 
Thus, we might specify the rank of the resource set to be 
Rank=1/Max(execution-time), which means that the rank 
of the resource set is decided by the longest subtask 
execution time.  

A user can use the Suffix function to constrain 
within particular domains the resources considered when 
performing set matching. For example, 
Suffix(other.hostname, {“ ucsd.edu” , “ utk.edu” }) returns 
true if other.hostname=“ torc1.cs.utk.edu”  because 
“ utk.edu”  is the suffix of “ torc1.cs.utk.edu.”  

2.3 Set-Matching Algorithm 

The set-matching algorithm evaluates a set-extended 
ClassAd against a set of ClassAds and returns a ClassAd 
set that has highest rank. It comprises two phases. 

In the filtering phase, individual ClassAd are 
removed from consideration based on individual 
expressions in the request. For example, the expression 

"other.os==redhat6.1 && other.memory>=100M" 
removes any ClassAd that specifies an operating system 
other than Linux Redhat v6.1 and/or with less than 100 
Mb of memory. A Suffix expression can also be used in 
this phase, as discussed above. A set-matching 
implementation can index ClassAds to accelerate such 
filtering operations.  

In the set construction phase, the algorithm seeks to 
identify a ClassAd set that best meets application 
requirements. As the number of possible ClassAd sets is 
large (exponential in the number of ClassAds to be 
matched), it is not typically feasible to evaluate all 
possible combinations. Instead, we use the following 

greedy heuristic algorithm to construct a set from the 
ClassAds remaining after Phase 1 filtering.  

CandidateSet = NULL;
BestSet=NULL;
LastRank = -1; Rank = 0;
while  (ClassAdSet != NULL)
{
  Next = { X : X in ClassAdSet & &  for all Y in ClassAdSet,
              rank(X+CandidateSet) > rank(Y+CandidateSet); }
  ClassAdSet = ClassAdSet - Next;
  CandidateSet = CandidateSet + Next;
  Rank = rank(CandidateSet);
  If (requirements(CandidateSet)==true & &  Rank > LastRank)

BestSet=CandidateSet;
LastRank=Rank;

}
if BestSet ==NULL return failure
else return BestSet

The algorithm repeatedly removes the “best”  
resource remaining in the ClassAd pool (“best”  being 
determined by the rank of the resulting set) and adds it to 
the “candidate set.”  If the “candidate set”  fulfills the 
specified requirements and has higher rank than the “best 
set”  so far, the “candidate set”  become the new “best 
set.”  This process stops when the ClassAd pool is empty. 
The algorithm returns the “best set”  that satisfies the 
user’s request, or failure if no such resource set is found.  

This algorithm can adapt to different kinds of 
requests. It checks whether the candidate ClassAd fulfills 
the requirements expressed in the request and calculates 
the rank of the resource set based on the evaluation of 
the two expressions named as “ requirements”  and “rank” 
in the request ClassAd. Thus, by these two expressions, 
the user can instruct the matching algorithm to select a 
resource set with particular characteristics (as long as 
these characteristics can be described by expressions).  
This algorithm can also help the user choose the ClassAd 
set on which an application can get a preferred 
performance, for example, one on which the application 
can finish its work before a deadline. 

The greedy nature of our algorithm means that it is 
not guaranteed to find a best solution if one exists. The 
set-matching problem can be modeled as an optimization 
problem under some constraints. Since this problem is 
NP-complete in some situations, it is difficult to find a 
general algorithm to solve the problem efficiently when 
the number of resources is large. Our work provides an 
efficient algorithm with complexity O(N2) with rank 
computation as the basic operation, where N is the 
number of ClassAds after the filtering phase.  

3 Resource Selection Framework 

We have implemented a general-purpose resource 
selection framework based on the set-matching 



technique. It accepts user resource requests and finds a 
set of resources with highest rank based on resource 
information from a Grid information service. An open 
interface allows users to customize the resource selector 
by specifying an application-specific mapping module. 

