
A Fault Detection Service for Wide Area Distributed Computations

Paul Stelling1 Ian Foster2 Carl Kesselman3 Craig Lee1 Gregor von Laszewski 2

1 The Aerospace Corporation 2 Mathematics and Computer Science
El Segundo, CA 90245-4691 Argonne National Laboratory

Argonne, IL 60439
3 Information Sciences Institute
University of Southern California

Marina del Rey, CA 90292

Abstract

The potential for faults in distributed computing sys-
tems is a significant complicating factor for applica-
tion developers. While a variety of techniques exist for
detecting and correcting faults, the implementation of
these techniques in a particular context can be diffi-
cult. Hence, we propose a fault detection service de-
signed to be incorporated, in a modular fashion, into
distributed computing systems, tools, or applications.
This service uses well-known techniques based on un-
reliable fault detectors to detect and report component
failure, while allowing the user to tradeoff timeliness of
reporting against false positive rates. We describe the
architecture of this service, report on experimental re-
sults that quantify its cost and accuracy, and describe
its use in two applications, monitoring the status of
system components of the GUSTO computational grid
testbed and as part of the NetSolve network-enabled nu-
merical solver.

1 Introduction

A major difference between distributed and sequen-
tial computing, as they are usually practiced, is that
in a distributed computation, individual components
may fail without the entire computation being termi-
nated. Indeed, components may fail without the rest of
the computation being aware that failure has occurred.
These phenomena represent both an opportunity and
a challenge. The opportunity is that a computation
can, in principle, continue to operate despite failure
of individual components. The challenge is that new
techniques are required for detecting and responding to

component failures. Many years of research on these
topics have yielded a considerable body of theoretical
and practical knowledge of fault detection, handling,
and recovery techniques.

In our work, we approach these issues from the per-
spective of the user of what are termed computational
grids [9], that is, networks of computing resources, of-
ten high-performance computers, intended to be used
in an integrated fashion for such problems as collab-
orative engineering, computational steering, and dis-
tributed supercomputing. Grid programmers often
want to adapt existing computational models, tools,
or applications for distributed execution. They require
services that simplify this task by encapsulating com-
plex aspects of distributed computing environments. In
previous work, we have developed and demonstrated
the utility of services for resource location, resource
allocation, information, communication, security, and
data access, collectively termed the Globus toolkit [8].
These services use simple local mechanisms to support
a variety of global policies. For example, the Globus
resource management service deploys just a simple lo-
cal manager at each managed resource, but supports
a variety of management policies via resource brokers
and co-allocators [6].

In this paper, we propose a low-level service to
support fault handling strategies in grid applications.
These applications may want to respond to component
failure in a variety of ways. For example, they may

• terminate the entire application (i.e., fail-stop);

• ignore the failure and continue execution;

• allocate a new resource and restart the failed ap-
plication component [13, 4]; or



• use replication and reliable group communication
primitives to continue execution [1, 15].

Each of these behaviors has costs and benefits asso-
ciated with it and the appropriate behavior will be
application-dependent.

To date, grid applications have either ignored fail-
ure issues or have implemented failure detection and
response behavior completely within the application.
This approach places an undue burden on the appli-
cation developer and complicates the design and de-
velopment of grid applications. The situation could
be improved considerably if the underlying grid infras-
tructure provided basic services that support the im-
plementation of application specific failure behaviors,
such as those described above.

In this paper, we consider the nature of these grid
services and propose a specific service based on fault
detectors, which detect when a system component has
failed and notify the application of that fact. Fac-
tors such as the highly variable communication latency
and best-effort service provided by today’s wide area
networks, and the need to construct a scalable ser-
vice impact the design of the fault-detector. These
pragmatic issues dictate that we consider an unreli-
able fault-detection service which may sometimes re-
port a resource to have failed, only to retract that re-
port at a later time. We have designed and imple-
mented such a service and have demonstrated that a
range of application-specific fault behaviors can be im-
plemented on top of this service.

In Section 2, we discuss the nature of faults, review
some basic results in distributed systems, and show
why fault detection is an appropriate basic service to
provide in the grid. In Section 3, we define a system
model which we use to define an fault detection archi-
tecture. In Section 4, we present a design for a specific
implementation of a fault detection service and dis-
cuss how this service has been used to construct fault-
tolerant grid applications (Section 6). In Section 5, we
provide results that quantify the accuracy of our fault
detector in a realistic wide-area environment. We then
compare our approach with other approaches to con-
structing fault-tolerant grid applications and conclude
with a discussion of future work.

