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Abstract 

 
Data replication is a key issue in a Data Grid and can be 
managed in different ways and at different levels of 
granularity: for example, at the file level or object level. In 
the High Energy Physics community, Data Grids are being 
developed to support the distributed analysis of 
experimental data. We have produced a prototype data 
replication tool, the Grid Data Management Pilot 
(GDMP) that is in production use in one physics 
experiment, with middleware provided by the Globus 
Toolkit used for authentication, data movement, and other 
purposes. We present here a new, enhanced GDMP 
architecture and prototype implementation that uses 
Globus Data Grid tools for efficient file replication. We 
also explain how this architecture can address object 
replication issues in an object-oriented database 
management system. File transfer over wide-area 
networks requires specific performance tuning in order to 
gain optimal data transfer rates. We present performance 
results obtained with GridFTP, an enhanced version of 
FTP, and discuss tuning parameters. 
 
1 Introduction 
 

Data replication is an optimization technique well 
known in the distributed systems and database 
communities as a means of achieving better access times 
to data (data locality) and/or fault tolerance (data 
availability) [Bres99, Karg99, Tewa99].  This technique 
appears clearly applicable to data distribution problems in 
large-scale scientific collaborations, due to their globally 
distributed user communities and distributed data sites.  As 
an example of such an environment, we consider the High 
Energy Physics community where several thousand 
physicists want to access the Terabytes and even Petabytes  
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of data that will be produced by large particle detectors 
around 2006 at CERN, the European Organization for 
Nuclear Research. 

The computing model of a typical next generation 
experiment at CERN foresees the use of a distributed 
network of regional centers, each equipped with 
computing and data storage facilities and linked with 
wide area network connections [Newm00]. Since these 
sites are intended to be used in a coordinated fashion, 
there is a natural mapping to a Grid environment 
[FoKe99a] and the High Energy Physics community is 
building a Data Grid [Cher00] to support the distributed 
management and analysis of its data. Recently, the 
European Data Grid Project (“EU DataGrid” [EDG01]) 
project has been initiated and a prototype project GDMP 
(Grid Data Management Pilot) [SaSt01] has been used in 
a production environment in an experiment involving the 
secure replication of database files between several sites 
in Europe and the U.S.  GDMP provides file replication 
services and some preliminary storage management 
functionality.  Although it is not yet a fully functional 
replication manager (e.g., see [Hosc00]), it does provide 
useful services and is extensible to meet future needs. 

GDMP uses services provided by the Globus Toolkit 
[FoKe99b] for security and other purposes.  An initial 
version, GDMP version 1.2 [GDMP01], was limited to 
transferring Objectivity [Obje01] database files. In more 
recent work, we have significantly extended GDMP 
capabilities by integrating two new Globus Data Grid 
tools [Allc01], available as an alpha release as of early 
2001: the Globus Replica Catalog, which we use to store 
replica location metadata, and the GridFTP high-
performance wide area transport library, which we use as 
our transport engine. 

In this article, we describe how GDMP uses these new 
services to develop a significantly improved architecture. 
We provide performance results on GridFTP data 
transfers and also describe how GDMP is extended with 
an object replication feature that can be used for 
distributed data analysis.  
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The article is organized as follows. Section 2 gives 
background on the application domain (High Energy 
Physics), file vs. object replication and related Data Grid 
projects. In the next section we discuss Globus Data Grid 
tools: the Globus Replica Catalog and GridFTP. Section 4 
elaborates on architectural aspects of GDMP and discusses 
the new components in detail. Object replica issues are 
presented in Section 5. Finally we present performance 
tests on GridFTP and make some concluding remarks. 

 
2 Background and Related Work 
 

In order to provide some background to our specific 
Data Grid domain, we discuss briefly the software 
engineering processes used in High Energy Physics (HEP) 
and the difficulties that these projects face in the future. 
We also review the various Data Grid projects that are 
exploring potential solutions. 

 
2.1 High Energy Physics  
 

In many next-generation HEP experiments, object-
oriented software engineering tools and languages are used 
to develop the software infrastructure for the final physics 
analysis.  To store the experiment's data, currently an 
object-oriented database management system or an object 
data store is assumed as the data persistency solution.  At 
the highest level of abstraction in the experiment’s data 
models, all data are persistent objects and can be accessed 
through an object-oriented navigation mechanism. 

The experiment's physics detector makes observations 
of high energy physics collisions. Each observation is 
called an “event” and has a unique event number.  For 
each event, a number of objects are present.  There are raw 
data objects which hold the data directly taken from the 
detector, and reconstructed objects which hold processed 
versions of this raw data. 