3.1 System Architecture 

The architecture of our resource selection system is 
shown in Figure 1. Grid information service 
functionality is provided by the Monitoring and 
Discovery Service (MDS-2) component [9, 15] of the 
Globus ToolkitTM [17]. MDS provides a uniform 
framework for discovering and accessing system 
configuration and status information such as the compute 
server configuration and CPU load. The Network 
Weather Service (NWS) [30-32] is a distributed system 
that periodically monitors and dynamically forecasts the 
performance of various network and computational 
resources. Grid Index Information Service (GIIS) and 
Grid Resource Information Service (GRIS) [15] 
components of MDS provide resource availability and 
configuration information. 
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Figure 1: Resource selector architecture  

The Resource Selector Service (RSS) comprises 
three modules. The resource monitor acts as a GRIS, in 
the terminology of [9]; it is responsible for querying 
MDS to obtain resource information and for caching this 
information in local memory, refreshing only when 
associated time-to-live values expire. The set matcher 
uses the set-matching algorithm to match incoming 
application requests with the best set of available 
resources. The performance of some applications, such 
as Cactus, is tightly related to resource topology and 
workload allocation. Thus, it is necessary to map the 
workload to the resources before judging whether those 
resources are good or bad. The mapper decides the 
resource topology and the allocation of application 
workload to resources.  

Because the mapping strategy is tightly related to a 
particular application, it is difficult to find an efficient 
general mapping algorithm suitable for all applications. 
In addition, it is not yet clear how to express mapping 

constraints within ClassAds. Thus, we currently 
incorporate the mapper as a user-specified dynamic link 
library that communicates with the set matching process 
by instantiating certain ClassAd variables: e.g., Rlatency 
and Rbandwidth in the example in the next section. 

3.2 Resource Request 

The RSS accepts both synchronous and 
asynchronous requests described by set-extended 
ClassAds. It responds to a synchronous request with the 
best available resource set that satisfies this ClassAd, or 
“ failure”  if no such resources are available. An 
asynchronous request specifies a request lifetime value; 
the RSS responds if and only if a resource set that 
satisfies the specified ClassAd becomes available during 
the specified lifetime. 

A request may include five types of element:  
• Type of Service: Synchronous or asynchronous. 

• Job description: The characteristics of the job 
to be run, for example, the performance model 
of the job. 

• Mapper: The mapper program to be used. 

• Constraint: User resource requirements, for 
example, memory capability, type of operating 
system, software packages installed.  

• Rank: Criteria for ranking matched resources.   

We can use these five elements to describe a variety of 
requests, as the following Cactus example shows. 

1.  [
2.   ServiceType = "Synchronous";
3.   Type="Set";
4.   iter=100; alpha=0; x=100; y=100; z=100;
5.   A=370; B=254; startup=30; C=0.0000138;
6.   computetime = x*y*alpha/other.cpuspeed*A;
7.   comtime = (other.RLatency+ y*x*B/other.RBandwidth
                   +other.LLatency+y*x*B/other.Lbandwidth);
8.   exectime = (computetime+comtime)*iter+startup;
9.   Mapper = [type ="dll"; libname="cactus"; func="mapper"];
10. requirements =Suffix(other.machine, domains)
                && Sum(other.MemorySize) >= (1.757 + C*z*x*y);
11. domains={  cs.utk.edu, ucsd.edu} ;
12. rank=Min(1/exectime)

13.   ]

Lines 2 and 3 specify that this is a synchronous set-
matching request. Lines 4–8 are the job description 
including the problem size and the Cactus performance 
model. Line 8 models the execution time of every 
subtask on a machine. Line 9 gives the name and 
location of the mapping algorithm used for the 
application. Line 10 specifies the resource constraints, 
which state that (1) the total memory capability of the 



resource set should be larger than the minimum size to 
keep the computation in memory that is described by a 
formula of the problem size, and (2) resources should be 
selected from machines in the “cs.utk.edu”  or 
“ ucsd.edu”  domain that is described in Line 11. Line 12 
indicates that the reciprocal of the execution time of the 
application is used as the criterion to rank candidate 
resources. Because the execution time of the application 
is decided by the subtask that finishes last, the rank of a 
resource set is equal to the minimum value of the 
reciprocal of the execution time of subtasks as specified 
in Line 12. If multiple resource sets fulfill the 
requirements, the resource set on which application gets 
smallest execution time has the highest rank.  

