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1 Introduction 
Grid computing has made great progress in the last few years. The basic mechanisms for accessing 
remote resources have been developed as part of the Globus Toolkit and are now widely deployed and 
used. Among such mechanisms are: 

� Information services, which allow for the discovery and monitoring of resources. The information 
provided can be used to find the available resources and select the resources which are the most 
appropriate for the task. 

� Security services, which allow users and resources to mutually authenticate and allows the 
resources to authorize users based on local policies. 

� Resource management, which allows for the scheduling of jobs on particular resources. 

� Data management services, which enable users and applications to manage large, distributed and 
replicated data sets. Some of the available services deal with locating particular data sets, others 
with efficiently moving large amounts of data across wide area networks. 

With the use of the above mechanisms, one can manually find out about the available resources and 
schedule the desired computations and data movements. However, this process is time consuming and can 
potentially be complex.  As a result it is becoming increasingly necessary to develop higher level services 
which can automate the process and provide an adequate level of performance and reliability.  

The NSF-funded Grid Physics Network (GriPhyN, www.griphyn.org) project aims to develop just such 
services, in this paper we focus in particular on planners that can map complex workflows onto the Grid. 
In general, GriPhyN aims to support large-scale data management in physics experiments such as high-
energy physics, astronomy and gravitational wave physics. GriPhyN puts data both raw and derived under 
the umbrella of Virtual Data. A user or application can ask for data using application-specific metadata 
without needing to know whether the data is available on some storage system or if it needs to be 
computed. To satisfy the request, GriPhyN will schedule the necessary data movements and computations 
to produce the requested results.  

The paper is organized as follows: first, we discuss in general the issues involved in mapping complex 
workflows onto the Grid. Then we describe Pegasus, the system we have developed to map domain 



specific request onto the Grid. Section 4 describes in more detail the heart of Pegasus, which is an AI-
based planner following by a description using Pegasus in the gravitational wave pulsar search. Section 6 
gives a summary of our results and experiences demonstrating our system during the SC 2002 conference 
and we conclude with final remarks in Section 8. 

2 Issues in Mapping Workflows onto the Grid 
In general we can think of applications as being composed of application components. The process of 
application development (shown in Figure 1) can be described as follows. The application components 
are selected, their input and output file names are identified by their logical names (names that uniquely 
identify the content of the file, but not its location), and the order of the execution of the components is 
specified. As a result, we obtain an abstract workflow (AW), where the behavior of the application is 
specified at an abstract level.  

Next this workflow needs to be mapped onto the available Grid resources, performing resource discovery 
and selection. Finally the resulting concrete workflow (CW) is sent to the executor for execution. In this 
section, we focus on the behavior of the concrete workflow generator (CWG) and its interaction with an 
executor, such as for example Condor-G/DAGMan [1].  Important issues are the relationship and 
interfaces between the planner and the executor, both from the standpoint of planning and fault tolerance. 
For this discussion, we assume that multiple requests to the system are handled independently. 

One can imagine two extremes: on one hand, the planner can make an exact plan of computation based on 
the current information about the system. The planner would decide where the tasks need to execute, the 
exact location from where the data needs to be accessed for the computation etc… At the other extreme, 
the planner can leave many decisions up to the executor, it can for example give the executor a choice of 
compute platforms to use, a choice of replicas to access etc. At the time the executor is ready to perform 
the computation or data movements, the executor can consult the information services and make local 
planning decisions (in-time scheduling).  

The benefit of the first approach (we term it full-plan-ahead), is that the planner can aim to optimize the 
plan based on the entire structure of the DAG, however, because the execution environment is very 
dynamic, by the time the tasks in the DAG are ready to execute, the environment might have changed so 
much that the execution is now far from optimal. Additionally, the data may no longer be available at the 
location assumed by the planner, leading to an execution-time error. If the planner constructs full plans, it 
must be able to adapt to the changing conditions and be able to quickly re-plan. 

Faults due to the changing environment are far less likely to occur when the executor is given the freedom 
to make decisions as it processes the abstract workflow. At the time a task is to be scheduled, the executor 
can use the information services to find out about the state of the resources and the location of the data 
and make a locally optimal decision. However, because the executor does not have global information 
about the request it could make potentially expensive decisions. 

Another approach is deferred scheduling, where the executor and the planner work together to come up 
with a plan. The planner provides an abstract workflow description to the executor, which, when it is 
ready to schedule a task, contacts the planner and asks for the execution location for the task. The planner 
can at that time make a decision, which would take into account the global information it has. Because the 
planner can make decisions at each time a task is scheduled, it can take many factors into consideration 
and use the most up-to-date information.  The drawback however, is that the control might be too fine, 
and can result in high communication overheads and a large amount of computation due to re-planning. 