In summary, the contributions of the work described
in this paper are:

• We propose the unreliable fault detector as a ba-
sic grid service and propose a specific fault de-
tection architecture and implementation for wide-
area computational environments.

• Using experimental data, we demonstrate that our

approach to fault detection can be implemented
efficiently and accurately.

• We demonstrate that the proposed service can be
used to implement useful behaviors in distributed
computing systems and applications.

2 Faults and Distributed Systems

Components of a distributed system can fail in dif-
ferent ways [18]. In the simplest case of crash failure,
a component simply ceases to function, for example
due to an operating system crash or the severing of a
network connection. A special case of crash failure is
fail-stop failure, in which a crash results in the compo-
nent transitioning permanently to a state that allows
other components to detect that it has failed (e.g., by
ceasing to send periodic “i-am-alive” messages). More
complex failure modes are also possible, for example
when a component fails by not functioning “correctly,”
such as when a memory chip returns an incorrect value,
a packet is corrupted during transit over the network,
or (in the extreme, so-called Byzantine case) because
a component operates in a malicious fashion, perhaps
causing a general failure or obscuring the real source of
the failure.

In this paper, we focus on the problem of detect-
ing fail-stop crash failures. While in some situations,
system components can detect and correct even Byzan-
tine failures through the use of mechanisms such as re-
dundancy and retransmission, this is difficult and may
require detailed knowledge about the components in
question. Furthermore, many such failure modes are
masked at the component level.

We are interested in the question of what basic ser-
vices should be provided as part of a distributed com-
putational infrastructure to support fault recovery. To
gain insight into this problem, it is interesting to con-
sider what is the least amount of information needed to
implement some basic reliable distributed algorithms,
such as Consensus. In the Consensus algorithm, all
functioning processes must propose and unanimously
agree on a value, in spite of the fact that any of the
participating processes may fail during the execution of
the algorithm. Consensus has interesting practical uses
as it can be used to implement essential fault-tolerant
functions such as leader election and voting.

A fundamental result from distributed systems is
that Consensus can not be implemented in a dis-
tributed system subject to crash failures if the system
is asynchronous, i.e., if no timing assumptions can be
made, such as the amount of time it takes for two pro-
cesses to communicate or the amount of time it takes

2



for an operation to complete [7]. Note that this asyn-
chronous distributed system model corresponds well
with the best-effort service provided over current wide
area networks.

One solution to this problem is to augment the dis-
tributed system with additional information, such as
knowledge about which system components have failed.
Given this information, it is possible to implement Con-
sensus in the presence of crash failure. Less formal fail-
ure behaviors, such as restart, can also be defined with
respect to failure detection. Failure detection provides
a sound foundation on which to build a range of failure
behaviors and as such, we conclude that it should be
provided as a basic service in distributed computing
environments.

It is interesting to consider what are the weakest
properties that a failure detector can have and still
be useful. In [5], it is shown that Consensus in asyn-
chronous distributed systems can be solved with an
unreliable failure detector : a failure detector that can
erroneously indicate that a component has failed only
to correct this error at a later time. Furthermore, an
unreliable failure detector can be distributed, with each
component of the system having access to its own de-
tector and each detector potentially producing a differ-
ent account of which system components have failed.
This result holds as long as the failure detector meets
some minimal requirements for completeness and accu-
racy. In particular:

• all failed components are eventually discovered
and permanently identified as such, and

• at least one functioning component is known to be
functioning by all functioning components in the
system after some point in time.

From the perspective of producing a practical ser-
vice, unreliable failure detectors have several advan-
tages over reliable detectors. Because each component
can have access to its own failure detector, and detec-
tors do not have to agree about what components of
the system have failed, the service does not have to be
centralized, nor do we need to provide a globally con-
sistent state across detectors. Furthermore, unreliable
communication protocols can be used to implement an
unreliable failure detector. These protocols have the
advantage of lower overheads, lower latency and better
scalablity. For these reasons, an unreliable failure de-
tector will be more scalable, simpler, and more efficient
to implement then a reliable detector.

An unreliable failure detection service is not with-
out limitations. Provably correct algorithms guaran-
tee termination by a combination of iteration and the

fact that the failure detector will eventually identify all
failed components and at least one functioning com-
ponent. In real systems, this unbounded wait is unac-
ceptable as it can be the case that the cost of waiting
for an absolutely correct determination may exceed the
cost that would be incurred if we simply assumed that
the failure detector was correct and took action based
on this assumption.

