
Application Experiences with the Globus Toolkit

Sharon Brunett1 Karl Czajkowski2 Steven Fitzgerald2 Ian Foster3

Andrew Johnson4 Carl Kesselman2 Jason Leigh4 Steven Tuecke3

1 Center for Advanced Computing Research 2 Information Sciences Institute
California Institute of Technology University of Southern California

Pasadena, CA 91125 Marina del Rey, CA 90292

3 Mathematics and Computer Science 4 Electronic Visualization Lab
Argonne National Laboratory University of Illinois

Argonne, IL 60439 Chicago, IL 60637

Abstract

The development of applications and tools for high-
performance “computational grids” is complicated by
the heterogeneity and frequently dynamic behavior of
the underlying resources; by the complexity of the ap-
plications themselves, which often combine aspects of
supercomputing and distributed computing; and by the
need to achieve high levels of performance. The Globus
toolkit has been developed with the goal of simplify-
ing this application development task, by providing im-
plementations of various core services deemed essen-
tial for high-performance distributed computing. In
this paper, we describe two large applications developed
with this toolkit: a distributed interactive simulation
and a teleimmersion system. We describe the process
used to develop the applications, review lessons learned,
and draw conclusions regarding the effectiveness of the
toolkit approach.

1. Introduction

The Globus grid toolkit is a collection of software
components designed to support the development of
applications for high-performance distributed comput-
ing environments, or “computational grids” [11, 12].
The Globus toolkit is an implementation of a “bag
of services” architecture, which provides application
and tool developers not with a monolithic system but
rather with a set of standalone services. (Other candi-
date grid architectures include the use of object-based
technologies [16, 15], web technologies [14, 27], and

CORBA [17].) Each Globus component provides a ba-
sic service, such as authentication, resource allocation,
information, communication, fault detection, and re-
mote data access. Different applications and tools can
combine these services in different ways to construct
“grid-enabled” systems.

Various components of the Globus toolkit are de-
scribed in detail in other papers [11, 7, 9, 13]. Briefly,
the toolkit comprises the core services listed in Table 1,
plus a selection of higher-level services defined in terms
of these core services. Each core service defines an
application program interface (API) that provides a
uniform interface to a local service. For example, the
Globus Resource Allocation Manager (GRAM) service
provides an API for requesting that computations be
started on a computational resource, and for managing
those computations once they are started [7]. Higher-
level services use core services to implement more com-
plex global functionality. For example, resource bro-
kers and co-allocators use services provided by GRAMs
and by the Globus information service (the Metacom-
puting Directory Service, or MDS [9]) to locate avail-
able resources and to start computations across compu-
tations of resources, respectively. Application-specific
scheduling techniques [2] can also be used.

The Globus toolkit has been used to construct
the Globus Ubiquitous Supercomputing Testbed, or
GUSTO: a large-scale testbed that spans over 20 sites
and includes over 3,000 compute nodes for a total
compute power of over 2 TFLOPS. Over the past six
months, we and others have used this testbed to con-
duct a variety of application experiments, in such ar-
eas as multiuser collaborative environments (teleim-

Table 1. Core Globus services. As of
early 1998, these include only those services
deemed essential for an evaluation of the
Globus design philosophy on realistic appli-
cations and in medium-scale grid environ-
ments.

Service Name Description
Resource GRAM Resource allocation &
Management process management
Commun- Nexus Unicast & multicast
ication communication services
Information MDS Distributed access to

structure & state
information

Security GSI Authentication & related
security services

Health & HBM Monitoring of health &
Status status of components
Remote GASS Remote access to data
Data via sequential &
Access parallel interfaces
Executable GEM Construction, caching, &
Management location of executables

mersion), computational steering, distributed super-
computing, and high-throughput computing.

The goal of this paper is to review what has been
learned from these experiments regarding the effective-
ness of the toolkit approach. To this end, we describe
two of the application experiments in detail, noting
what worked well and what worked less well. These
two applications are a distributed supercomputing ap-
plication, SF-Express, in which multiple supercomput-
ers are harnessed to perform large distributed inter-
active simulations; and a teleimmersion application,
CAVERNsoft, in which the focus is on connecting mul-
tiple people to a distributed simulated world.