Clearly, there is no single best solution for all applications, since these can have very different 
characteristics. For example, if we consider data-intensive applications, where the overall runtime is 
driven by data movement costs, then the full-plan-ahead planner can minimize the overall data movement 
by picking appropriate compute resources, resources “close” to the data. An in-time scheduler can also 



schedule computation near the input data but without the knowledge of the overall data flow it will only 
try to achieve local optimization and might come up with an execution which is poor overall. 

For compute-intensive applications, in-time-scheduling might be sufficient and optimal because the best 
compute resources can be found at a given moment in time and the time to stage the data is negligible. 
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Figure 1: General view of application development in Grids. 

Another factor in workflow management is the use of reservations for various resources such as compute 
hosts, storage systems and networks. As these technologies advance, we believe that the role of full-plan-
ahead systems will increase. 

Up to now, we have considered only the case where the workflow management system handles only one 
request at a time. The problem becomes more complex when the system is required to optimize across 
multiple requests and accommodate various usage policies and community and user priorities. In this 
case, full-plan-ahead planners have the advantage of being able to optimize the end-to-end workflows, 
however still facing the challenge of being able to react to the changing system state. 

The nature of this problem seems to indicate that the workflow management system needs to be flexible 
and adaptable in order to accommodate various applications behavior and system conditions. Because the 
understanding of the application’s behavior is crucial to the ability of planning and scheduling of the 
execution, application performance models are becoming ever more necessary.  

In the next section, we describe the framework we have developed to explore the planning domain. 



3 Pegasus 
Pegasus, which stands for Planning for Execution in Grids, was developed at ISI as part of the GriPhyN 
project. Pegasus is a configurable system that can map and execute complex workflows on the Grid.  
Currently, Pegasus relies on a full-ahead-planning to map the workflows. As the system evolves, we will 
incorporate in-time scheduling and deferred-scheduling. 

Chimera-Driven Pegasus 

Pegasus was first integrated with the GriPhyN Chimera system [2]. In that configuration (see Figure 2), 
Pegasus receives an abstract workflow (AW) description from Chimera, produces a concrete workflow 
(CW), and submits it to DAGMan for execution. The workflows are represented as Directed Acyclic 
Graphs (DAGs). AW describes the transformations and data in terms of their logical names. CW, which 
specifies the location of the data and the execution platforms, is optimized by Pegasus from the point of 
view of Virtual Data. If data products described within AW are found to be already materialized (via 
queries to the Globus Replica Location Service (RLS)), Pegasus reuses them and thus reduces the 
complexity of CW. This optimization is performed in the “abstract DAG reduction” component. The 
“Concrete planner” component then consults the Transformation Catalog [3] to determine the locations 
where the computation can be executed. If there is more than one possible location, a location is chosen 
randomly. The Concrete Planner also adds transfer and registration nodes. The transfer nodes are used to 
stage data in or out. Registration nodes are used to publish the resulting data products in the Replica 
Location Service. They are added if the user requested that all the data be published and sent to a 
particular storage location.   

 

Figure 2: Configuration of Pegasus when driven by Chimera. Pegasus only generates the concrete 
workflow. 



Once the resources are identified for each task, Pegasus generates the submit file for Condor-G. The 
resulting concrete DAG is sent to DAGMan for execution. 

In that configuration, Pegasus has been shown to be successful in mapping workflows for very complex 
applications such as the Sloan Digital Sky Survey [4] and the Compact Muon Source [5]. 

Metadata Driven Pegasus 

Pegasus can also be configured to perform the generation of the abstract workflow based on application-
level metadata attributes.  Given attributes such as time interval, frequency of interest, location in the sky, 
etc., Pegasus is currently able to produce any virtual data products present in the LIGO pulsar search, 
described in the Section 5. The figure below shows Pegasus configured for such a search. 

Pegasus uses the Metadata Catalog Service (MCS) [6], newly developed at ISI, to perform the mapping 
between application-specific attributes and logical file names of existing data products. AI-based planning 
technologies, described in the next section, are used to construct both the abstract and concrete 
workflows.  
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Figure 2: Configuration of Pegasus when used to construct both the abstract and concrete workflows. 

