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Abstract 

 
We describe a decentralized, adaptive mechanism for 

replica location in wide-area distributed systems. Unlike 
traditional, hierarchical (e.g, DNS) and more recent (e.g., 
CAN, Chord, Gnutella) distributed search and indexing 
schemes, nodes in our location mechanism do not route 
queries, instead, they organize into an overlay network 
and distribute location information. We contend that this 
approach works well in environments where replica 
location queries are prevalent but the dynamic component 
of the system (e.g., node and network failures, replica 
add/delete operations) cannot be neglected. 

We argue that a replica location mechanism that 
combines probabilistic representations of replica location 
information with soft-state protocols and a flat overlay 
network of nodes brings important benefits: genuine 
decentralization, low query latency, and flexibility to 
introduce adaptive communication schedules.  

We support these claims in two ways. First, we provide 
a rough resource consumption evaluation: we show that, 
for environments similar to those encountered in large 
scientific data analysis projects, generated network traffic 
is limited and, more importantly, is comparable to the 
traffic generated by a request routing scheme. Second, we 
provide encouraging performance data from a prototype 
implementation. 

 
 

1. Introduction 
 
Wide-area distributed systems often replicate entities 

in order to improve reliability, access latency, or 
availability. As a result, these systems need mechanisms 
for locating replicas, i.e., mechanisms for mapping a 
replica identifier to the one or more replica locations. A 
number of distributed systems require such location 
mechanisms. For example, nodes participating in a 
cooperative Internet proxy cache [1-3] must locate a 
cached Web page given its URL, while nodes in a 
distributed object system need to find an instantiation of 
an object given an object handle [4]. These systems need 

to scale to millions of replicated entities and hundreds of 
sites at least, all while operating in dynamic environments 
where network outages or site failures are to be expected. 

A recent paper [5] introduces the replica location 
problem in a Data Grid [6, 7]: given a unique logical 
identifier for desired data content, we need a mechanism 
to determine the physical locations of one or more copies 
of this content. A slightly different semantic makes this 
problem different from cooperative Internet caching: a 
replica location mechanism for Data Grids might have to 
serve requests for many or all replicas corresponding to a 
given logical identifier. Requests for many (or N) replicas 
might be generated by a brokering service searching for a 
replica with suitable performance characteristics. Requests 
for all replicas might be generated, for example, by a 
service implementing file system functionalities. 
However, in a distributed, asynchronous environment, 
where nodes leave the system without warning, it is 
impossible to provide a completely consistent system view 
[8, 9] - and thus impossible to serve “all replicas”  requests 
reliably in a decentralized manner. 

Giggle [5] contends that the performance of the overall 
system benefits from relaxed consistency semantics at 
lower system levels, and that stronger guarantees can be 
added within the limited set of high-level components 
requiring them. (For example, a versioning mechanism 
can be used to handle file updates.) Therefore, a replica 
location service designed in this context can adopt 
inconsistency as a ‘modus-operandi’  and make tradeoffs 
between inconsistency levels and operational costs. 

In this article, we present a probabilistic approach to 
the replica location problem and show that relaxed 
consistency constraints allow for a decentralized, 
low-latency, low-overhead solution. In contrast to 
traditional hierarchical, (e.g., DNS) and recent distributed 
search and indexing schemes (e.g., CAN, Chord, 
Gnutella), nodes in our location mechanism do not route 
queries but organize into an overlay network and 
distribute location information. Each node that participates 
in the distribution network builds, in time, a view of the 
whole system and can answer queries locally without 
forwarding requests. This straightforward design brings 
benefits (e.g., reduced query latency, load sharing, 



   

robustness, etc.) in environments such as GriPhyn’s [10] 
large-scale data analysis projects. These environments are 
characterized by high query rates and significant, albeit 
lower, rates of replica creation and deletion, and node and 
network failures. However, as an environment becomes 
more dynamic and replica create/delete operations start to 
prevail over queries, query-routing schemes might sa 
better tradeoff. 

Our replica location system design integrates three 
techniques: a flat overlay network of nodes (to obtain 
genuine decentralization and resilience when facing 
network and node failures), probabilistic representations 
of replica location information (to achieve important space 
and bandwidth reductions), and soft-state protocols (to 
decouple node state and achieve robustness). These are 
well-known techniques; the merit of this paper is to put 
them together in a flexible design and investigate 
emerging synergies. 