We believe that the results of these experiments in-
dicate that the Globus toolkit architecture is effective,
at least for the applications considered to date. Large,
complex applications can be either adapted to execute
in a grid environment (e.g., SF-Express) or developed
from scratch for grid computing (e.g., CAVERNsoft)
without unusual difficulty, and with a saving in cost,
complexity, and usability relative to similar codes de-
veloped without our toolkit. The experiments also
point to areas in which further work is required: for
example, code and data management, and fault toler-
ance.

2. SF-Express

The first application that we consider, SF-Express,
is a distributed interactive simulation (DIS) application
that harnesses multiple supercomputers to meet the
computational demands of large-scale network-based
simulation environments [24]. A large simulation may
involve many tens of thousands of entities and requires
thousands of processors. Globus services can be used
to locate, assemble, and manage those resources. For
example, in one experiment in March 1998, SF-Express
was run on 1352 processors distributed over 13 super-
computers at nine sites [5] (Figure 2). This experi-
ment involved over 100,000 entities, setting a new world
record for simulation and meeting a performance goal
that was not expected to be achieved until 2002.

R R

R

R

S

S

S

D

S

S

S

S

S

D

S

S

S

S

S

D

S

S

Router node

Simulation node Data server

Interest management

S

R

D

I

I I I

MPI
Communication

Socket
Communication

Figure 1. SF-Express architecture

An SF-Express computation is distributed across a
large number of simulation nodes, where each node is
responsible for simulating the behavior of entities as-
signed to it. During the simulation, entity state infor-
mation, such as the position and velocity, is exchanged.
Current DIS implementations broadcast state update
information, an approach that is not practical for the
large-scale simulations. SF-Express uses a technique
called interest management to reduce the amount of
communication required. As illustrated in Figure 1,
simulation nodes are organized into groups, and a
router node is associated with each group. Routers
keep track of which simulation nodes contain entities
that can potentially interact with one another, and en-
tity state updates are sent only between those routers
responsible for interacting simulation nodes. Entities
are assigned to nodes in a way that preserves physical
locality to further reduce communication requirements.

2

Figure 2. The nine sites involved in the record-setting distributed interactive simulation

2.1. SF-Express Experiences

SF-Express is interesting as a test case for the
Globus toolkit because a distributed implementation
existed before work started on the use of Globus ser-
vices. As illustrated in Table 2 and explained in the
following, a Globus-based implementation was con-
structed (and continues to be constructed) by incorpo-
rating Globus services incrementally to improve exist-
ing functionality or add new functionality. This incre-
mental process made it possible to study the impact
on complexity and usability of incorporating Globus
components.

Resource allocation and security. Prior to the
use of Globus services, simply starting SF-Express on
multiple supercomputers was a painful task. The user
had to log in to each site in turn and recall the arcane
commands needed to allocate resources and start a pro-
gram. This obstacle to the use of distributed resources
was overcome by encoding resource allocation requests
in terms of the GRAM API. GRAM and associated
GSI services could then be used to handle authentica-
tion, resource allocation, and process creation at each
site.

Co-allocation. SF-Express requires that the allo-
cation of the resources used by its simulation nodes
and routers, and the starting of the relevant pro-

cesses, occur simultaneously. We used a Globus co-
allocation service called DUROC to coordinate mul-
tiple GRAM requests, construct an unified job from
individual GRAM requests, or subjobs, and prevent
application components from starting until all the re-
quired resources have been obtained. As shown in
Figure 3, the changes to SF-Express required to in-
terface to GRAM and the co-allocation service are
minimal: The co-allocator library function ca barrier
is added to ensure that the simulation proceeds only
when all resources have been obtained, and the func-
tion sfe exchange info uses GRAM and co-allocator
functions to gather and broadcast the IP addresses and
port numbers of all router nodes.

Because of the sheer size of the computation, the
100,000-vehicle run of SF-Express required exclusive
access to the 13 supercomputers used by the simula-
tion. This exclusive access was achieved by manually
coordinating dedicated time on all machines. Globus
was then used to start the computation, assured that it
could obtain the resources requested. In general, ded-
icated time is hard to come by on a single supercom-
puter, let alone thirteen. Thus, such manual scheduling
is the exception, not the norm.