The metadata for the final desired data product is specified to the Request Manager. For the SC2002 
demo, this was specified through an http front end. The metadata specified was specific to the LIGO 
Pulsar search. Once the metadata for a product is specified, a Metadata Catalog Service (MCS) 
determines the corresponding logical file and determines the metadata and logical filenames for all other 
sub products which can be used to generate the data product (and returns them to the Current State 
Generator.) The Current State Generator then queries the Replica Location Service (RLS) [7] to find the 
physical locations of the logical files. We are also interfacing the Current State Generator to the Globus 
Monitoring and Discovery Service (MDS) [8] to find out about the available grid resources. Currently, 
this information is statically configured. The metadata and the current state information are then passed to 



the Abstract and Concrete Planner through a XML interface. The planner generates the concrete 
workflow (in the form of a DAG) necessary to satisfy the user’s request. The planner takes into account 
the state of the network, to come up with an optimal plan. This planner also reused existing data products 
where applicable. The plan generated also specifies the sites at which the job should be executed and 
refers to the data products in terms of metadata. This plan is then passed to the submit file generator for 
Condor-G. The submit file generator determines first the logical names for the data products by querying 
the MCS and then the physical names by querying the RLS. It in addition looks up the Transformation 
Catalog to get the complete paths for the transformations at the execution locations described in the 
concrete DAG.  

Pegasus also contains a Virtual Data Language generator that can populate the Chimera catalog with 
newly constructed derivations. In this configuration, Pegasus also sends the concrete workflow to 
DAGMan for execution. We have configured Pegasus to support the LIGO and GEO pulsar searches. 
Details about the search can be found in [9].   

As the result of execution of the workflow, the newly derived data products are registered both in the 
MCS and RLS and thus are made available to the following requests. 

4 Planning Approach 
The Abstract and Concrete Planner is implemented using the Prodigy planner [10].  The planner models 
the application components along with data transfer and data registration as operators. Each operator’s 
parameters include the host where the component is to be run, so an output plan corresponds to a concrete 
workflow. In addition, some of the effects and preconditions of the operators capture the data produced by 
components and their input data dependencies. The state information used by the planner and gathered by 
the Current State Generator includes a description of the available resources and the relevant files that 
have already been created. The input goal description can include (1) a metadata specification of the 
information the user requires and the desired location for the output file, (2) specific components to be run 
or (3) intermediate data products. Several issues make this application domain challenging, we touch 
upon them as we describe the domain model in more detail.  

In our initial work, we are using the Prodigy planner, because search heuristics play an important role in 
planning and Prodigy provides an expressive language. We also tested versions of the domain with the 
more recent planner FastForward [9, 11] and found Prodigy to be competitive for our purposes, as noted 
in another domain by [12]. 

State information 
The planner’s world state includes information about resources. Some state information changes slowly, 
such as the operating system or total disk space available on a resource, and some of the information can 
change in seconds or minutes, such as the available memory or queue length. In the long run the planner 
may need to reason about how the information can change over time, but in our initial implementation we 
only model the type of a host, network bandwidths and file information.  

It is useful for the planning state to include metadata about the files for several reasons. As mentioned, the 
planner can assume the task of creating both the abstract and concrete workflows. It is also more 
appropriate to reason at the level of the metadata rather than at the level of the files that represent that data 
content. Rather than search for a file with appropriate characteristics, the components are linked to the 
characteristics themselves. This also avoids quantifying over the set of existing files, which may change 
during planning as objects are created and destroyed. 

Goal statements 
In most planning applications, goals refer to properties that should be true after the plan has been 
executed. For the planner, such goals include having a file described by the desired metadata information 



on some host. However, it is also sometimes useful to specify goals that refer to intermediate components 
or data products, or for registering certain files. Thus the goal statement can specify a partial plan.  

In principle, the goals given to the planning system may be those of a single user or the aggregated goals 
of a group of users, although we have not explored the latter case. In that case, the planner may be able to 
create a more efficient plan for the overall computations required by exploiting any synergy in the users’  
goals. 

Operator descriptions 
The operators themselves represent the concrete application of a component at a particular location to 
generate a particular file or a file movement across the network. Their preconditions represent both the 
data dependencies of the component, in terms of the input information required, and the feasible resources 
for running the component, including the type of resource. These operators capture information similar to 
that represented in Chimera’ s Virtual Data Language [2], such as the name of the component and its 
parameters. However, the operators also contain the additional information about the preconditions 
necessary for the use of the component, and provide the effect of the application of the component on the 
state of the system, such as the consumption of the resources. Further information about resource 
requirements, such as minimal physical memory or hard disk space, is a planned extension. 