Ultimately, the decision as to when the information
provided by a failure detector is to believed must be
the responsibility of an application; the failure detec-
tor cannot interpret its results. An application must
use the information provided by the failure detector
to make a decision based on the probability of a fail-
ure report being in error, the application-specific cost
of performing some action if the report was false, and
the application-specific cost of not performing that ac-
tion if the report was in fact true. Clearly, information
about the reliability of the failure collector is necessary.
In Section 5, we show that the probability of an erro-
neous report is generally low, and decreases the longer
that one waits.

In summary, we propose that a distributed comput-
ing environment should provide unreliable failure de-
tection as a basic service, providing notification when
system components might have failed and leaving it to
the application to interpret this information based on a
characterization of the fault service, future information
provided by the service and application requirements.

3 Design of a Fault Detection Service

We now consider issues that arise in designing the
proposed fault detection service. We discuss the en-
tities for which we wish to detect failure, the design
goals for our fault detection service, and the overall
architecture of this service.

3.1 System Model

We first define a model for the system being moni-
tored by the fault detector. This model identifies the
visible components of the system and hence determines
what types of entities the fault detector needs to mon-
itor. In principle, system components could be entire
sites, specific computers, processors within a computer,
processes, threads, network interfaces, network connec-
tions, or any number of other low-level system abstrac-
tions. For reasons of complexity, utility and overhead,
we have chosen to model the system as consisting of
processes and computers.

Our ultimate goal in constructing the fault detec-
tor is to enable the construction of robust applications,

3



not to diagnose the causes of system or application fail-
ure. Considering a computer as a single unit prohibits
the detection of some types of failure, such as a spe-
cific disk going off-line. However, it is often the case
that failures of a component of a computer are detected
by underlying system mechanisms and cause the entire
computer to fail. A similar argument can be made for
not considering low-level software abstractions such as
threads. In both cases, we considered the cost of having
the fault detector deal with such low-level abstractions
as outweighing any potential benefits.

Note that we do not include networks as components
to be monitored. Detection of network failure tends to
be difficult because it is hard to discriminate between
host failure and network failure without the existence
of a second, independent path. Furthermore, the iden-
tification of such paths when they exist requires both
detailed knowledge of network topology and coordina-
tion among distributed monitors. For reasons of sim-
plicity and generality, we limit monitoring to processes
and hosts. Note that monitoring processes and hosts
does serve to monitor indirectly the network connec-
tions between these monitored objects.

3.2 Design Goals

Given this system model, we consider the require-
ments which the fault detector must satisfy. The main
concerns that should be addressed in the design of a
fault detector for grid environments are:

• Scalability. The design of the fault detector must
be capable of scaling to large numbers of processes
and computers.

• Accuracy and completeness. The fault detec-
tor must identify faults accurately, with both false
positives and false negatives being rare.

• Timeliness. Problems must be identified in a
timely fashion, so that responses and corrective
actions can be taken as soon as possible.

• Low overhead. Monitoring should not have a
significant impact on the performance of applica-
tion processes, computers, or networks.

• Flexibility. We want to support a range of
application-specific fault detection policies and us-
age models. For example, applications may wish
to control which entities are monitored, how of-
ten they are monitored, the criteria used to report
failure, and where failures are reported.

Monitored
Process

Process Status
Inquiry

Process
Registration

Local Monitor

Host N

Monitored
Process

Process Status
Inquiry

Process
Registration

Local Monitor

Host 1

...

...Data Collector 1 Data Collector N

Figure 1. Architecture of a fault detector for
monitoring computers and processes

3.3 A Fault Detection Service Architecture

As illustrated in Figure 1, our fault detection service
architecture is defined in terms of two types of entities:

1. A local monitor is responsible for observing the
state of both the computer on which it is located
and any monitored processes on that computer. It
generates periodic “i-am-alive” messages or heart-
beats, summarizing this status information.

2. A data collector receives heartbeat messages gener-
ated by local monitors and actually identifies failed
components based on missing heartbeats.

As we shall see in the next section, this separation
of local monitor and data collector functions provides
considerable flexibility in how we handle faults.

Scalability and performance concerns require that
the heartbeats communicated by the local monitors be
transmitted via a connectionless, typically unreliable
protocol. Hence, the data collector must take into ac-
count network delays and possible packet loss when
interpreting a lack of heartbeat from a particular local
monitor. We discuss these issues below.