3.3 Resource Selection Result 

The result returned by the resource selector 
(expressed in XML) indicates the selected resources and 
mapping scheme. For example, the following is a result 
obtained for the Cactus application.  

<virtualMachine>
 <result statusCode="200" statusMessage="OK"/>
 <machineList>
 <machine dns="torc2.cs.utk.edu"   processor= 2  x= 20>
 <machine dns="torc3.cs.utk.edu"   processor= 2  x= 15>
 <machine dns="torc6.cs.utk.edu"   processor= 2  x= 15>
 </machineList>
</virtualMachine>

This returned resource set includes three machines, 
each of which has two processors. These three machines 
have one-dimensional topology, and the workload is 
allocated to the machines according to the ratio 
20:15:15.  

4 Cactus Application 

We applied our prototype in the context of a Cactus 
application that simulates the 3D scalar field produced 
by two orbiting sources [2, 3]. The solution is found by 
finite differencing a hyperbolic partial differential 
equation for the scalar field. This application 
decomposes the 3D scalar field over processors and 
places an overlap region on each processor. For each 
time step, each processor updates its local grid point and 
then synchronizes the boundary value.  

4.1 Performance Model 

In this Cactus experiment, we use the expected 
execution time as the criterion to rank all the sets of 
candidate resources. For a 3D space of X*Y*Z grid 
points, the performance model is specified by the 

following formulas, which describe the required memory 
and estimated execution time.  

   Memory size (MB) > = (1.757 + 0.0000138*X*Y*Z)  

   Execution time = startup-time + 
        (computation (0) + communication (0)) *   
                     slowdown(CPU load)  

Function slowdown(CPU load) presents the 
contention effect on the execution time of the 
application. CPU load is defined as the number of 
processes running on the machine. Figueira modeled the 
effect of contention on a single-processor machine [13, 
14]. Assuming that the CPU load is caused by CPU-
bounded processes and that the machine uses round-
robin scheduling method, we extended her work by 
modeling the effect of contention on the dual-processor 
machine. We found that the execution time is smaller if 
we divide a job into two small subtasks than if we run 
this job as one task on dual-processor machines. We 
applied this allocation strategy to dual-processor 
machines and obtained the following contention model, 
which we validate in Section 5.1. 

    slowdown(CPUload) = 
        (2*  CPUcount – 1 + CPUload)/( 2*CPUcount –1 ) 

This formula is applicable when the CPU count is equal 
to one or two.  

Computation(0) and communication(0), the 
computation time and communication time of the Cactus 
application in the absence of contention, can be 
calculated by formulas described in [26]. We incur a 
startup time when initiating computation on multiple 
processors in a Grid environment. In these experiments, 
this time was measured to be approximately 40 seconds 
when machines are from different clusters (sites) and 25 
seconds when machines are in the same cluster. 

4.2 Mapping Algorithm 

We decompose the workload in the Z direction and 
decide the resource topology by using the following 
heuristic. 

1. Pick the machine with the highest CPU speed as 
the first machine of the line. 

2. Find the machine that has the highest 
communication speed with the last machine in 
the line, and add it to the end of the line. 

3. Continue Step 2 to extend the line until all 
machines are in the line.  

We thus attempt to minimize WAN communications 
by putting machines from the same cluster or domain in 
adjacent locations. 

The mapper then allocates the workload to these 
resources. Our strategy is to allocate workload to each 



processor in a fashion inversely proportional to the 
predicted execution time on that processor. 

5 Experimental Results 

To verify the validity of our RSS and the mapping 
algorithm developed for the Cactus application, we 
conducted experiments in the context of the Cactus 
application on the GrADS [5] test bed, which comprises 
workstation clusters at universities across the United 
States (including the University of Chicago, UIUC, UTK, 
UCSD, Rice University, and USC/ISI). We tested the 
execution time prediction function, the Cactus mapping 
strategy, and the set-matching algorithm.  