The rest of this paper is organized as follows. The next 
section details the replica location problem requirements 
and the terminology we use. Section 3 briefly presents 
related work while Section 4 introduces the three 
techniques we use to build the location mechanism. 
Section 5 presents the replica location service as a whole 
and Section 6 documents our experience to date in 
building this service. We conclude in Section 7. 

 
2. Replica location problem 

 
In this section we briefly introduce the terminology 

(mainly adopted from [5]) used throughout this paper, as 
well as functional and performance requirements for a 
replica location service. 

 
2.1. Terminology 

 
 A logical file name (LFN) is a unique logical 

identifier for desired data content. The location service 
must identify one or more physical copies (replicas) of the 
logical file. Each physical copy is identified by a physical 
file name (PFN), which specifies its location on a storage 
site. 

A number of storage sites (SS) collaborate to share 
their storage capabilities to all users. A replica location 
node (RLN) aggregates LFN to PFN mappings from one 
or more SSs and collaborates with other RLNs to build a 
distributed catalog of LFN mappings.  

RLNs offer both a query interface to clients and a 
registration interface that SSs can use enlist PFN to LFN 
mappings for files stored locally. RNLs also organize into 
a search network to allow remote searches. Nodes in this 
network distribute compressed information on the set of 
LFN mappings stored locally in the form of node digests. 

 

2.2. Functional requirements 
 
The main task of the location service is to find a 

specified number of PFNs given a LFN. Requests might 
contain multiple LFNs, and thus the location system 
should also handle efficiently requests for PFNs 
associated with ad-hoc sets of LFNs. 

Below, we briefly enumerate other functional 
requirements (documented extensively in [5]): 
��Autonomy: Failure of various components (RLNs, 

network outages) should not prevent the remaining 
healthy parts of the system operate correctly. 

��Best-effort consistency [11]: RLNs might have 
incomplete and/or outdated views of the system. The 
system tries to be eventually consistent, but only does 
the best it can without impeding performance.  

��Adaptiveness: Nodes get overloaded, networks get 
congested, sometimes users get frantic and all submit 
queries at the same time. Overall system performance 
should degrade smoothly when facing bursts in 
demand or the quality of resources used decays. 

 
2.3. Scale requirements 

 
The total numbers of files/replicas, the numbers of 

storage sites and their geographical distribution, as well as 
aggregated query and update rates ultimately determine 
the design of the location mechanism. We use 
requirements for high energy physics (HEP) data-analysis 
projects [12, 13] as a realistic starting point.  

The HEP community estimates an initial target of 
500 million replicas to be kept track of by our system. (To 
put things into perspective, note that Google indexes 
2 billion documents, so we are on approximately the same 
scale as the Web). Query and update rates estimates are 
more likely to change but the current estimates are: 
aggregate query rates 100,000 queries/sec (peak) and 
10,000 queries/sec (average), with update rates one order 
of magnitude lower.  

The number of participating organizations and their 
need to ‘own’  individual RLN for latency-hiding and/or 
security or administrative reasons determines the total 
number of RLNs. HEP projects estimate around two 
hundred RLNs, but this number could easily grow larger.  

 
3. Related work 

 
Distributed search and indexing mechanisms have 

been a topic of extensive research. The most relevant to 
our current work are CAN [14], Chord [15], Tapestry 
[16], Past [17], and Gnutella [18], in which queries are 
routed through an overlay network. CAN, Chord, 
Tapestry, and Past build structured, search-efficient 
indexing structures that provide good scalability and 



   

Figure 1: Bloom filter’s false positive rate vs. the 
size of the filter. The plot presents (analytically obtained 
data for) the variation of false positive rates with size of the 
filter (bits/entry) for 2, 4, 8 or 16 perfect hash functions used.
Note that filter size can be traded for a higher false positive rate. 
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search performance, although increasing the cost of file 
and node insertion and removal. Gnutella does not use 
indexing mechanisms; its relatively good search 
performance (as measured in number of hops) is offset by 
intensive network usage. 