4 A Fault Detection Service

We now discuss the implementation of a specific
fault detector service, namely the Globus Heartbeat
Monitor (HBM), which provides a fault detection ser-
vice for applications developed with the Globus toolkit.
HBM comprises three components:

4



• A local monitor, responsible for monitoring the
computer on which it runs, as well as selected pro-
cesses on that computer.

• A client registration API, which an application
uses to specify the processes to be monitored by
the local monitor, and to whom heartbeats are
sent.

• A data collector API, which enables an applica-
tion to be notified about relevant events concern-
ing monitored processes.

In brief, an application that wishes to use the HBM
service needs to do just two things:

1. Register the processes for which failure detection is
required, either by calling the registration API di-
rectly, or by having the registration function called
externally on behalf of the application.

2. Use the data collector API to construct a data
collector that implements the desired application-
specific fault behavior, whether this is global ter-
mination, rescheduling of a failed component, fur-
ther testing to verify that failure has occurred, etc.

We describe these aspects of the HBM service in turn.

4.1 Client Registration API

Globus-based grid systems maintains a HBM local
monitor for each Globus-managed resource. Hence, the
Globus user need not be concerned with creating or
maintaining these processes. The local monitor is typ-
ically run on the resource itself, to simplify the task of
monitoring the status of the resource and of processes
running on the resource. On workstations and shared
memory computers, such as the Convex Exemplar, the
local monitor runs directly on the machine in question.
On distributed memory computers such as the Cray
T3E, the local monitor runs on a tightly coupled front
end or service node.

A process must be explicitly registered with the local
monitor for its status to be reported. A client registra-
tion API is provided for this purpose. This API may
be called either from within the application program
or externally by a separate process. The registration
process provides the local monitor with the identity of
the process to be monitored, the identity of the data
collector(s) to which process heartbeats are to be sent,
and a heartbeat interval. On termination, processes
use an unregister function provided by the client API
to disconnect from the local monitor, preventing them
from being reported as failed.

The local monitor can use a range of methods to
determine the status of registered processes. We cur-
rently use the standard UNIX ps command to report
on monitored processes. The /etc/proc mechanism
found on many UNIX platforms could also be used.

The local monitor reports the status of each moni-
tored process to the appropriate data collectors at the
time of process registration and unregistration, and at
fixed specified intervals in between. A separate mes-
sage of size 70-90 bytes is sent for each monitored pro-
cess. This message includes data identifying the mon-
itored process and its current status. In addition to
process heartbeats, the local monitor also generates a
heartbeat for itself, allowing an application to detect
a resource failure even if there are no monitored pro-
cesses running on that resource.

Heartbeat data is sent to the data collectors using
an unreliable datagram service: specifically, the UDP
protocol. We chose this protocol over the reliable TCP
protocol for several reasons. First, TCP is connection-
oriented and consumes resources on both the sender
and receiver. The overhead associated with UDP is
less, making this solution more scalable than if TCP
had been used. Second, the fact that TCP is a reli-
able protocol tends to introduce additional latency into
communication operations. Given that heartbeats are
time sensitive, introduction of additional latency in the
delivery of heartbeat data is ill advised. Finally, when
available, we wanted to have the option to use multi-
cast to send data from a local monitor to an arbitrary
and dynamic set of data collectors, and TCP cannot
be used in conjunction with multicast.

4.2 The Data Collection API

The HBM data collection API allows for the con-
struction of application-specific data collectors. The
API is callback-based, allowing an application to reg-
ister a function to be called when an event of inter-
est occurs. When making a call to the data collection
API, an application provides a callback function along
with an event mask to indicate the events the callback
should be called on, such as a late heartbeat or a heart-
beat received.

The API implementation keeps track of all regis-
tered processes and records whenever a heartbeat ar-
rives. Since the data collector knows the frequency
at which heartbeats are being generated by registered
processes, it can infer missing heartbeats. The API
can generate callbacks for missing heartbeats for indi-
vidual processes, or for the host itself. Callbacks can
also be issued when other events of interest occur, such
as when a new process is registered, or when a process

5



unregisters or is reported as having failed.
Note that the function of the data collection API

is limited to keeping track of heartbeats and invoking
callbacks into the application. An application-specific
data collector must provide a set of callback functions
that implement the desired responses in response to
the HBM callbacks. Again, it is the responsibility of
the application to make the determination as to com-
ponent failure based on how late the heartbeat is, the
requirements of the application, and the type of fault
recovery being implemented.