The high level experiment's data view contains neither 
the concept of files nor the concept of data replication: all 
objects are supposed to simply “exist” without regard to 
how they are stored and how many replicas exist.  Files 
and replication appear only at lower layers of abstraction 
as implementation mechanisms for the experiment's object 
view.   

A single file will generally contain many objects.  This 
is necessary because the number of objects is so large (in 
the order of 107 to 1010 for a modern physics experiment) 
that storing each object in a single file would lead to 
scalability problems in the file systems and tertiary storage 
systems used.  Moreover, the object persistency solutions 
used only work efficiently if there are many objects per 
file. To map the high-level object view of the experiment 
to the a lower level storage infrastructure of replicated 
files, we assume a three-step process supported by three 
catalogs, as shown in Figure 1. 

As most objects are read-only after creation, access 
patterns show considerable repetitiveness and locality, 
and both the user community and the hardware resources 
are highly distributed, support for replication is clearly 
desirable.  Replication is also desirable because the 
(current production versions of the) object persistency 
layers in each site do not have the native ability to 
efficiently access objects on remote sites [YoMo00], as 
they were built under the assumption that a low latency 
exists when accessing storage. 
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Figure 1: Interaction between different catalogs when 
mapping the application-level view to lower level 
storage. 

  
In this article we discuss both file and object 

replication.  We define file replication as a mechanism 
that replicates data at the granularity of already-existing 
files.  Object replication replicates data at the granularity 
of the individual objects, regardless of any currently 
existing mapping between objects and files.  Figure 2 
shows the difference between file replication and our 
approach for object replication. 

In our approach, object replication is a multi-step 
process: 
- First, on the source site, an object copier tool is used 

to copy the objects that need to be replicated into a 
new file.   

- Second, the new file is moved to the destination site 
using a wide area file copy.   

- As a final step, the new file can be deleted at the 
source site.   

The object replication approach is considered further 
in Section 5.  As discussed in Section 5, replication 
strategies with object granularity are potentially more 
efficient than file replication for some specific HEP 
workloads.  This efficiency comes at the cost of greater 
complexity however, both in data manipulation and in the 
complexity of the object to file catalog [HoSt00]. 

The object data model of the HEP applications creates 
some specific difficulties for replication.  If file 
replication is used, the replication mechanism cannot a 
priori treat every file as independent and self-contained, 
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as tight navigational relations or synchronous updating 
constraints might couple the objects in several files.  For 
instance, two objects in two separate files can have a 
navigational association between each other. If only one of 
these two files is replicated to a remote site, the navigation 
to the associated object might not be possible since the 
required file is not available locally too, and the object 
persistency layer at the remote site has no awareness of the 
files in other sites.  Thus, the two files have to be treated as 
associated files and replicated together in order to preserve 
the navigation. A more detailed discussion on this topic 
can be found in [Stock01]. 
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Figure 2: File and object replication in a Data Grid.  File 
replication is shown at the top, object replication at the 
bottom. In both cases, the application code uses an object 
persistency layer to read the wanted objects from the file 
once it is on local storage. 
 

If a "lazy" form of file replication is used, the 
mechanisms that steer replication will have to take into 
account any synchronous creation or update constraints 
between objects, and by extension between the replicated 
files.  The model for file replication is therefore that 

"consistency policies", which flow from the application 
layer, will steer the replication layer.  To minimize the 
constraints that need to be encoded in consistency 
policies, application designers must carefully think out 
the allocation of objects to files. 

For object replication, the problem of update 
constraints is of course equally present, and could again 
be handled with application-defined consistency policies.  
However, to limit complexity, in our object replication 
solutions we are currently not considering any flexible 
application-defined policies.  Instead we require that all 
objects entrusted to the object replication service are 
always read-only objects.  This read-only requirement is 
no big burden for HEP applications: by using a 
sufficiently powerful and pervasive versioning 
mechanism, many (but not all) HEP persistent objects can 
be treated as read-only after initial creation. 

 
2.2 Related Data Grid Projects 

 
Data Grid concepts are being explored in a number of 

projects worldwide.  In the U.S., the Earth System Grid 
(ESG) is applying Data Grid technologies to the 
management of climate data [Allc01b], while the Particle 
Physics Data Grid (PPDG) [PPDG01] and Grid Physics 
Network (GriPhyN) [GriP01] projects are both working 
in the HEP domain. Efforts have started within PPDG as 
well as EU DataGrid to use the GDMP code base.  Since 
GDMP is and has been a mutual effort of EU DataGrid 
and PPDG, this collaboration also has the beneficial 
effort of encouraging these two projects to go in similar 
directions in the development of Grid tools. Work within 
the digital library community is also relevant [Moor99]. 