Compared to the above location schemes based on 
query routing and forwarding, our system, based on 
location information dissemination, makes an explicit 
tradeoff: reduced query latency for increased memory 
requirements at nodes. Additionally, one scheme or 
another will generate more network traffic depending on 
the ratio of query rates vs. system dynamic behavior 
(replica add and delete rates).  

Structured query routing schemes, similar to CAN or 
Chord, are unsuitable mechanisms for our replica location 
service for an additional reason: site autonomy requires 
that a RLN and its associated local SSs serve local users 
even when network outages disconnect the site from the 
external Internet.  

Cooperative Internet proxy-caches [1-3, 19] offer 
comparable functionality to our location mechanism. A 
cooperative proxy-cache receives requests for an URL and 
locates one cached replica at other collaborating proxies 
(unlike our replica location mechanism that might locate a 
specified number of replicas). Hierarchical caching in 
proxy servers has been extensively analyzed [2]. Two 
distinct solutions that do not use hierarchies are Summary 
Cache and the Cache Array Routing Protocol. Summary 
Cache [19] uses Bloom filters (dubbed “cache 
summaries” ): each cache periodically broadcasts its 
summary to all members of the distributed cache. We use 
a similar scheme but, unlike nodes in a Summary Cache 
that uses fixed communication schedules, RLNs use an 
adaptive soft-start protocol to distribute node summaries 
(or digests). The Cache Array Routing Protocol [20] uses 
consistent hashing [21, 22] to partition the name space and 
route requests. Site autonomy requirements prevent us 
from using a similar solution in this context.  

Although apparently similar, Content Distribution 
Networks (CDNs) [23] face a different problem: in this 
case individual nodes are not autonomous, a single 
authority controls replication decisions and the request 
forwarding mechanism. 

 
4. Building blocks  

 
This section details the three techniques on which our 

replica location service design is built: (1) an overlay 
network to obtain decentralization and reliability, (2) 
compressed probabilistic representation of sets that bring 
important space and bandwidth savings, and (3) soft-state 
mechanisms to decouple node states.  

 

4.1. Over lay network  
 
Overlay networks have been used to implement 

features unavailable at lower network layers, such as 
multicast [24, 25] and security [26, 27]. A recent project 
[28] shows that aggressively optimized custom routing 
over an overlay network can significantly improve 
performance and availability of network paths between 
Internet hosts. The proven versatility and achieved scale 
of P2P systems based on overlay networks (e.g., Gnutella, 
FastTrack) provide another argument for using this 
technique. 

An additional argument for an overlay network is 
reduced security overhead. In a traditional system, nodes 
might need to authenticate at each message exchange. In 
an overlay, nodes need to authenticate only when entering 
the overlay and establishing a connection. Then, if 
necessary, all traffic can be secured through an 
application-level encryption scheme. 

RLNs organize into an overlay network and distribute 
compact, probabilistic representations of the set of LFNs 
registered locally. 

 
4.2. Compact set representation with Bloom filters 

 
Bloom filters [29, 30] are compact data structures used 

for probabilistic representation of a set in order to support 
membership queries (“ Is element x in set Y?”). The cost of 
this compact representation is a small rate of false 
positives: the structure sometimes incorrectly recognizes 
an element as a set member. We describe Bloom filters in 



   

detail in the Appendix. However, to give a taste of 
achievable compression rates, we note that a set of N 
elements can be represented using 2N bytes with less than 
0.1% false positive rates and lookup time of about 100� s. 

In the rest of this paper, we borrow a term from the 
cooperative Internet proxy caching community [1] and use 
the term ‘node digest’  for the Bloom filter compressed 
representation of the set of LFNs registered at a RLN. 
Initially, RLNs multicast their digests. Updates are 
handled via a combination of periodic multicasts of both 
complete digests and shorter update messages. An 
additional useful feature is that, when a node determines 
that the available bandwidth is insufficient to keep up with 
offered traffic, or when memory at a node is scarce, 
digests can be further compressed (although with 
precision loss) at intermediary nodes within the multicast 
network (Figure 1). This strategy offers an elegant 
mechanism for smooth QoS degradation when facing 
bursts in demand. 