During the test runs leading up to the large simula-
tion, Globus was used to dynamically allocate resources
via the normal scheduling queues on the desired ma-
chines. In this usage mode, it was possible for a request
for a set of nodes on a specific machine could be arbi-

3

main(int argc, char **argv) {
router_info my_router;
router_info routers[MAX_ROUTERS];
/* Wait for rest of nodes to start */
ca_barrier();
/* Connect up routers *
my_router.addr = router_addr();
my_router.port = router_port();
/* Get locations of other routers */
sfe_exchange_info(&my_router,routers);

/* Start MPI in local set of nodes */
MPI_Init(argc,argv);
/* Rest of code */

Figure 3. The Globus-enhanced SF-Express
startup code extends the code used on a sin-
gle parallel computer with two new calls, as
described in the text

trarily delayed. The dynamic editing capabilities of
DUROC proved extremely helpful in these situations,
enabling dynamic editing of the resource set until an
appropriate collection of machines was obtained in a
timely fashion.

Fault detection. The nondeterministic nature of
the DIS simulation algorithm means that a simula-
tion can sometimes continue in a useful fashion even
if a component has failed. For this reason, we use the
Globus heartbeat monitor (HBM) to provide fault de-
tection and notification. This Globus service provides
a wide-area mechanism for monitoring the state of the
components of a computation, notifying a status mon-
itor of failure.

Remote data access. SF-Express generates two
types of file I/O: it reads a variety of databases and
configuration files and writes an error log. We use the
Global Access to Secondary Storage (GASS) service to
simplify access to error logs. Each machine participat-
ing in SF-Express generates a log file indicating the
status of the simulation on that machine. Prior to us-
ing Globus, an SF-Express user had to log into the
machine running a piece of the simulation to examine
the contents of the log. Using GASS, which supports
append-mode file writes, we can write logfile entries
to a remote location. GASS also supports automatic
fetching of files when they are opened, in a similar fash-
ion to UFO [1], and program-controlled prestaging of

files. We plan to use this facility to provide access to
the read-only files accessed by SF-Express.

2.2. SF-Express Lessons Learned

It is difficult to quantify the impact of Globus on
SF-Express. However, we can offer strong anecdotal
evidence as to its usefulness. One major benefit was
a significant decrease in the amount of time it took
to start up and shut down a simulation. This facili-
tated both the debugging of the application and the
agility with which the configuration could be changed
during the actual large-scale run. The second major
benefit of Globus was the simplification of application
configuration. Prior to using Globus, a configuration
file was used to list the IP addresses and ports at which
simulation components running on different machines
could be contacted in order to connect the pieces of
the simulation to one another. Globus eliminated the
need for this static information, since dynamic Globus
startup mechanisms supported the distribution of this
information. This reduced the complexity of startup
and eliminated a major source of error, increasing our
confidence that the simulation would run if last-minute
changes in computational resources had to be made.

Experience with SF-Express also revealed areas in
which existing Globus services could be improved and
suggested additional opportunities for use of Globus
services in SF-Express. The primary Globus deficiency
revealed by this work relates to the implementation
of the co-allocation service. The co-allocation ser-
vice initially designed for Globus provided a static co-
allocation model in which a request failed if any com-
ponent of the request failed. While this model vastly
simplified SF-Express startup, it meant that a startup
problem on any one computer required that we ter-
minate the healthy components of the job and restart
the computation. Yet in practice, individual GUSTO
components failed frequently. Interestingly, software
problems rather than hardware and network failures
were the leading cause of difficulty. Examples of failure
states that we observed include system paralysis due to
generation of a large core file; failure of local schedul-
ing systems; intermittent application crashes (due to
bugs in the original SF-Express code); and operator
error. These problems were especially troublesome be-
cause SF-Express has a startup time of over 15 minutes.
Building on this experience, we have designed a more
flexible, dynamic co-allocation model in which the con-
tents of a co-allocation request can be modified until
the program starts to execute.