We note that the structure of the data collection API
offers us a great deal of flexibility not only in how a data
collector is implemented, but where it is implemented
as well. Data collection functions can be integrated
into the basic algorithms of an application, provided by
specialized modules started as part of the application,
or by separate, stand-alone programs. This flexibility
further promotes the use of the HBM to implement a
wide range of fault behaviors.

5 Experimental Results

We are concerned with two aspects of HBM perfor-
mance: first, the costs associated with monitoring (at
hosts, network, and data collectors), particularly as the
number of monitored hosts increases; and the accuracy
of the HBM reports: that is, how quickly a failure is
reported, and how frequently such reports turn out to
be incorrect. We discuss these two issues in this section
and report on experimental results that provide some
insights into these questions.

As discussed above, HBM monitors send heartbeat
messages to data collector(s) at regular intervals. In
addition to recording and handling failures reported
by the local monitors, the HBM data collector must
diagnose potential component failure when no heart-
beat message has been received from that component
for a specified amount of time. The data collector is not
guaranteed to receive all such messages, as heartbeats
may be lost or delayed for a variety of reasons, includ-
ing network congestion, scheduling delays at the local
monitor or data collector, and network failure. Hence,
there is always the possibility that the data collector
may diagnose a component as having failed when it has
not. For this reason, any discussion of HBM accuracy
involves a tradeoff between the amount of time we are
prepared to wait before concluding that a component
has failed, and the number of false reports that we are
prepared to deal with.

Our goal is to minimize some function of report-
ing delay, false positive rates, and system overheads.
The parameters that we can control are system costs

sp001.sdsc.edu

fr1n12.mhpcc.edu

Los Nettos

Genuity.net

ES Net

DREN

CERFnet

sleipnir.aero.org

positron.aero.org

Aerospace LAN

yucon.mcs.anl.gov

pitcairn.mcs.anl.gov

Argonne LAN
neptune.cacr.caltech.edu

Caltech LAN

bolis.isi.edu

flash.isi.edu

ISI LAN

Figure 2. The nine hosts used in the HBM ex-
periments, showing their connectivity, which
included local area networks, a metropolitan
area network (Los Nettos, a 100 Mb/s network
in southern California), and the Internet.

(by which we mean primarily heartbeat frequency, al-
though the priority given to HBM processes and to
HBM network traffic can also be cost issues) and defi-
nition of failure. Note that these variables can be varied
on a per-component basis.

Previous research [2, 16, 3, 17] provides some rele-
vant data. For example, in a 1992 study in which 32
byte packets were sent over a 128 Kb/s transAtlantic
link at regular intervals for extended periods, Bolot ob-
serves high loss rates (9%) but notes that losses are es-
sentially independent as long as probe traffic accounts
for less than 10% of available bandwidth. In a 1997
study, Borella et al. [3] analyzed traffic between three
pairs of sites located variously within a metropolitan
area and on a wide area network. They sent an 80 byte
packet every 30 msec and observed packet loss rates of
0.36%, 0.61% and 3.54% for the three pairs. Losses
were seen to be bursty, but the mean loss burst size
of 6.9 (around 200 msec) suggests that loss rates for
packets sent at 10 sec intervals would be essentially
independent. Simulation studies show similar results.

In order to obtain more detailed data on loss rates
we conducted our own studies. We studied HBM per-
formance on an experimental system comprising the
nine hosts shown in Figure 2. A local monitor at each
host sent heartbeats to data collectors at every host (in-
cluding itself) at 10 second intervals for several days,
during which time a total of 3,835,905 messages were
sent, of which 93.6% were received. The (modified)
data collectors logged timestamped heartbeats for sub-
sequent analysis.

We use the heartbeats received at each host to com-

6



1

10

100

1000

10000

100000

1000000

0 20 40 60 80 100 120 140 160 180 200 220 240

Seconds Between Heartbeats

N
um

be
r 

of
 O

cc
ur

en
ce

s 
+

 1

Figure 3. Histogram representation of the interarrival time data observed at bolas, one of the nine
hosts in our experimental testbed, showing the distribution of interarrival times. Each of the peaks
on the far right represents a single heartbeat.

0.00001

0.0001

0.001

0.01

0.1

1

0 20 40 60 80 100 120 140 160 180 200 220 240

Time in Seconds

F
ra

ct
io

n 
of

 In
te

rv
al

s 
>

 X
 V

al
ue

ISI:bolas

ISI:flash

TAC:positron

TAC:sleipnir

CIT:neptune

SDSC:sp001

MHPCC:fr1n12

ANL:pitcairn

ANL:yukon

Figure 4. Interarrival times observed at bolas for heartbeats arriving from each of the nine hosts,
expressed in terms of proportion of heartbeats with interarrival time greater than X .