In summary we use Bloom filters for their efficient 
compression, low query overhead, incremental update 
ability, and tunable size vs. false positive rates.  

 
4.3. Soft-state updates 

 
Generally in soft-state mechanisms [31, 32] a state 

producer sends its state to one or more receivers over a 
(lossy) communication channel. Receivers maintain 
copies of this state together with associated timeouts. State 
is deleted if not refreshed within a timeout interval. This 
mechanism is used in a number of Internet (RSVP, RIP) 
and Grid protocols (MDS-2) and works well in practice. 

Soft-state mechanisms have two main advantages: 
��‘Eventual’  state. As information introduced by failed 

nodes is eventually eliminated through timeouts, there 
is no need for explicit failure detection and state 
removal. Similarly, new nodes do not set up an explicit 
state-gathering protocol when joining; state simply 
flows through the network and a long-lived node 
eventually collects all available state. (One could argue 
that making full state available only in time creates an 
incentive for nodes to participate longer in the system). 

��Adaptiveness. Traditionally, soft state systems have 
used fixed, empirically determined send rates. 
However, state producers can also obey more complex 
policies that save network bandwidth (e.g. “generate an 
update each hour and each time the set of files stored 
locally has changed by 10%, but make sure not to 
employ more than 1% of the available network 
bandwidth” ).  In this case, receivers have to estimate 
timeouts dynamically [32]. In order to further reduce 
generated network traffic the soft-state mechanism 
could combine full state announcements with 
incremental updates.  

 

 

Administrative 
domain borders 

RLN 

Storage sites  
Figure 2: Replica location service organization. 
Storage sites publish LFN to PFN mappings for files stored 
locally to Replica Location Nodes (RLNs). RLNs (black 
circles in the figure) store these mappings and compute 
digests: compressed representations for the set of LFNs 
stored at local SSs. RLNs organize into an overlay network 
and distribute digests using a soft-state protocol. 
 
5. Assembling the pieces 

 
In a nutshell, RLNs organize into a flat overlay 

network and distribute their digests using a soft-state 
mechanism (Figure 2).  

A broader description of the location mechanism starts 
with the three functionalities offered by a RLN: 
��Storage site (SS) registration. An RLN allows SS(s) to 

register/delete pairs of (LFN, PFN) with the replica 
location service. The details of the SS-RLN interaction 
are outside the scope of this paper. However, we note 
that a soft-state mechanism can be used here as well. 

��Querying. When receiving a query (an LFN for which 
the associated PFN is required), a RLN checks first to 
see if a LFN mapping is stored locally. If it is, then the 
RLN returns the associated PFN(s). Otherwise, it 
checks the digests available locally to see which remote 
RLN might store mappings for the requested LFN 
(remember digests allow for false positives). If one is 
found, the local RLN contacts the remote RLN to 
obtain the associated PFN(s) that are subsequently sent 
back to the client. Alternatively the remote RLN 
address(es) could be returned, and the querying client 
could contact each of them and obtain PFN(s). The 
latter scheme takes some burden off the RLN, but 
prevents caching at the RLN level.  

This mechanism extends intuitively to requests for 
many (exactly N) or all PFNs associated with a given 
LFN. It also handles requests for PFNs associated with 
sets of LFNs. 

��Digest distribution network. This component is the core 
of the location system and its performance is key to 



   

overall performance. RLNs distribute digests through 
the overlay using the soft-state mechanism. Nodes have 
hard upper limits on the network traffic that they 
generate into the overlay and soft lower (in)consistency 
limits (e.g., “generate a soft-state update each time a 
X% of the content has been modified with at most Y% 
inaccuracy. Generated traffic should not be above Z 
bps”). 
We use a bootstrap mechanism similar to that used in 

Gnutellas: a new node obtains, through an out-of-band 
channel, the location of a node already in the network. It 
then connects to the network and uses the information 
flowing in the overlay to discover other nodes and create 
new connections if necessary.  

Undoubtedly, the topology of the overlay network 
determines its efficiency in using the underlying 
networking infrastructure [18]. Creating a self-organizing 
overlay that matches the underlying network topology is a 
challenging topic that we are currently investigating.   