Experience suggested three additional areas in which
Globus components could be used in an SF-Express

4

Table 2. A grid-aware version of SF-Express is being constructed incrementally: Globus services
are incorporated one by one to improve functionality and reduce application complexity. The Status
field indicates code status as of early 1998: techniques are in use (Y), are experimental or partial use
(y), or remain to be applied in the future (blank).

Services How Used Benefits Status
GRAM, GSI Start SF-Express Avoid need to log into Y

on supercomputers and schedule each system
+ Co-allocator Distributed startup Avoid application-level Y

and management check-in and shutdown
+ MDS Use MDS information Performance, portability y

to configure computation
+ Resource Use broker to locate Code reuse, portability y

Broker appropriate computers
+ Nexus Encode communication Uniformity of interface, y

as Nexus RSRs access to unreliable comms
+ HBM Routers check in with Provide degree of Y

application-level monitor fault tolerance
+ GASS Use to access terrain Avoid need to prestage y

database files, etc. data files
+ GEM Use to generate and Avoid configuration

stage executables problems

implementation: configuration (using MDS informa-
tion for autoconfiguration, hence improving portabil-
ity and performance); resource brokering (providing
an SF-Express-specific resource broker, hence reduc-
ing the need for human involvement in the resource
selection process); and communication (using Globus
communication services to access multicast and qual-
ity of service mechanisms, hence improving scalability
and simulation performance).

3. CAVERNsoft

The second application that we consider is CAV-
ERNsoft [20], a software infrastructure designed to sup-
port the rapid development of teleimmersive applica-
tions. In teleimmersion, immersive virtual reality en-
vironments are used over networks to provide shared
access to simulated virtual spaces for design, collabora-
tion, entertainment, education, and so forth [20, 8] The
producers and consumers of the virtual environment, as
well as the datasets and simulations on which the vir-
tual space is based, are frequently geographically dis-
tributed, placing heavy demands on distributed com-
puting support. For example CAVERNsoft is the un-
derlying data distribution architecture for VisualEyes,
a collaborative design review system used by General
Motors (Figure 4); CAVE5D, a collaborative system for

visualizing multidimensional weather and environmen-
tal hydrology data; Virtual Temporal Bone, a collabo-
rative learning environment to teach medical students
the structure and function of the inner ear; and TIDE
(Teleimmersive Data-mining Environment), a collabo-
rative system for viewing decision-trees generated by
data-mining classifiers.

CAVERNsoft supports teleimmersive application
development by providing runtime support for the def-
inition, update, and access of shared virtual worlds. Its
layered architecture has at its core an information re-
source broker (IRB) that supports the maintenance of
shared databases, and above this libraries for the ma-
nipulation of avatars and manipulation of audio and
video streams.

3.1. CAVERNsoft Experiences

The initial version of the IRB makes extensive use of
the Globus toolkit’s communication service, and hence
we focus our discussion on this aspect of the system.
We also note opportunities that we have identified for
the use of other services.

Communication in teleimmersive applications is
complicated by the variety of flows that need to be
handled. DeFanti and Stevens [8] identify nine dis-
tinct types of flow (control, text, audio, video, tracking,

5

Figure 4. VisualEyes, a distributed design re-
view system from General Motors. The de-
sign of a car interior is projected on the walls
of the CAVE. Remote participants are able to
enter the space and see and critique the de-
sign from various points of views and make
minor adjustments.

database, simulation, haptics, rendering), each with
distinctive requirements in terms of both performance
and the mechanisms that can be used to implement the
flows [18]. For example, tracking information need not
be propagated reliably but can almost always benefit
from multicast, while database updates require reliable
communication but cannot always use multicast capa-
bilities.

Historically, teleimmersion systems (and similar ap-
plications) either have used a single low-level commu-
nication protocol for all flows (e.g., TCP/IP [26, 3, 6])
or have used a mixture of different, often specialized
APIs for different flows [23, 25, 22]. Neither approach
is ideal. We believe that a better approach is to code
to a single API that allows both high-level specification
of communication structure and independent specifica-
tion of the mechanisms used to achieve that commu-
nication. Nexus, the communication component of the
Globus toolkit, meets this requirement.