7



1

10

100

1000

10000

100000

1000000

10000000

0 20 40 60 80 100 120 140 160 180 200 220 240

Seconds Between Heartbeats

N
um

be
r 

of
 O

cc
ur

en
ce

s 
+

 1

Figure 5. Histogram representation of all interarrival times observed at all nine hosts.

0.0000001

0.000001

0.00001

0.0001

0.001

0.01

0.1

1

0 20 40 60 80 100 120 140 160 180 200 220 240

Interval in Seconds

F
ra

ct
io

n 
of

 In
te

rv
al

s 
>

 X
 V

al
ue

Figure 6. Interarrival times across all nine hosts, expressed in terms of proportion of heartbeats with
interarrival time greater than X.

8



pute interarrival times. The results are summarized
in four figures. Figures 3 and 4 present results from
the point of view of a single host, bolas at ISI; Fig-
ures 5 and 6 provide results for all heartbeats received,
summed across all hosts.

Figures 3 and 5 express results as a histogram, show-
ing the frequency with which various interarrival times
are observed. Because heartbeat packets are generated
every 10 seconds, and messages losses are independent,
we expect a large peak at 10 seconds (corresponding to
packets that arrive with no intervening lost packet); a
second step at an interarrival time of 20 seconds cor-
responding to one lost packet; and so on. This is more
or less what we see, although because packets can be
delayed both in the network (to a small extent: typical
router queue delays are small) and by scheduling delays
at the generating and receiving processors (especially if
the processor is heavily loaded), the graph is not quite
so regular.

Figures 4 and 6 express results in terms of the num-
ber of observed interarrival times greater than the time
on the X axis. (Notice that these graphs hence plot the
false positive rate that we can expect if we accept that
X-axis value as our definition of “failure.”) Figure 4
distinguishes the heartbeats received at bolas accord-
ing to the originating host. Notice the wide variation
in loss rates and in the extent to which network and
scheduling delays skew the interarrival times. Skew-
ing is particularly noticeable for data from the Convex
Exemplar at Caltech (“CIT:neptune”). Examination
of the interarrival times observed by the local data
collector showed that this skew was due to delay in
scheduling the local monitor, caused by high loads on
the processor running the local manager.

Our results confirm the general trends observed in
previous studies. The vast majority of interarrival
times correspond to a packet that arrives with no in-
tervening lost packet. If we define “failure” as corre-
sponding to no heartbeat seen for 240 seconds, then the
false positive rate is less than 1 in a 100,000. Further-
more, it appears that some of these “false positives”
are due not to an unfortunate series of dropped pack-
ets, but to temporary losses in network connectivity
that lasted several minutes: that is, events that we
might well want to see signalled as “failures.” More
rapid failure detection is possible, with some increase
in false positive rates: for example, at 35 seconds, the
false positive rate is 1 in a few hundred. More frequent
heartbeats would be required to reduce false positive
rates at low interarrival times.

We also measured overheads associated with moni-
toring. The local monitors at the different hosts showed
CPU utilization averaging under 1.3%, with minimum

Figure 7. An interactive display tool for
GUSTO fault data

and maximum of 0.05% and 1.5%, respectively. Most
of this utilization was due to children of the local moni-
tors, which executed the system ps program to get the
client status. The data collectors showed even lower
utilization, averaging under 0.14%, with minimum and
maximum of 0.06% and 0.29%, respectively.

6. HBM Applications

The HBM service has been used to monitor the
health and status of critical components in GUSTO,
a grid testbed that currently spans over 20 institu-
tions [8]; and to detect server failure in a distributed
computing system called NetSolve [4].

HBM is used in GUSTO by system administrators
to identify problems in the testbed and to determine
which testbed sites are functional. We are currently
using a single data collector which can report its data
through a web interface (e.g., see Figure 7) or via an
email notification system. This application revealed
that determining the status of arbitrary processes can
be expensive on some large parallel computers. For ex-
ample, a ps command without arguments on a loaded
512-processor Cray T3E can take 17 seconds of real
time. This time can be decreased significantly by pro-
viding ps with the list of processes whose status is of
interest, a change that has been made in the current
version of HBM.

HBM is used within NetSolve to construct a
application-specific restart-based fault recovery mecha-
nism. NetSolve is a library that provides remote access
to mathematical solvers and libraries such as ScaLA-
PACK. Client calls to a NetSolve-enabled library are

9



forwarded to a NetSolve agent, which transparently
dispatches the call to the most capable server that has
the library installed. If either the server fails or the
server or network becomes too slow, the NetSolve agent
redispatches the request to another server.