  
5.1. Overall benefits  

 
The mix of techniques that we use brings important 

benefits: 
��Low query latency. Looking up one PFN implies, with 

high probability, at most two calls across the network. 
This cost compares favorably with other distributed 
index systems (CAN, Tapestry) that route queries and 
thus incur larger query latencies. 

��Adaptive. When the system is overloaded, source nodes 
reduce their update rate while intermediary nodes may 
combine update messages. 

��Robust, high availability. There is no single point of 
failure in the system. As long as the overlay network 
remains connected, node failures do not prevent the 
remaining parts of the system from operating correctly. 

��Manageability. Manual configuration and maintenance 
of even medium-sized sets of resources becomes 
quickly a daunting task. Our solution based on a self-
configuring overlay network reduces administration 
overhead to a minimum. 

��High throughput. Searches for sets of files (as opposed 
to searches for one file at a time) are likely to be the 
norm. In this case query routing protocols do not help 
much as a multiple-LFN query generates a large 
number of individual queries to be routed in the 
network. Our system benefits from the (approximate) 
global image available at each node and can process 
requests in batches, taking advantage of request locality 
characteristics (i.e., a single request issued for LFNs 
that are mapped on the same remote RLN). 

 

5.2. Rough resource consumption evaluation  
 
Our decentralized system is designed to provide low 

latency, robustness and high-availability in an unreliable, 
wide-area environment. There are two types of resources 
it consumes ‘at large’ : system memory and network 
bandwidth. 

Each node maintains a compressed image of the whole 
system: in the limit, one digest for each node in the 
system. Assuming 500 million replicas and digests sized 
at 2 bytes per entry, one node needs 1 GB to represent the 
whole system state with a false positive rate of 0.05%. 

We provide a crude evaluation for the generated traffic 
when using the maximal requirements outlined in 
Section 2. Assume 500 RLNs, each maintaining 
information about 1 million replicas. Assume an average 
add/drop rate of 2 replica/sec at each node and a 1% 
change trigger to generate a soft-state update message 
(i.e., an update message is generated if 1M * 1% = 10,000 
replicas have been added or deleted). Assume further that 
one in ten generated messages describes the state 
completely; the others are incremental updates. In this 
case a RLN has to support digest traffic of about 25 kBps 
for each of its overlay links. Generating one complete 
digest for every 100 updates reduces the traffic to 4 kBps. 
Assuming 20 queries/sec per node and 200 bytes per 
query, a further 8 kBps are necessary to support local 
query traffic. Thus, we see that a mechanism based on 
query forwarding will not fare significantly better: 
assuming an average of 10 forwarding hops, the generated 
traffic is about the same. 

We stress that we do not claim that the approach 
described here scales better than current distributed hash 
table solutions (CAN, Chord, Tapestry, etc.) based on 
structured overlays. Rather, we contend that for a realistic 
class of problems this approach generates comparable (if 
not less) traffic and allows for significantly lower query 
latencies. The class of problems for which our approach 
works well is precisely those envisaged by GriPhyN’s 
data intensive projects: hundreds to thousands of RLNs 
and query rates one order of magnitude greater than 
replica add/delete rates. In addition, we note that our use 
of unstructured overlays should allow our solution to cope 
better with node and network failures.  

 
6. Implementation and per formance data 

 
We currently use Python to implement a proof-of-

concept prototype of the replica location service described 
here. We have tested the main components of the system 
separately and on small-scale deployments. We present 
below our preliminary performance results. 
��Bloom Filters. We have experimented with various 

configurations of Bloom filters and obtained 



   

compression and false positive rates close to those 
predicted by theory (see Appendix A for details), and 
lookup times in the order of 100µs per lookup. 

��Replica Location Node (RLN). A single client querying, 
over a LAN, an isolated RLN storing 10 million LFN 
to PFN mappings achieved over 300 queries per second 
(without authentication); with multiple clients, 
throughput to the RLN peaked at 3,000 queries per 
second. While we still have to evaluate the cost of 
authentication, these initial results are encouraging.  