The Nexus communication library allows applica-
tions to define communication links over which can be
performed asynchronous remote procedure calls called
remote service requests (RSRs). Associated operations
allow us to select the underlying communication proto-
col used for a particular RSR according to when, where,
and what is being communicated [10]. Hence, if two
components of a CAVERNsoft application are located
on different nodes of a parallel computer, Nexus opera-

tions can be mapped onto efficient local communication
methods, such as MPI; if the components are located
on different computers, Nexus communication opera-
tions can be mapped into unreliable, wide-area com-
munication protocols. More important, this flexibility
means that CAVERNsoft can specify all communica-
tion operations in terms of a single abstraction (and
API) and then vary the method used according to the
type of flow that the communication is associated with.
For example, tracking events can be performed with an
unreliable multicast protocol, while database updates
are propagated with reliable unicast or multicast.

Nexus also allows quality of service (QoS) specifica-
tions [18] to be associated with communication links.
These specifications can then be translated into an
RSVP [4] or similar reservation if the underlying net-
work supports this capability. MDS information can be
used to determine the capabilities and utilization of the
underlying networks, and hence to evaluate trade-offs
between different protocols.

3.2. CAVERNsoft Lessons Learned

In teleimmersion the major criteria that decide the
suitability of a networking infrastructure are its porta-
bility across multiple collaborating platforms, the man-
ner in which its communications model matches the
data dissemination model of teleimmersion, its ability
to support a wide variety of networking protocols and
QoS, and the overhead imposed by using a higher-level
library.

• Portability. Teleimmersive applications typically
interact with databases and simulations that are
supported by hardware platforms that are dissim-
ilar to the systems that drive the VR hardware.
The availability of Nexus on all major platforms
(Windows NT is the only significant exception
and will be provided shortly) makes CAVERNsoft
portable.

• Uniform Networking Interface. CAVERNsoft is a
second-generation teleimmersion system, designed
in response to lessons learned with two earlier ap-
plications (CALVIN, a collaborative architectural
layout system, and NICE, a collaborative educa-
tional system) [25, 21]. CALVIN employed a dis-
tributed shared-memory system that used com-
pletely reliable protocols as the main mechanism
for information distribution. Although the DSM
model simplified programming, it had two sig-
nificant limitations: its use of a reliable proto-
col resulted in significant latency during the de-
livery of tracking events that normally preferred

6

low-latency transmission; and its lack of an event-
triggering mechanism meant that a program had
to constantly poll for any changes in the DSM.
In NICE, however, a fully message-passing system
was implemented that used both reliable and un-
reliable network protocols. In addition, an event-
triggering mechanism was implemented so that
new messages would trigger the proper update of
the virtual environment. NICE’s main limitation
was that its use of multiple networking protocols
(multicast, UDP, and TCP) required each portion
of the program that used these protocols to be
managed separately.

CAVERNsoft combined a DSM with a message-
passing system. Moreover, through Nexus’s uni-
form networking interface, CAVERNsoft provided
support for reliable TCP, unreliable UDP, and un-
reliable multicasting. In the future, other proto-
cols such as RTP and reliable multicast will be pos-
sible. Furthermore, since Nexus will also provide
networking QoS capabilities, these capabilities will
also become a standard part of CAVERNsoft.

• Half a Remote Procedure Call. The Nexus remote
service request (RSR) is essentially a remote pro-
cedure call (RCP) without a response that blocks
the calling process. This asynchronous RPC is
necessary for teleimmersive applications because
these realtime applications cannot call a remote
procedure and block to wait for a response. Re-
sponses must be managed asynchronously: that is,
they are sent to handlers when an asynchronous
event arises. This is exactly the model of opera-
tion employed by the Nexus RSR.

• Performance Overhead. A number of comparisons
have been made between sending data via stan-
dard UNIX TCP calls and Nexus RSRs [19]. Our
results showed the only significant overhead im-
posed by Nexus to be a single redundant mem-
ory copy of an application’s data to Nexus trans-
mission and receiving buffers. This redundant
copy will significantly impact teleimmersive appli-
cations when large datasets are distributed; how-
ever, planned extensions to Nexus will provide a
set of nonbuffered RSRs, hence eliminating this
overhead.