Plans generated in response to user requests may often involve hundreds or thousands of files and it is 
important to manage the process of searching for plans efficiently. If a component needs to be run many 
times on different input files, it is not useful for the planner to explicitly consider different orderings of 
those files. Instead the planner reasons about groups of files that will be treated identically. An auxiliary 
routine allocates the files to different groups, looking for a locally optimal allocation. Since the number of 
input files or groups may vary by component and even by invocation, the preconditions are modeled 
using quantification over possible files. 

Solution space and plan generation strategy 
Most planning systems are designed to produce a feasible plan given constraints on the possible actions, 
but do not attempt to optimize any measure of plan quality. In planning there may be many feasible plans 
and it is important to find a high-quality solution. The measure of a plan’ s quality may include several 
dimensions, including the performance in terms of the overall expected time to satisfy the user request, 
the reliability in terms of probability of failures and their impact on performance, and policy-related 
issues, for example not expending too much of a user’ s allowance on some precious resource if cheaper 
resources would be adequate. Helping users manage the tradeoff between these dimensions is a topic of 
future work. Our current system attempts to minimize the overall runtime of the plan. We can estimate the 
run-time of the plan based both on the expected runtime of individual components on the allocated 
resources and on the expected transfer time for files around the network. 

In our initial approach, we seek high-quality plans with a combination of local search heuristics, aimed at 
preferring good choices for individual component assignments, and an exhaustive search for a plan that 
minimizes the global estimated run-time. Both aspects are necessary: without the global measure, several 
locally optimal choices can combine to make a poor overall plan because of conflicts between them. 
Without the local heuristics, the planner may have to generate many alternatives before finding a high 
quality plan. 

5 LIGO and GEO pulsar search 
LIGO (Laser Interferometer Gravitational-Wave Observatory, www.ligo.caltech.edu) [13, 14] is a 
distributed network of three km-scale interferometers occupying two sites in the U.S. The construction 
project was funded by NSF and jointly built by Caltech and MIT. GEO 600 is a 600 meter interferometer 
installed in Hannover, Germany built by a British-German collaboration. The observatories’  mission is to 



detect and measure gravitational waves predicted by general relativity, Einstein's theory of gravity, in 
which gravity is described as due to the curvature of the fabric of time and space. One well-studied source 
of gravitational waves is the motion of dense, massive astrophysical objects such as neutron stars or black 
holes. Other signals may come from supernova explosions, quakes in neutron stars, and pulsars.  

Gravitational waves interact extremely weakly with matter, and the measurable effects produced in 
terrestrial instruments by their passage will be miniscule. In order to  establish a confident detection or 
measurement, a large amount of auxiliary data will be acquired (including data from seismometers, 
microphones, etc.) and analyzed (for example, to eliminate noise) along with the strain signal that 
measures the passage of gravitational waves  The raw data collected during experiments is a collection of 
continuous time series at various sample rates.  The amount of data that will be acquired and cataloged 
each year is in the order of tens to hundreds of terabytes.  The gravitational strain channel is less than 1% 
of all data collected. Analysis on the data is performed in both time and Fourier domains. Requirements 
are to be able to perform single channel analysis over a long period of time as well as multi-channel 
analysis over a short time period.   

Searching for pulsars, which may emit gravitational waves requires, among other things, a Fourier 
analysis of a particular set of frequencies over some time frame. To conduct a pulsar search, for example, 
the user must find a number of files of raw data output corresponding to this time frame, extract the 
required channel, concatenate the files and make a series of Fourier transforms (FT) on the result. The 
desired frequencies must then be extracted from the set of FT output files, and processed by a separate 
program that performs the pulsar search. 

Depending on search parameters and the details of the search being conducted, a typical LIGO or GEO 
pulsar search may require thousands of Fourier transforms, some of which may have already been 
performed and stored at some location in the Grid. For good performance, this work must be divided 
between the suitable hosts that are available on the Grid, taking into account their different speeds and 
currently queued tasks. The results must be marshaled to one host for frequency extraction, and the final 
search must be executed on a different host because of the program requirements. In all, many gigabytes 
of data files may be generated, so a fast-running solution must take the bandwidth between hosts into 
account. 

We have tailored the metadata-driven Pegasus to support LIGO and GEO pulsar searches. This involved 
developing application-specific operators for the planner and to provide a Globus interface to the LIGO 
data analysis facilities which are customized to the project needs. This included developing a new Globus 
jobmanager [15] to enable scheduling of jobs on the LIGO analysis system and providing a GridFTP [16] 
interface to stage data in and out of the system. 