��Overlay Network. We have experimented with small-
scale overlays (24 RLNs, 50 million replicas) with 
manually configured topologies. In this configuration, 
our system achieves 2,000 query/sec rates concurrently 
with 1,200 updates/sec. While these setups do not test 
the reliability of our system, or its ability to adapt, they 
do provide an initial (and encouraging) idea of 
achievable overall performance. We stress that to date 
we have been more concerned with implementing RLN 
functionality than optimizing for performance.  
Currently we are adding authentication (using Grid 

Security Infrastructure [33]) and self-configuring 
overlays, and experimenting with various configurations 
of the soft-state update mechanism.  
 
7. Summary 

 
This paper describes a decentralized, adaptive 

mechanism for replica location in wide-area distributed 
systems. Unlike traditional, hierarchical (e.g, DNS) and 
more recent (e.g., CAN, Chord, Gnutella) distributed 
search and indexing schemes, nodes in our location 
mechanism do not route queries, instead, they organize 
into an overlay network and distribute location 
information. We contend that this approach works well in 
environments where replica location queries are prevalent 
but the dynamic component of the system (e.g., node and 
network failures, replica add/delete operations) cannot be 
neglected. 

This paper argues that a replica location mechanism 
that combines probabilistic representations of replica 
location information with soft-state protocols and a flat 
overlay network of nodes brings important benefits: 
genuine decentralization, resilience when facing network 
and node failures, low query latency, and flexibility to 
introduce adaptive communication schedules.  

We support these claims with two arguments. First, we 
provide a rough resource consumption evaluation: we 
show that, for environments similar to GriPhyN’s large 
data-analysis projects, generated network traffic is limited 
and, more importantly, is comparable to the traffic 
generated by a request routing scheme. Second, we 
provide encouraging early performance data from our 
prototype implementation.  

We are currently investigating hybrid approaches that 
combine query forwarding with information dissemination 
in self-organizing, unstructured overlays. One possible 
approach [34] benefits from data sharing patterns in 
scientific collaborations and organizes the overlay 
network so as follow the small-world sharing patterns that 
emerge in these collaborations. Nodes within a small-
world (a cluster) use an information dissemination 
mechanism similar to that discussed in this paper to serve 
requests for files available within the cluster. Requests for 
other files are forwarded to different clusters. 

 
8. Appendix: Bloom filters 

 
Bloom filters [29] are compact data structures for 

probabilistic representation of a set in order to support 
membership queries (i.e., queries that ask: “ Is element x in 
set Y?”). This compact representation is achieved at the 
cost of a small rate of false positives in membership 
queries; that is, queries might incorrectly recognize an 
element as a set member.  

 
8.1. Usage 

 
Since their introduction in [29], Bloom filters have 

seen various uses: 
��Web cache sharing. Collaborating Web caches use 

Bloom filters (called “cache digests”  or “cache 
summaries” ) as compact representations for the local 
set of cached files. Each cache periodically broadcasts 
its summary to all other members of the distributed 
cache. Using all summaries received, a cache node has 
a (partially outdated, partially wrong) global image 
about the set of files stored in the aggregated cache. 

��Query filtering and routing ([35-37]) The Secure 
Discovery Service [35] subsystem of the Ninja project 
[38] organizes service providers in a hierarchy. Bloom 
filters are used as summaries for the set of services 
offered by a node. Summaries are sent upwards in the 
hierarchy and aggregated. A query is a description for a 
specific service, also represented as a Bloom filter. 
Thus, when a member node of the hierarchy 
generates/receives a query, it has enough information at 
hand to decide where to forward the query: downward, 
to one of its descendants (if a solution to the query is 
present in the filter for the corresponding node), or 
upward, toward its parent (otherwise). 

��Compact representation of a differential file [39]. A 
differential file contains a batch of database records to 
be updated. For performance reasons, the database is 
updated only periodically (e.g., at midnight) or when 
the differential file grows above a certain threshold. 
However, in order to preserve integrity, each 
reference/query to the database has to access the 



   

differential file to see if a particular record is scheduled 
to be updated. To speed up this process, with little 
memory and computational overhead, the differential 
file is represented as a Bloom filter. 

��Free text searching [40]. The set of words that appear 
in a text is succinctly represented using a Bloom filter 
 

8.2. Constructing Bloom filters 
 
Consider a set },...,,{ 21 naaaA = of n elements. 