Having completed construction of this initial CAV-
ERNsoft prototype, we are considering a number of
extensions. A first step is to use Globus security in-
frastructure and resource management mechanisms to
handle authentication and resource allocation on dis-
tributed resources; currently, these tasks are handled

in a rather ad hoc manner. A next task will be to
use MDS to guide optimized configuration decisions for
the IRB implementation. We also anticipate that the
Globus instrumentation service will be of use.

4. Conclusions

We have used the Globus toolkit to implement a
variety of distributed computing applications, two of
which we have described here. Each application typi-
cally uses a different set of grid services. Nevertheless,
all have in common that an existing application code
or application structure was modified for grid execu-
tion fairly easily by introducing appropriate compo-
nents chosen from the Globus bag of services. This
means that the application did not have to be entirely
rewritten before it could operate in a grid environment:
services could be introduced into an application incre-
mentally, with functionality increasing at each step. In
this respect, we believe that our initial experiments
with the toolkit have been a success and suggest that
the approach should be pushed further.

Our experiments also teach us lessons about the grid
environment, most notably the importance of fault tol-
erance. While detecting and dealing with failure are
known to be critical issues in distributed systems, we
have been astonished by the range of error conditions
that we have encountered. Fortunately, we find that
the availability of relatively simple fault detection tech-
niques can render applications significantly more ro-
bust. In this respect, the integrated, network-accessible
information service provided by Globus (MDS) proved
valuable as a mechanism for detecting and recover-
ing from failure. MDS information allowed us develop
a range of general and application-specific high-level
tools such as resource brokers and status monitors.

Future work will focus on further refining the cur-
rent Globus services by studying their use in additional
applications. We are continuing to work with both SF-
Express and CAVERNsoft to make them more grid-
aware. We are also working to extend the Globus
toolkit to incorporate additional services, notably in
the area of executable management. Our goal is to
make these and other applications robust and simple
enough so that the use of computational grids becomes
commonplace.

Acknowledgments

We gratefully acknowledge the contributions of
other members of the Globus team, in particular,
Joe Bester, Joe Insley, Nick Karonis, Gregor von

7

Laszewski, Stuart Martin, Warren Smith, and Brian
Toonen at Argonne National Laboratory; Mei-Hui Su
and Marcus Thiebaux at USC/ISI; and Craig Lee and
Paul Stelling at the Aerospace Corporation. This
work was supported in part by the Mathematical, In-
formation, and Computational Sciences Division sub-
program of the Office of Computational and Technol-
ogy Research, U.S. Department of Energy, under Con-
tract W-31-109-Eng-38; by the Defense Advanced Re-
search Projects Agency under contract N66001-96-C-
8523; and by the National Science Foundation.

References

[1] A. D. Alexandrov, M. Ibel, K. E. Schauser, and C. J.
Scheiman. Extending the operating system at the user
level: The UFO global file system. In 1997 Annual
Technical Conference on UNIX and Advanced Com-
puting Systems (USENIX’97), Jan. 1997.

[2] F. Berman. High-performance schedulers. In [12].
[3] K. Birman. The process group approach to reliable

distributed computing. Communications of the ACM,
36(12):37–53, 1993.

[4] R. Braden, L. Zhang, D. Herzog, and S. Jamin. Re-
source ReSerVation Protocol (RSVP) – Version 1 func-
tional specification. Internet Draft, Internet Engineer-
ing Task Force, 1996.

[5] S. Brunett, D. Davis, T. Gottschalk, P. Messina, and
C. Kesselman. Implementing distributed synthetic
forces simulations in metacomputing environments. In
Proceedings of the Heterogeneous Computing Work-
shop, pages 29–42. IEEE Computer Society Press,
1998.

[6] C. Carlsson and O. Hagsand. DIVE - a multi-user vir-
tual reality system. In Proceedings of the IEEE Virtual
Reality Annual International Symposium. 1993.