 

6 Results 
The Metadata approach described in this paper was first demonstrated at the SC 2002 conference held in 
November at Baltimore. The Pegasus system was configured to generate both the abstract and the 
concrete work flows and run the LIGO and GEO Pulsar searches. For this demonstration the following 
resources were used: 

• Caltech ( Pasadena, CA):  LIGO Data Analysis System (LDAS), Data Storage. 

• ISI (Marina del Rey, CA)  Condor Compute Pools, Data Storage, Replica Location Services,  
Metadata Catalog Services 

• University of Wisconsin (Milwaukee): Condor Compute Pools and Data Storage. 

The requests for pulsar searches were generated using an autogenerator which generated requests both for 
known pulsars (approximately 1300 known pulsars) as well as random point searches in the sky. A user 



could also request a specific pulsar search by specifying the metadata of the required data product through 
a web based system. Both the submission interfaces as well as all the compute and data management 
resources were Globus GSI (Grid Security Infrastructure) enabled. Department of Energy (DOE) issued 
X509 certificates were used to authenticate to all the resources. 

During the demonstration period and during a subsequent run of the system approximately 200 pulsar 
searches were conducted (both known as well as random) generating approximately 1000 data products 
involving around 1500 data transfers. The data used for this demonstration was obtained from the first 
scientific run of the LIGO instrument. The total compute time taken to do these searches was 
approximately 100 CPU hrs. All the generated results were transferred to the user and registered in the 
RLS, the metadata for the products in the MCS as well as into LIGO’ s own metadata Catalog. Pegasus 
also generated the corresponding provenance information using the Virtual Data Language and used it to 
populate in the Chimera Virtual Data Catalog. 

The execution of the jobs was monitored by two means. For each dag, we had a start and end job added, 
which logged the start time and the end time for the dag into a mysql database. This information was then 
published via an http interface. We also implemented a shell script which parsed the condor log files at 
the submit host to determine the state of the execution and published this information onto the web. 

7 Related Work 
Central to scheduling large complex workflows is the issue of data placement, especially when the data 
sets involved are very large. In CWG we give preference to the resources where the input data set is 
already present. Others [17, 18] look at the data in the Grid as a tiered system and use dynamic replication 
strategies to improve data access. In [19] significant performance improvement is achieved when 
scheduling is performed according to data availability while also using a dynamic replication strategy. 

While running a workflow on the Grid makes it possible to perform large computations that would not be 
possible on a single system, it leads to a certain loss of control over the execution of the jobs as they 
might be executed in different administrative domains. To counter this, there are other systems [20-23], 
which try to provide Quality of Service guarantees required by the user while submitting the workflow to 
the Grid. NimrodG uses the information from the MDS to determine the resource which meets the budget 
constraints specified by the user, while [23] monitors a job progress over time to ensure that guarantees 
are being met. If a guarantee is not being met schedules are recalculated. 

Other work has focused on developing application specific schedulers, which maximize the performance 
of the individual application. In AppLeS [24], scheduling is done on the basis of a performance metric 
which varies from application to application. To schedule the jobs on the Grid, knowledge is required 
about resource usage. This leads to a customized scheduler for each application and not a general 
solution. Some schedulers have focused on parameter sweep applications, where a single application is 
run multiple times with different parameters [25].  Since there are no interdependencies between jobs, the 
scheduling process is far simpler from the one addressed here.  

The European Data Grid (EDG) also has considered the automatic scheduling of jobs on the Grid which 
resulted in the development of their Workload Management Package [26]. The EDG Resource Broker 
[27] maps individual jobs based on information provided by various Grid Services such as MDS, 
Network Weather Service [28] and the Replica Location Services.  

Each of the systems mentioned above are rigid because they use a fix set of optimization criteria. In this 
work we are developing a framework for a flexible system that can map from the abstract workflow 
description to its concrete form and can dynamically change the optimization criteria. 



8 Conclusions and Future Work 
The work presented here describes the Pegasus planning framework and its application to the LIGO and 
GEO gravitational wave physics experiments. The interface to the system was at the level of the 
application and AI planning techniques were used to map user requests to complex workflows targeted 
for execution on the Grid.  The current planner employs full ahead planning, which as discussed in 
Section 2 might not be optimal. As part of our future work, we plan to investigate the planning space 
further.  

In our demonstration we used scientifically meaningful data and used both generic Grid resources as well 
as LIGO specific resources enabled to work within the Grid. The results of our analysis were also fed 
back into the LIGO metadata catalogs for access by the LIGO scientists.  

Although we were able to model the pulsar search within the planner, the issue of expanding this 
approach to other applications needs to be evaluated. 
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