5.1 Execution Time Prediction Test 

As noted above, our mapping strategy is based on 
the predicted Cactus execution time, which we also use 
for ranking the candidate resource sets (see Section 3.2). 

We tested the execution time prediction function both 
without and with communication time. 

5.1.1. Computation Time Prediction Test. When the 
Cactus application runs on only one machine, there is no 
communication cost. To validate our computation time 
prediction function, we ran the Cactus application on one 
machine and compared the predicted computation time 
with the measured computation time. We did the 
experiments with diverse configurations, including (1) 
different problem sizes (20*20*20, 50*50*50, 
100*100*100), (2) different clusters (UTK cluster, 
UIUC cluster, and UCSD cluster), (3) different CPU 
speeds (cmajor.cs.uiuc.edu 266 MHz, mystere.ucsd.edu 
400 MHz, torc.cs.utk.edu 547 MHz), (4) different 
numbers of processors (UIUC and UCSD machines have 
1 processor, UTK machines have 2 processors), and (5) 
different CPU loads.  

                        
cmajor.cs.uiuc.edu (single-processor, PII 266 MHz) 

 Problem size: 20*20*20 
   cmajor.cs.uiuc.edu (single-processor, PII 266 MHz) 

 Problem size: 50*50*50

          
mystere.ucsd.edu (single-processor, PII 400 MHz) 

Problem size: 50*50*50 
torc1.cs.utk.edu (dual-processor, PIII 547 MHz) 

Problem size: 100*100*100

Figure 2: Measured (points) vs. predicted (line) computation times (in seconds) for Cactus on a single 
node for different problem sizes and machines, as a function of CPU load



Figure 2 illustrates the predicted computation time 
and the measured computation time of the Cactus 
application with different CPU loads and various 
machine configurations. The results show that the 
computation time prediction function gives acceptable 
prediction in all cases. The error in this experiment was 
within 6.2% on average. 

5.1.2. Computation and Communication Time. To test 
our execution time prediction function (which includes 
both computation time and communication time), we ran 
the Cactus application on various machine combinations 
and compared the measured execution time with the 
predicted execution time. We conducted experiments 
with various configurations, including (1) different 
problem sizes (100*100*100, 120*120*240, 
140*140*280, 160*160*320, 200*200*400, and 
220*220*420), (2) different clusters (UCSD cluster and 
UTK cluster), (3) different CPU speeds (o.ucsd.edu 400 
MHz, torx.cs.utk.edu 547 MHz), (4) different numbers 
of processors (UCSD machines have 1 processor, UTK 
machines have 2 processors), and (5) different machine 
combinations.  

Figure 3 shows both the predicted and measured 
execution time for the Cactus application when run in 
seven different configurations of problem size and 
machines: 

1. 100*100*100 on torc 

2. 120*120*120 on torc1 and torc5 

3. 140*140*280 on torc1 and torc5 

4. 160*160*320 on torc1 and torc5 

5. 180*180*360 on torc1, torc3, and torc5 

6. 200*200*400 on torc1, torc3, and torc5 

7. 230*220*420 on torc1, torc3, torc5, o.ucsd.edu 
 
The error is, on average, 13.13%. The time 

prediction formula works well except for problem size 
160*160*320, where the predicted time is much greater 
than the execution time (error=59%). We monitored the 
CPU load of the machines on which the application had 
run during the experiments. We found that a competing 
application had been running on torc1 and torc5 when 
the resource selector collected system information to 
predict the execution time and this application 
terminated before our application run. We therefore 
believe that the reason for this large error rate is that the 
CPU load information we used to predict the 
performance of application does not reflect the real CPU 
load when the application ran.  

Figure 3. Predicted vs. real execution time for 
Cactus, in seven different configurations. See 
text for details. 

5.2 Mapping Strategy Test 

In the mapping strategy experiment, we evaluated 
the benefit gained from our mapping strategy. As 
mentioned in Section 4.2, the mapping strategy put 
machines with a high bandwidth connection into 
adjacent positions in the topological arrangement. 
Clearly, this one-dimensional arrangement minimizes the 
communication via WAN and thus reduces the total 
communication cost. In this section, we focused on how 
well the workload allocation strategy works. In 
particular, we tested whether the execution time of the 
Cactus application with allocation given by the mapper 
is shorter than its execution time with any other 
allocation strategy.  