Bloom filters describe membership information of A using 
a bit vector V of length m. For this, k hash functions, 

khhh ,...,, 21  with }..1{: mXhi → , are used. The 
following procedure builds an m bits Bloom filter, 
corresponding to a set A using khhh ,...,, 21  hash 
functions: 

 
Pr ocedur e Bl oomFi l t er  ( set  A,  

        hash_f unct i ons_set  h,  i nt  m)  
  r et ur ns  f i l t er  
  f i l t er  = new m bi t  vect .  i ni t i al i zed t o 0 
  f or each ai  i n A:  
 f or each hash f unct i on hj:  
            f i l t er [ hj(ai)]  = 1 
   end f or each 
  end f or each 
r et ur n f i l t er  

 
Therefore, if ai is member of a set A, in the resulting 

Bloom filter V all bits obtained corresponding to the 
hashed values of ai are set to 1. Testing for membership of 
an element elm is equivalent to testing that all 
corresponding bits of V are set:  

 
Pr ocedur e Member shi pTest  ( el m,   

    f i l t er ,  hash_f unct i ons h)  
 r et ur ns  yes/ no 
 f or each hash f unct i on hj:  
  i f  f i l t er [ hj(elm)]  ! = 1 r et ur n No 
 end f or each 
r et ur n Yes 

 
An important feature of the algorithm is that filters can 

be built incrementally: as new elements are added to a set 
the corresponding positions are computed through the 
hash functions and bits are set in the filter. Moreover, the 
filter expressing the reunion of two sets is simply 
computed as the bit-wise OR applied over the two 
corresponding Bloom filters. 

 
8.3. Bloom filters: the math  

 
In this section we follow the same lines of reasoning 

as [41]. One prominent feature of Bloom filters is that 
there is a clear tradeoff between the size of the filter and 

the rate of false positives. Observe that after inserting n 
keys into a filter of size m using k hash functions, the 
probability that a particular bit is still 0 is:  

 m
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In (2) perr is minimized for 2ln
n

m
k =  hash 

functions. In practice however, a smaller number of hash 
functions are used. The reason is that the computational 
overhead of each hash additional function is constant 
while the incremental benefit of adding a new hash 
function decreases after a certain threshold (Figure 3). 

 

1.E-07

1.E-06

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1 4 7 10 13 16 19 22 25 28 31
Number of hash functions

F
al

se
 p

os
it

iv
es

  r
at

e 
(l

og
 s

ca
le

)

 
Figure 3: False positive rate as a function of the 
number of hash functions used. The size of the 
Bloom filter is 32 bits per entry (m/n=32). In this case using 
22 hash functions minimizes the false positive rate. Note 
however that adding a hash function does not significantly 
decrease the error rate when more than 10 hashes are 
already used 
 

The central formula for engineering Bloom filters, (2), 
helps us computing minimal memory requirements (filter 
size) and number of hash functions given the maximum 
acceptable false positive rate and number of elements in 
the set (as we detail in Figure 4). 
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Figure 4: Size of Bloom filter (bits/entry) as a 
function of the error rate desired. Different lines 
represent different numbers of hash keys used. Note that, 
for the error rates considered, using 32 keys does not 
bring significant benefits over using only 8 keys. 
 

To summarize: Bloom filters are compact data 
structures for probabilistic representation of a set in order 
to support membership queries. The main design tradeoffs 
are the number of hash functions used (driving the 
computational overhead), the size of the filter and the 
error (collision) rate. Formula (2) is the main formula for 
tuning parameters according to application requirements. 
 
8.4. Compressed Bloom filters 

 
Applications that use Bloom filters may need to 

communicate them across a network. In this case, besides 
the three performance metrics we have seen so far: (1) the 
computational overhead to look up a value (related to the 
number of hash functions used), (2) the size of the filter in 
memory, and (3) the error rate, a fourth metric can be 
used: the size of the filter transmitted across the network. 
Mitzenmacher shows that compressing Bloom filters 
might lead to significant bandwidth savings at the cost of 
higher memory requirements (larger uncompressed filters) 
and some additional computation time to compress the 
filter that is sent across the network [30]. 
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