[7] K. Czajkowski, I. Foster, N. Karonis, C. Kesselman,
S. Martin, W. Smith, and S. Tuecke. A resource man-
agement architecture for metacomputing systems. In
The 4th Workshop on Job Scheduling Strategies for
Parallel Processing, 1998.

[8] T. DeFanti and R. Stevens. Tele-immersion. In [12].
[9] S. Fitzgerald, I. Foster, C. Kesselman, G. von

Laszewski, W. Smith, and S. Tuecke. A directory ser-
vice for configuring high-performance distributed com-
putations. In Proc. 6th IEEE Symp. on High Perfor-
mance Distributed Computing, pages 365–375. IEEE
Computer Society Press, 1997.

[10] I. Foster, J. Geisler, C. Kesselman, and S. Tuecke.
Managing multiple communication methods in high-
performance networked computing systems. Journal
of Parallel and Distributed Computing, 40:35–48, 1997.

[11] I. Foster and C. Kesselman. The Globus project: A
progress report. In Proceedings of the Heterogeneous
Computing Workshop, 1998. to appear.

[12] I. Foster and C. Kesselman, editors. The Grid:
Blueprint for a Future Computing Infrastructure. Mor-
gan Kaufmann Publishers, 1998.

[13] I. Foster, C. Kesselman, and S. Tuecke. The Nexus
approach to integrating multithreading and communi-
cation. Journal of Parallel and Distributed Computing,
37:70–82, 1996.

[14] G. Fox and W. Furmanski. High-performance com-
modity computing. In [12].

[15] D. Gannon and A. Grimshaw. Object-based ap-
proaches. In [12].

[16] A. S. Grimshaw, W. A. Wulf, and the Legion team.
The Legion vision of a worldwide virtual computer.
Communications of the ACM, 40(1), Jan. 1997.

[17] O. M. Group and X/Open. Common object request
broker: Architecture and specification, 1991.

[18] R. Guérin and H. Schulzrinne. Network quality of ser-
vice. In [12].

[19] J. Leigh. CAVERN and a Unified Approach to Sup-
port Realtime Networking and Persistence in TeleIm-
mersion. PhD thesis, University of Illinois at Chicago,
Dec 1997.

[20] J. Leigh, A. Johnson, and T. A. DeFanti. CAVERN: A
distributed architecture for supporting scalable persis-
tence and interoperability in collaborative virtual en-
vironments. Virtual Reality: Research, Development
and Applications, 2(2):217–237, December 1997.

[21] J. Leigh, A. E. Johnson, C. A. Vasilakis, and T. A. De-
Fanti. Multi-perspective collaborative design in persis-
tent networked virtual environments. In Proceedings
of IEEE Virtual Reality Annual International Sympo-
sium ’96, pages 253–260, Apr. 1996.

[22] M. R. Macedonia and M. J. Zyda. A taxonomy for
networked virtual environments. In Proceedings of the
1995 Workshop on Networked Realities. 1995.

[23] J. Mandeville, J. Furness, and T. Kawahata.
Greenspace: Creating a distributed virtual environ-
ment for global applications. In Proceedings of IEEE
Networked Virtual Reality Workshop. IEEE Computer
Society Press, 1995.

[24] P. Messina, S. Brunett, D. Davis, T. Gottschalk,
D. Curkendall, L. Ekroot, and H. Siegel. Distributed
interactive simulation for synthetic forces. In Proceed-
ings of the 11th International Parallel Processing Sym-
posium, 1997.

[25] M. Roussos, A. Johnson, J. Leigh, C. Valsilakis,
C. Barnes, and T. Moher. NICE: Combining con-
structionism, narrative, and collaborati on in a virtual
learning environment. Computer Graphics, 31(3):62–
63, August 1997.

[26] C. Shaw and M. Green. The MR toolkit peers package
and environment. In Proceedings of the Virtual Real-
ity Annual International Symposium. IEEE Computer
Society Press, 1993.

[27] A. Vahdat, E. Belani, P. Eastham, C. Yoshikawa,
T. Anderson, D. Culler, and M. Dahlin. WebOS: Oper-
ating system services for wide area applications. In 7th
Symposium on High Performance Distributed Comput-
ing, to appear, July 1998.

8