PPDG and GriPhyN are the most related projects in 
the HEP domain (GriPhyN is also addressing 
requirements of sky survey and astrophysics applications) 
and we state briefly how they differ from our approach.  

GriPhyN is mainly addressing fundamental IT 
research focused on realizing the concept of Virtual Data. 
Virtual Data in general means that data does not 
necessarily have to be available in a persistent form but is 
created on demand and then materialized when it is 
requested. In this virtual data space, requests can be 
satisfied via direct access and/or computation, with local 
and global resource management, policy, and security 
constraints determining the strategy used.  

PPDG is a project that deals only with High Energy 
Physics applications but focuses on more immediate 
issues relating to file replication, job scheduling, and so 
forth. 

GDMP addresses a subset of the possible project 
scopes of EU DataGrid, GriPhyN, and PPDG, focusing 
on fast and efficient point-to-point file replication. 
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3 Globus Data Grid Tools  
 

Since GDMP uses new Globus Data Grid tools 
[Allc01], we describe their features and functionality with 
respect to file replication. 

 
3.1 Replica Catalog 
 

The Globus replica catalog is intended as a fundamental 
building block in Data Grid systems.  It addresses the 
common need to keep track of multiple physical copies of 
a single logical file by maintaining a mapping from logical 
file names to physical locations.  The catalog contains 
three types of object.  The highest-level object is the 
collection, a group of logical file names.  Discussions with 
various user groups show that datasets are normally 
manipulated as a whole and the collection abstraction 
provides a convenient mechanism for doing this.  A 
location object contains the information required to map 
between a logical filename (a globally unique identifier for 
a file: not a physical location) and the (possibly multiple) 
physical locations of the associated replicas.  The final 
object is a logical file entry.  This optional entry can be 
used to store attribute-value pair information for individual 
logical files.  We believe that much of this type of data 
will be stored in a separate metadata catalog [BMRW98], 
but the facility is available. 

The operations that can be performed on the catalog are 
as one might expect: creation and deletion of collection, 
location, and logical file entries; insertion and removal of 
logical file names into collections and locations; listing of 
the contents of collections and locations; and the heart of 
the system, a function to return all physical locations of a 
logical file.  Further replica catalog documentation can be 
found at www.globus.org/datagrid/replica-catalog.html. 

Replica catalog functions can be used directly in 
applications, but also form the basis (with GridFTP) for a 
replica management system that provides functions for the 
reliable creation, deletion, and management of replicas.  
Replica management documentation can be found at 
www.globus.org/datagrid/replica-management.html. 
 
3.2 GridFTP 
 
GridFTP is a data transfer and access protocol that 
provides secure, efficient data movement in Grid 
environments. The GridFTP protocol extends the standard 
FTP protocol, providing a superset of the features offered 
by the various Grid storage systems currently in use. We 
choose to work with the FTP protocol because it is the 
most commonly used protocol for data transfer on the 
Internet; of the existing candidates from which to start, we 
believe it comes closest to meeting the Grid's needs.  The 
GridFTP protocol includes the following features: 

- Public-key-based Grid Security Infrastructure (GSI) 
[FKT98] or Kerberos support (both accessible via 
GSS-API [Linn00]) 

- Third-party control of data transfer 
- Parallel data transfer (one host to one host, using 

multiple TCP streams) 
- Striped data transfer (m hosts to n hosts, possibly 

using multiple TCP streams if also parallel) 
- Partial file transfer 
- Automatic negotiation of TCP buffer/window sizes 
- Support for reliable and restartable data transfer 
- Integrated instrumentation, for monitoring ongoing 

transfer performance 
Programmatic access to this functionality is provided 

via two primary libraries, globus_ftp_control and 
globus_ftp_client.  These libraries have been used to 
develop a server, based on the Washington University 
FTP Daemon (wuftpd), that implements the GridFTP 
features listed above.  A full-featured command line tool 
appropriate for scripting called globus_url_copy is 
provided.  A version of the interactive ncftp client has 
also been developed that has GSI support and hence can 
communicate with GridFTP servers; however, this client 
does not incorporate the other features listed above.  
Further documentation for GridFTP and these libraries is 
available at www.globus.org/datagrid/gridftp.html. 

 
4 GDMP Architecture 
 

In this section, we briefly describe the entire GDMP 
architecture, focusing on the new features of our second-
generation architecture, which concern namespace and 
file catalog management, efficient file transfer, and 
preliminary mass storage management.  See [SaSt01] for 
a description of GDMP version 1.2, which is in 
production use in a CERN experiment. 