NetSolve initially relied on the underlying network
transport layer to notify it of broken connections. How-
ever, in many situations, this resulted in the NetSolve
agent hanging. This behavior has been eliminated by
modifying NetSolve to use HBM to detect server fail-
ure.

Only NetSolve servers register with HBM, while
NetSolve agents act as data collectors, monitoring the
status of the servers to which they have dispatched re-
quests. Clients are not monitored at all. Currently,
NetSolve shifts a computation over to a new server if
a single heartbeat is missed. However, since the over-
head of moving a problem to a new server is known to
the agent, it would be possible to wait for additional
missed heartbeats if the cost of resubmitting the re-
quest is high.

7 Related Work

Numerous distributed computing systems incorpo-
rate fault detection and recovery mechanisms. We re-
view some of this work here, contrasting it with the
approach described in this paper. Our work is distin-
guished primarily by its focus on providing a basic,
flexible service that can be used to construct a range
of application-specific fault behaviors.

Distributed systems, such as ISIS [1] and Horus [19]
provide high reliability via replication and ordered
group communication protocols. An ISIS-specific fault
detection system, similar to HBM, is used to deter-
mine when a process or computer leaves a computa-
tion. However, this service is not made available to the
application, nor is the application able to choose how
faults are handled. Ordered group communication op-
erations enable the construction of robust applications,
but the use of replication as the only means of provid-
ing fault recovery makes ISIS unsuitable for some grid
applications, especially extremely large computations
requiring the use of multiple supercomputing resources.

Network batch queuing systems operate in dis-
tributed, networked environments and often use check-
point and restart techniques to provide fault toler-
ance. Checkpointing is provided in systems such as
CODINE [11] and in high-throughput systems such as
Condor [13]. The fault behaviors for these systems are
limited to checkpoint/restart with no support for more
robust design such as replication.

In the Legion wide-area computing system [12], a

hierarchy of “phoenix” demons is used to monitor sys-
tem processes and restart them as needed. Applica-
tion fault tolerance is provided using the Mentat macro
dataflow model, in which objects can be replicated,
with only one replica active and the remaining dor-
mant. The first dormant replica is scheduled by the
Legion system only if it does not receive a reply to
a status query (ping) from the active replica within
a prescribed number of seconds. While this approach
suffices for the Mentat programming model, it assumes
that system components function perfectly and that
communication links do not fail.

In PVM [10] and the PVM-based SNIPE sys-
tem [14], fault detection is performed by the PVM dae-
mon which is located on each host, based on the receipt
of responses (or not) from the daemons on other hosts.
Application-level fault detection must be explicitly in-
cluded in the application program code.

Weissman has compared different fault tolerance
techniques for wide-area metacomputing [20]. In the
Gallop system, each site runs a Scheduling Manager
that actively discovers the status of local machines by
“pinging” them. This monitoring function has been
used to notify replication and checkpointing fault tol-
erance mechanisms, which were also compared. This
approach detects some host and network failures, but
does not detect the failure of hosts on which ping re-
sponses are generated independently by the network
card. Furthermore, it does not detect either system or
application process failures, and the scheduling man-
agers are single points of failures for their sites.

8 Conclusions and Future Work

We have described the design and implementation
of a fault detection service for high-performance dis-
tributed computing systems. By basing the service on
unreliable fault detection and providing a clear separa-
tion between monitoring, detection, and response, we
believe that we have succeeded in providing a flexible
and efficient core service that supports a wide range of
application requirements.

In our work to date, we have demonstrated that this
service can be used by applications with minimal per-
turbation to application structure. We have also shown
that this service has minimal impact on the load of the
machine implementing the service, typically less then
1.5% CPU utilization. Furthermore, we have shown
that the use of an unreliable fault detector does not
prohibit an application from making sensible decisions,
as the characteristics of the underlying transport mech-
anism ensure that the probability of error decreases
with time.

10



While the HBM does well detecting process fail-
ure, discriminating between host and network failure
is fundamentally difficult for any remote monitoring
approach. If absolutely no information about a host
is obtainable (e.g., a heartbeat) then it is impossible
to decide whether it is due to host or network failure.
However, we do not regard this as a significant prob-
lem for our applications, for which the knowledge that
a host is unavailable is more important than knowing
why.