          

Figure 4. Execution times for different workload 
allocations on two machines. 
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We tested the workload allocation strategy on two 
machines (dralion.ucsd.edu and cirque.ucsd.edu). One 
machine (dralion) has a CPU speed of 450 MHz and no 
CPU load during the experiment. The other machine 
(cirque) has a CPU speed of 500 MHz and a CPU load of 
2 during the experiment. We set up the Cactus 
application with a 3D space of 100*100*200 grid points 
and one-dimensional decomposition. According to our 
workload allocation strategy, the best performance was 
obtained when the workload was allocated on the two 
machines in the proportion of 146:54 (dralion:cirque) in 
the Z direction. We ran the Cactus application with this 
workload allocation and its variations (obtained by 
moving the division point to the right and left) and 
compared the execution time of the application with 
other workload allocation strategies.  

The execution time for different workload 
allocations is shown in Figure 4. We can see that the 
execution time with the allocation given by the mapper 
is very close to optimal (only 1.2% higher than optimal). 
Moreover, the execution time increases when the 
deviation from our workload allocation scheme 
increases. Thus we can say that the workload allocation 
strategy works well.  

5.3 Resource Selection Algorithm Test 

To validate the resource selection algorithm, we 
asked the resource selector to select a set of machines for 
the Cactus application from a pool of three candidates. 
We also measured the execution time for the Cactus 
application on all possible machine combinations and 
used that information to determine whether the resource 
selector made the best choice. We performed this 
experiment both on machines from a single cluster and 
on machines from different clusters.  

Figure 5. Execution time on all combinations of 
three candidate machines from a single cluster 

In the single cluster experiment, the three machines 
are: { mystere, o, saltimbanco} .ucsd.edu. We number the 
seven possible machine combinations as follows: 

1. mystere, o, saltimbanco 
2. o, mystere 
3. saltimbanco, mystere 
4. o, saltimbanco 
5. o 
6. saltimbanco 
7. mystere 

These machines are connected via 100 Mbps 
Ethernet and thus communication costs between 
machines are relatively small. Our results, presented in 
Figure 5, show that the lowest execution time is for the 
first of the seven combinations: all three machines. 
Happily, our resource selector also identifies this 
combination as the best. 

In the two-cluster experiment, the machines are 
torc6.cs.utk.edu and { o, saltimbanco} .ucsd.edu. We 
number the seven combinations as follows. 

1. torc6, o,  saltimbanco [BOTH] 
2. torc6, saltimbanco [BOTH] 
3. o. saltimbanco [UCSD] 
4. torc6, o [BOTH] 
5. saltimbanco [UCSD] 
6. o [UCSD] 
7. torc6 [UTK] 

In this case, the high cost of inter-cluster communication 
resulted in the resource selector selecting the single 
(high-speed) UTK machine. The results in Figure 6 
confirm that this was the right choice. 
 

Figure 6. Execution time on all combinations of 
three candidate machines from two clusters.  
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6 Conclusion and Future Work 

Grids enable the aggregation of computational 
resources to achieve higher performance and/or lower 
cost, than can be achieved on a single system. The 
heterogeneous and dynamic nature of Grids, however, 
leads to numerous technical problems, of which resource 
selection is one of the most challenging.   

We have presented a general-purpose resource 
selection framework that provides a common resource 
selection service for different kinds of application. This 
framework combines application characteristics and real-
time status information to identify a suitable resource set. 
A set-extended ClassAd language is used to express 
resource requests, and a new technique called set 
matching is used to identify suitable resources. We have 
used an application, Cactus, to validate the design and 
implementation of the resource selection framework, 
with promising results. 

Our framework should adapt to different 
applications and computational environments. Further 
experiments on other kinds of application are needed to 
validate and improve our work. We also plan to provide 
more mapping algorithms for different kinds of 
application.  
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