 
4.1 General Architectural Issues 

 
GDMP is a file replication software system that was 

initially designed to replicate Objectivity database files 
from one site (storage location) to one or more other 
remote sites. A storage location is considered to be a disk 
space on a single machine or on several machines 
connected via a local-area network and a network file 
system. Remote sites are connected to each other via long 
latency (as compared to local-area network) wide-area 
network connections. GDMP works as follows.  A site 
produces a set of files locally and another site wants to 
obtain replicas of these files. In the case of Objectivity 
files, each site is running the Objectivity database 
management system locally that has a catalog of database 
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files internally. However, the local Objectivity database 
management system does not know about other sites and a 
replication mechanism is required that can notify other 
sites about new files, efficiently transfer the files to the 
remote site, and integrate the filenames into the Objec-
tivity internal file catalog. An additional server needs to be 
available at each site to handle replication requests and to 
trigger file transfers, notification messages, and updates of 
local catalog information. Simply put, this is done by a 
GDMP server running at each site where files are 
produced and possibly replicated. 

With the new architecture and newly added 
components, GDMP has been extended to handle file 
replication independent of the file format. Note that we do 
not address replica synchronization issues, hence this work 
is useful mainly for read-only files. In GDMP 1.2, the file 
replication process was too tightly connected to 
Objectivity-specific features for naming conventions of 
logical and physical files and for obtaining information 
about the files from the Objectivity’s catalog. This 
dependency is removed in the new version (the official 
release will be called GDMP 2.0) by splitting the data 
replication process into several steps. Other possible file 
types are Oracle files and flat files with particular internal 
structure. Thus, successfully replicating a file from one 
storage location to another one consists of the following 
steps: 
- pre-processing: This step is specific to the file formats 

and might even be skipped in certain cases. This step 
prepares the destination site for replication, for 
example by creating an Objectivity federation at the 
destination site or introducing new schema in a 
database management system so that the files that are 
to be replicated can be integrated easily into the 
existing Objectivity federation. 

- actual file transfer: This has to be done in a secure 
and efficient fashion; fast file transfer mechanisms are 
required. 

- post-processing. The post-processing step is again file 
type specific and might not be needed for all file 
types. In the case of Objectivity, one post-processing 
step is to attach a database file to a local federation 
and thus insert it to an internal file catalog 

- insert the file entry into a replica catalog: This step 
also includes the assignment of logical and physical 
filenames to a file (replica). This step makes the file 
(replica) visible to the Grid. 

The GDMP replication process is based on the 
producer-consumer model: each data production site 
publishes a set of newly created files to a set of one or 
more consumer sites, and GDMP ensures that the 
necessary data transfer operations (including all the steps 
mentioned above) complete successfully.  These services 
are implemented by a set of interacting servers, one per 
site participating in the data replication process.   

 

Grid Data Management Pilot
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Grid Data Management Pilot

GDMP

Grid Data Management Pilot

GDMP

server / client applications

server / client applications

server / client applications

SITE 1 SITE 2

SITE 3  
 
Figure 3: Distributed sites and the location of GDMP 
servers/client applications 

 
Figure 3 depicts a small Data Grid with only three 

sites where data is produced and replicated (consumed). 
Each of these sites deploys a GDMP server to interact 
with other sites and provides GDMP client commands for 
publishing file information to other sites (notifying other 
sites that new data is available) and initiating file 
replication requests for a set of files. In more detail, a 
high-level file get request is issued by a GDMP client 
application at one site to get files from another site and 
create replicas locally. 

To sum up, GDMP client APIs provide four main 
services to the end-user [SaSt01]: 
- subscribing to a remote site for getting informed 

when new files are created and made public, 
- publishing new files and thus making them available 

and accessible to the Grid, 
- obtaining a remote site’s file catalog for failure 

recovery, and 
- transferring files from a remote location to the local 

site. 
Every client request to a GDMP server is authenticated 

and authorized by a security service.  GDMP uses the 
Globus Security Infrastructure (GSI) [FKT98], which 
provides single sign capabilities for Grid resources. 

Client requests are sent to the GDMP server through 
the Request Manager. The Request Manager is the client-
server communication module, which is used to generate 
client requests and implement server functions for serving 
these requests. Using the Globus IO and Globus Data 
Conversion libraries, the Request Manager provides a 
limited Remote Procedure Call functionality. 