We are working with various application groups and
tool developers to investigate further the utility of this
fault detection service. We expect to see a variety of
application-specific fault recovery mechanisms imple-
mented, including the use of replication and voting
protocols. We also hope to explore the use of more
rigorous fault tolerant behaviors such as reliable group
communication primitives, and to investigate the re-
lationship between heartbeat frequency, system over-
heads, failure criteria, and false positive rates. We are
particularly interested in understanding the utility of
adaptive techniques that modify either heartbeat rates
or failure criteria in response to observed heartbeat loss
behavior and system overheads.

Acknowledgments

This work was supported in part by the Mathemati-
cal, Information, and Computational Sciences Division
subprogram of the Office of Computational and Tech-
nology Research, U.S. Department of Energy, under
Contract W-31-109-Eng-38; by the Defense Advanced
Research Projects Agency under contract N66001-96-
C-8523; and by the National Science Foundation.

References

[1] K. Birman. The process group approach to reliable
distributed computing. Communications of the ACM,
36(12):37–53, 1993.

[2] J.-C. Bolot. Characterizing end-to-end packet delay
and loss in the internet. Journal of High-Speed Net-
works, 2(3):305–323, 1993.

[3] M. S. Borella, D. Swider, S. Uludag, and G. Brew-
ster. Analysis of end-to-end internet packet loss: De-
pendence and asymmetry. Technical Report 3Com
Advanced Technologies Technical Report AT031798,
3Com Corporation, 1998.

[4] H. Casanova and J. Dongarra. Netsolve: A net-
work server for solving computational science prob-
lems. Technical Report CS-95-313, University of Ten-
nessee, Nov. 1995.

[5] T. D. Chandra and S. Toueg. Unreliable failure de-
tectors for reliable distributed systems. Journal of the
ACM, 43(2), Mar. 1996.

[6] K. Czajkowski, I. Foster, N. Karonis, C. Kesselman,
S. Martin, W. Smith, and S. Tuecke. A resource man-
agement architecture for metacomputing systems. In
The 4th Workshop on Job Scheduling Strategies for
Parallel Processing, 1998.

[7] M. J. Fischer, N. A. Lynch, and M. S. Paterson. Im-
possibility of distributed consensus with one faulty
process. Journal of the ACM, 32(2), Apr. 1982.

[8] I. Foster and C. Kesselman. The Globus project: A
progress report. In Proceedings of the Heterogeneous
Computing Workshop, 1998. to appear.

[9] I. Foster and C. Kesselman, editors. The Grid:
Blueprint for a Future Computing Infrastructure. Mor-
gan Kaufmann Publishers, 1998.

[10] A. Geist, A. Beguelin, J. Dongarra, W. Jiang,
B. Manchek, and V. Sunderam. PVM: Parallel Virtual
Machine—A User’s Guide and Tutorial for Network
Parallel Computing. MIT Press, 1994.

[11] G. S. GmbH. CODINE: Com-
puting in distributed networked environments, 1995.
http://www.genias.de/genias/english/codine.html.

[12] A. Grimshaw, A. Nguyen-Tuong, and W. Wulf.
Campus-wide computing: Results using Legion at the
University of Virginia. Technical Report CS-95-19,
University of Virginia, 1995.

[13] M. Litzkow, M. Livny, and M. Mutka. Condor - a
hunter of idle workstations. In Proc. 8th Intl Conf. on
Distributed Computing Systems, pages 104–111, 1988.

[14] K. Moore, G. Fagg, A. Geist, and J. Dongarra. Scal-
able networked information processing environment
(SNIPE). In Proceedings of Supercomputing ’97, 1997.

[15] L. Moser, P. Melliar-Smith, D. Agarwal, R. Bud-
hia, and C. Lingley-Papadopoulos. Totem: A fault-
tolerant multicast group communication system. Com-
munications of the ACM, 39(4), 1996.

[16] A. Mukherjee. On the dynamics and significance of
low-frequency components of network load. Internet-
working: Research and Experience, 5:163–205, 1994.

[17] V. Paxson. Measurements and Analysis of End-to-End
Internet Dynamics. PhD thesis, U.C. Berkeley, 1997.

[18] S. Mullender (ed.). Distributed Systems. ACM Press,
1989.

[19] R. van Renesse, T. Hickey, and K. Birman. Design and
performance of Horus: A lightweight group communi-
cations system. Technical Report TR94-1442, Cornell
University, 1994.

[20] J. Weissman. Gallop: The benefits of wide-area com-
puting for parallel processing. Technical report, Uni-
versity of Texas at San Antonio, 1997.

11