File transfer requests are served by the GDMP Data 
Mover service that uses a local file transfer server such as 
FTP. Since file transfers must be both secure and fast, the 
Data Mover service has to use a file transfer mechanism 
that provides both features (more in Section 4.3). Once 



File and Object Replication in Data Grids         6 

 

files are successfully transferred, they have to be inserted 
into a replica catalog. The Replica Catalog Service 
provides this functionality (see Section 4.2).  

In an early version, GDMP was restricted to disk-to- 
disk file replication and it was assumed that all files are 
permanently available on disk. Since Data Grids deal with 
large amounts of data, files are permanently stored in Mass 
Storage Systems (MSS) such as HPSS and moved between 
disk to tape on demand. Thus, a disk pool is considered as 
a cache. GDMP provides a plug-in for initiating file stage 
requests on demand between a disk pool and a Mass 
Storage System (see Section 4.4).  

Figure 4 illustrates these three principal components of 
the GDMP software.  In the next subsections, we describe 
the replica catalog, data mover, and the storage 
management service in detail. 
 

Data
Mover
Service

Replica
Catalog
Service

Storage

Service
Manager

Security Layer

Request Manager

 
Figure 4: Overview of the GDMP architecture 
 
 
4.2 Replica Catalog Service 
 

The GDMP replication service uses a Replica Catalog 
to maintain a global file name space of replicas (see 
Section 3). GDMP provides a high-level replica catalog 
interface and currently uses the Globus Replica Catalog as 
the underlying implementation. An end-user who produces 
new files uses GDMP to publish information into the 
replica catalog. This information includes the logical file 
names, meta-information about the file (such as file size 
and modify time-stamps) and the physical location of the 
file. In detail, when a site publishes its files:  
- These files (and the corresponding meta-information) 

are added to the replica catalog. 
- The subscribers are notified of the existence of new 

files. 
The Replica Catalog service also ensures a global name 

space by making sure that all logical file names are unique 
in the catalog. GDMP supports both the automatic 
generation and user selection of new logical file names. 
User-selected logical file names are verified to be unique 

before adding them to the replica catalog. Race 
conditions on the replica catalog are currently not dealt 
with.  

Client sites interested in a new file can query the 
Replica Catalog Service to obtain the information 
required to replicate the file.  Users can specify filters to 
obtain the exact information that they require; 
information is returned only about those logical files that 
satisfy the filter criteria. The information returned 
contains the meta-information about the logical file and 
all the physical instances of the logical file. This 
information can then be used as a basis for replica 
selection based on cost functions, which is part of 
planned future work.  (See [VTF01] for some early 
ideas.)

The current Globus Replica Catalog implementation 
uses the LDAP protocol to interface with the database 
backend. We do not currently distribute or replicate the 
replica catalog but instead, for simplicity, use a central 
replica catalog and a single LDAP server for the Replica 
Catalog service. In the future, we will explore both 
distribution and replication of the replica catalog. 

The GDMP Replica Catalog service is a higher-level 
object-oriented wrapper to the underlying Globus Replica 
Catalog library.  This wrapper hides some Globus API 
details and also introduces additional functionality such 
as search filters, sanity checks on input parameters, and 
automatic creation of required entries if they do not 
already exist. The high-level API is also easier to use and 
requires fewer method calls to add, delete, or search files 
in the catalog. 

We have already tested the new API successfully on 
two independent test beds involved LDAP servers at 
CERN (Switzerland), Caltech (California, USA) and 
SLAC (California). Note that each test bed only used a 
single replica catalog. 
 
4.3 Data Mover Service 
 
In a Data Grid where large amounts of data have to be 
transferred from one site to another (“point-to-point 
replication”) we require high-performance data transfer 
tools. This is one of the major performance issues for an 
“efficient” Data Grid and is the target of the Globus Data 
Grid Toolkit’s GridFTP system. In Section 6, we present 
the results of detailed performance studies conducted 
with the alpha GridFTP release.  

The GDMP Data Mover service, like the GDMP 
Replica Catalog service, has a layered, modular 
architecture so that its high-level functions are 
implemented via calls to lower-level services that 
perform the actual data manipulation operations.  In this 
case, the lower-level services in question are the data 
transfer services available at each site for movement of 
data to other Grid sites.  



File and Object Replication in Data Grids         7 

 

It seemed to us that the GridFTP design addressed the 
principle requirements for a Data Grid data transfer 
primitive, in particular security, performance, and 
robustness.  Hence, we have explored the use of GridFTP 
as GDMP’s underlying file transfer mechanism. 

The large size of many data transfers makes it essential 
that the Data Mover service be able to handle network 
failures and perform additional checks for corruption, 
beyond those supported by TCP’s 16 checksums.  Hence, 
we use the built-in error correction in GridFTP plus an 
additional CRC error check to guarantee correct and 
uncorrupted file transfer, and use GridFTP’s error 
detection and restart capabilities to restart interrupted and 
corrupted file transfers.  In the future, we will exploit 
GridFTP’s support for “pluggable” error handling modules 
to incorporate a variety of specialized error recovery 
strategies. 
 
4.4 Storage Management Service 

 
In order to interface to Mass Storage Systems (MSS), 

the GDMP service uses external tools for staging files. For 
each type of Mass Storage System, tools for staging files 
to and from a local disk pool have to be provided. We 
assume that each site has a disk pool that can be regarded 
as a data transfer cache for the Grid and that, in addition, a 
Mass Storage System is available at the same site but does 
not manage the local disk pool directly. The staging to 
local cache is necessary because the MSS is mostly shared 
with other administrative domains, which makes it difficult 
to manage the MSS’s internal cache with any efficiency. 
Thus, GDMP needs to trigger file-staging requests 
explicitly. This is our current environment, which might 
change slightly in the future.  

A file staging facility is necessary if disk space is 
limited and many users request files concurrently. If a 
remote site requests a replica from another remote site 
where the file is not available in the disk pool, GDMP 
initializes the staging process from tape to disk. The 
GDMP server then informs the remote site when the file is 
present locally on disk and at that time performs 
automatically the disk-to-disk file transfer. 

In the replica catalog, physical file locations are stored 
and contain file locations on disk. Thus, by default a file is 
first looked for on its disk location and if it is not there, it 
is assumed to be available in the Mass Storage System. 
Consequently, a file state request is issued and the MMS 
transfers the file to the disk location stored in the replica 
catalog. Note that Objectivity has an interface to HPSS 
[Hanu01] and the file naming convention is the same: the 
default location is a disk location. Some other storage 
management systems have a tape location as a default file 
location.  

Note that more sophisticated space management 
mechanisms such as reservation of disk space are currently 

not available but are easy to add [FRS00]. In particular, 
the underlying storage system needs to provide an API 
for storage allocation, e.g., allocate_storage(datasize). In 
this case, the file replication transfer might be started 
only if the requested storage space can be allocated. 

GDMP has a plug-in for the Hierarchical Storage 
Manager (HRM) [Bern00] APIs, which provide a 
common interface to be used to access different Mass 
Storage Systems. The implementation of HRM is based 
on CORBA communication mechanisms. Some initial 
integration tests have been performed, with promising 
results.  Integration with HRM will provide GDMP with 
a flexible approach to deal with the different MSSs being 
used at the different regional centers where GDMP has 
been installed. It also provides a cleaner interface as 
compared to the staging script solution, which we had 
employed previously. 
 
5 Object Replication 
 

Object replication was introduced in Section 2.1 as an 
alternative to file replication.  In this section, we cover 
object replication in more depth. 

 
5.1 Motivation for Object Replication 

 
File replication as implemented by GDMP works well 

for many types of data handling in HEP.  However, there 
is an important exception: in the later stages of a physics 
data analysis effort, file based replication would be too 
inefficient.  To understand why this is the case, the 
physics analysis process needs to be considered more 
closely.   

The goal in a physics experiment is to observe new 
physics phenomena (or observe phenomena with new 
levels of accuracy) in the particle collisions occurring 
inside the detector.  The physics of two colliding particles 
is highly stochastic. The collision creates a highly 
localized concentration of energy, in which new particles 
may be created, with different rates of probability.  Most 
“interesting” particles will be created with extremely low 
probabilities.  The most resource and time-consuming 
task in a physics analysis effort is therefore to recognize 
and isolate, from all events, only those events with a 
collision in which a particular sought-after phenomenon 
occurred.   

For example, in one effort one might start with a set of 
109 stored events (which corresponds to all measurements 
made by the detector in one year) and narrow this down 
in a number of steps to a smaller set. This set might then 
contain 104 events where all corresponding particle 
collisions display the sought-after phenomenon.   

One separates the “interesting” from the 
“uninteresting” events by looking at the properties of 
some of the stored objects for each event: in the first few 
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steps one only needs to look at a small stored object for 
each event. In later steps, the information content of these 
small objects is exhausted and one needs to look at larger 
and larger objects.  The subsequent data analysis steps in 
such an effort will thus examine smaller and smaller sets 
(109 down to 104) of larger and larger (100 byte to 10 MB) 
objects.  

Consider a step somewhere in the middle, where after 
isolating 106 events, the physicist will now need the 
corresponding set of 106 objects of some type X to go 
further.  Assume that each object of this type has a size of 
10 KB, given a total object set size of 10 GB.  Further 
assume the physicist wants replicas of these objects on a 
specific destination site, because this site has enough CPU 
power available to run the necessary analysis jobs.  To 
support this data movement efficiently with file based 
replication, the Grid would next need to find a set of files 
with all the needed objects while this set is not larger than 
e.g. 20 GB.  However, this set of files can very likely not 
be found at all!  Since the requested set is only 106 objects 
of type X out of the available set of 109, the a priori 
probability that any existing file happens to contain more 
than 50% of the selected objects is extremely low, even if 
every file contains only a few objects.  A smart initial 
placement of “similar” objects together in the same files 
can raise the probability, but not by very much.  
Furthermore, the activities of other users are unlikely to 
create just the right files, as the physicist just selected 
objects related to a completely “fresh” event set which 
nobody else has worked on yet.  

Therefore, the only way to efficiently replicate the 
required objects is by using object replication, in which the 
right files, 10 GB in total, are created with an object copier 
tool first. (An alternative solution is never putting more 
than one object in a file, but that would make the object 
persistency layers in Figure 2 too inefficient, and in any 
case this alternative can be seen as an object replication 
implementation that eliminates the need for the object 
copier tool.) 

The above sparse selection effects do not only affect 
file replication efficiency but also local disk access 
efficiency. This is the context in which they have first been 
studied for HEP [Holt98] [Scha99]; some of the results of 
this prior research have been incorporated into the object 
replication prototype discussed below. 
 
5.2 Architectural Choices 

 
Architectural solutions for the object replication 

problem are being investigated: some earlier results are 
[HoSt00], [Holt01].  The use of wide-area object 
granularity access and replication protocols is considered 
unattractive, as large wide-area overheads have been 
observed in existing implementations of such protocols.  
Wide-area networks are scarce resources for HEP, and this 

has driven the architecture considered for object 
replication.  Rather than trying to build high-performance 
specialized file granularity replication protocols, a 
strategic choice was made to leverage the ongoing R&D 
activities on maximizing throughput for moving large 
(>100 MB) files over the WAN.   

This architectural choice has led to the use of 
significant parts of GDMP and the underlying Globus 
services in creating object replication prototypes. 

A complete object replication cycle is performed as 
follows: 
- Objects that are needed by an application on the 

destination site are identified, as a group, before the 
application starts accessing any of them.   

- The objects not yet present on the destination site are 
identified, and a source site, or combination of 
source sites, for these objects is found.   

- On the source site, the needed objects are copied into 
a new file or files, which are then sent to the 
destination site.   

Object copying and file transport operations are 
pipelined to achieve a better response time and greater 
efficiency.  In the current prototype implementation, the 
application on the target site can start reading the objects 
from a file as soon as the file has been transferred 
completely.  After having been transferred, the files are 
deleted on the source site(s).  The new files on the target 
site are first-class citizens in the Data Grid: they too are 
potential object extraction sources for future object 
replication requests.   

A global view of which objects exist where is 
maintained in a set of index files. These files are 
themselves maintained and replicated on demand using 
file-based replication by GDMP and Globus.  At the time 
of writing, the current prototype does not implement such 
a global view yet.  An important future challenge is to 
demonstrate scalability of this global view to a huge 
numbers of objects [HoSt00].  We can exploit some 
specific properties of the HEP data model and workloads 
to achieve this scalability.  For example, it is possible to 
structure most data-intensive HEP applications in such a 
way that each application run specifies up front exactly 
which set of objects are needed. These objects can then 
be found in one single collective lookup operation on the 
global view. 

 
5.3 Prototyping Experience 
 

Most HEP experiments involved in Data Grid 
activities do not yet perform physics analysis efforts that 
would require efficient object replication services.  The 
reason for this is simply that their detectors are still in the 
building or commissioning phase, so they only have small 
amounts of simulated data to analyze.  On the other hand, 
the building of the detectors and the related data analysis 
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software is already creating a strong demand for file 
replication services.  As a result, GDMP is a tool that is in 
production use whereas Grid object replication services are 
still in an architectural and prototyping phase. 

Initial prototyping of object replication was done to 
validate the architectural choices and  shows little 
surprises.  As long as the object replication server is 
powerful enough in terms of disk I/O and CPU resources, 
the object copying actions in the server do not form a 
bottleneck, and the server has no problems maintaining 
several wide area parallel FTP connections with the 
expected efficiency.  The tuning issues for the FTP 
connections are not changed.  Overall though, compared to 
a file replication server dimensioned to saturate the same 
amount of network bandwidth, an object replication server 
will need more CPU and disk I/O resources.  The running 
of the object copier tool means a significant extra load on 
the operating system: it needs to process more file system 
I/O calls and context switches per byte sent over the 
network.  Also the amount of traffic on the machine 
databus per network byte sent is increased. In situations 
where a single box needs to drive a very high-end network 
card, a degradation in network traffic handling efficiency 
might therefore be noticeable when compared to using the 
box as a file based replication server.  In that case, running 
the object copier tool on a different box (connected via a 
fast disk server) might be necessary. 
 
6 Experimental Results with GridFTP 
 
The main motivation for our performance tests is to study 
the impact of TCP socket buffer size tuning on parallel 
(multi-flow) data transfers [Tier94, QZK99, Morr97] as 
well as to understand the throughput that can be achieved 
in realistic settings.  TCP uses what it calls the “congestion 
window” to determine how many packets can be sent at 
one time. In general, a larger congestion window size leads 
to higher throughput. The TCP “slow start” and 
“congestion avoidance” algorithms determine the size of 
the congestion window. The maximum congestion window 
is related to the amount of buffer space that the kernel 
allocates for each socket. For each socket, there is a default 
value for the buffer size, which can be changed by the 
program using a system library call just before opening the 
socket. The buffer size must be adjusted for both the send 
and receive ends of the socket. To get maximal throughput 
it is critical to use optimal TCP send and receive socket 
buffer sizes for a particular link. If the buffers are too 
small, the TCP congestion window will never fully open 
up. If the buffers are too large, the sender can overrun the 
receiver, and the TCP window will shut down.  
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Figure 5: Transfer rates achieved for different numbers 
of parallel streams with GridFTP. These results are with 
the default TCP buffers that are typically 64 KB in the 
test environment. Four different files were transferred 
with sizes of 1 MB, 25 MB, 50 MB and 100 MB. The 
graph shows the curves for the larger files going up 
almost linearly with the number of streams, reaching a 
peak at around 23 Mbps for 9 streams. 
 

TCP buffer tuning is a good way to increase 
throughput on a high-speed WAN link, but we face the 
obvious problem of having to determine the “optimal” 
value for the TCP window size.  The optimal window 
size needs to be calculated by accurate measurements of 
link delay and bandwidth.   Alternatively, we can use 
parallel data streams [Berk01].  The Globus GridFTP 
library supports both of these facilities. 
We carried out a detailed study of GridFTP parallel 
transfer performance. The test environment consisted of a 
45 Mbps link between CERN and ANL with a RTT of 
125 milliseconds.  The GSI enabled WU-ftpd server 
version 0.4b6 was used as the test server. Test programs 
“extended_get” and “extended_put” from the Globus 
distribution were the chosen clients. These programs test 
the parallel stream and buffer tuning features of GridFTP. 
Since we have seen similar behaviour for the GridFTP 
put and get functions, we present only results for get. The 
results presented in Figures 5 and 6 lead us to the 
following conclusions.  First, proper TCP buffer size 
setting is the single most important factor in achieving 
good performance. The performance obtained from 10 
streams with untuned buffers can be achieved with just 2-
3 streams if the tuning is proper. Next, note that 2-3 tuned 
parallel streams will gain an additional 25% performance 
over a single tuned stream. Finally, note that it is possible 
to get the same throughput as tuned buffers using untuned 
TCP buffers with enough parallel streams. 
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Figure 6: The same experiments as are presented in Figure 
3, but with TCP buffers tuned to 1 MB.  Results are 
similar, except that peak performance is achieved with just 
3 streams. 
 

To determine the optimal TCP buffer size, we use 
following standard formula, as described in [Tier00]: 

 
optimal TCP buffer = RTT x (speed of bottleneck link) 
 

The Round Trip Time (RTT) is measured using the Unix 
ping tool, and the speed of the bottleneck link is measured 
using pipechar [Jin01],  a new tool from LBNL designed 
for this purpose. 

A simple method to the optimal number of parallel 
streams is not yet known. With too many streams, there is 
a possibility of overloaded the receiving host, and causing 
network congestion. We typically run multiple iperf 
[IPERF] tests with various numbers of streams, and 
compare the results. We usually find that 4-8 streams is 
optimal. 
 
7 Summary 
 

The GDMP replication service has been enhanced with 
more advanced data management features, including 
namespace and file catalog management, efficient file 
transfer, and preliminary storage management. New 
architectural components have been discussed.  A detailed 
study of the Globus GridFTP implementation is presented. 
We also analyzed more advanced object-based replication 
techniques and explained how these techniques can be 
structured in terms of file replication mechanisms. 
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