
End-to-End Quality of Service

for High-End Applications

Ian Foster�y Alain Royy Volker Sander�z Linda Winkler�

Abstract

High-end networked applications such as distance visualization, distributed data

analysis, and advanced collaborative environments have demanding quality of service

(QoS) requirements. Particular challenges include concurrent
ows with di�erent QoS

speci�cations, high bandwidth
ows, application-level monitoring and control, and end-

to-end QoS across networks and other devices. We describe a QoS architecture and im-

plementation that together help to address these challenges. The Globus Architecture

for Reservation and Allocation (GARA) supports
ow-speci�c QoS speci�cation, im-

mediate and advance reservation, and online monitoring and control of both individual

resources and heterogeneous resource ensembles. Mechanisms provided by the Globus

toolkit are used to address resource discovery and security issues when resources span

multiple administrative domains. Our prototype GARA implementation builds on dif-

ferentiated service mechanisms to enable the coordinated management of two distinct

ow types|foreground media
ows and background bulk transfers|as well as the co-

reservation of networks, CPUs, and storage systems. We present results obtained on

a wide area di�erentiated services testbed that demonstrate our ability to deliver QoS

for realistic
ows.

�Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL 60439, U.S.A.
yDepartment of Computer Science, The University of Chicago, Chicago, IL 60637, U.S.A.
zCentral Institute for Applied Mathematics, Forschungszentrum Juelich GmbH, 52425 Juelich, Germany

1

1 Introduction

Investigations of network quality of service (QoS) have tended to focus on the aggregration

of relatively low-bandwidth
ows associated with Web and media streaming applications.

Yet the QoS requirements associated with these
ows are not representative of all interesting

applications. For example, distance visualization applications encountered in science and en-

gineering can involve data transfers and media streaming at hundreds (ultimately thousands)

of megabits per second (Mb/s), while the bulk data transfer operations required for replica-

tion or analysis of large datasets can require sustained high bandwidths expressed in terms

of Terabytes per hour. Advanced collaborative environments can require complex mixes of

these and other
ows, with varying service level requirements and many interdependencies.

The development of QoS services for such high-end applications introduces major chal-

lenges at both the architecture and network levels. At the architecture level, new concepts

and constructs are required for dealing with end-to-end
ows that involve multiple scarce

resources: for example, advance reservation mechanisms, to ensure availability [4, 5, 18];

co-reservation of network, compute, storage, and other resources [2]; control and monitoring

APIs for application-level adaptation; and policy mechanisms able to deal with large reser-

vations and complex hierarchical allocation strategies. At the network level, increasingly

popular di�erentiated service (DS) mechanisms [1] introduce both opportunities and chal-

lenges. While DS has advantages in terms of scalability, it is not obvious whether and how

it can support specialized high-end
ows.

The work that we present in this article addressed both the architecture and network

challenges just listed. We describe the Globus Architecture for Reservation and Alloca-

tion (GARA), a resource management architecture that builds on mechanisms provided

by the Globus toolkit [6] to support secure immediate and advance co-reservation, online

monitoring/control, and policy-driven management of a variety of resource types, including

networks [8]. Then, we describe the application of GARA concepts and constructs to DS

networks. We present a DS resource manager (i.e., bandwidth broker [1, 11]) and explain

how this resource manager integrates with GARA facilities (e.g., advance reservation, authen-

tication/authorization). We describe how this resource manager builds on DS mechanisms

to support two premium
ow types within a single framework: latency- and jitter sensitive

(e.g., media
ows) and high-bandwidth but latency-insensitive (e.g., bulk transfer). We also

propose a policy model that allows admission control decisions to be made at multiple levels.

Finally, we present performance experiments conducted on both local area and wide area

DS network testbeds; these demonstrate our ability to support multiple
ow types and to

co-reserve network and CPU resources.

The rest of this article is structured as follows. In Section 2 we use three high-end

applications to derive requirements for QoS mechanisms. Then, in Section 3, we describe

GARA and its implementation. In Section 4, we describe its application in the context of

DS networks and in Section 5 we present our experimental results. We discuss multi-domain

issues in Section 6 and related work in Section 7, and conclude with a discussion of future

directions.

2

2 QoS Requirements of High-End Applications

We describe three representative examples of the high-end network applications that are

encountered, for example, in advanced scienti�c and engineering computing [7], and then list

what we see as their key QoS requirements.

2.1 Application Descriptions

Distance visualization of large datasets. Scienti�c instruments and supercomputer

simulations generate large amounts of data: tens of terabytes today, petabytes within a

few years. Remote interactive exploration of such datasets requires that the conventional

visualization pipeline be decomposed across multiple resources. A realistic con�guration

might involve moving data at hundreds or thousands of Mb/s to a data analysis and rendering

engine which then generates and streams real-time MPEG-2 (or later HDTV) video to remote

client(s), with control information
owing in the other direction. QoS parameters of particular

interest for this class of application include bandwidth, latency and jitter; resources involved

in delivering this QoS include storage, network, CPU, and visualization engines.

Large data transfers. In other settings, large datasets are not visualized remotely but

instead are transferred in part or in their entirety to remote sites for storage and/or analysis.

The need to coordinate the use of other resources with the completion of these multi-gigabyte

or terabyte transfers leads to a need for QoS guarantees of the form \data delivered by

deadline" rather than instantaneous bandwidth. Notice that achieving this goal requires the

scheduling of storage systems and CPUs as well as networks so as to achieve often extremely

high transfer rates.

High-end collaborative environments. High-end collaborative work environments in-

volve immersive virtual reality systems, high-resolution displays, connections among many

sites, and multiple interaction modalities including audio, video,
oor control, tracking, and

data exchange. For example, the NCSA Alliance \Access Grid" currently connects some 15

sites via multiple audio, video, and control streams, with the audio streams especially vulner-

able to loss. Such applications require QoS mechanisms that allow the distinct characteristics

of these di�erent
ows to be represented and managed [3].

2.2 QoS Requirements

Heterogeneous
ows. The applications of interest frequently incorporate multiple
ows

with widely varying characteristics, in terms of bandwidth, latency, jitter, reliability, and

other requirements. GARA addresses these requirements through (a) support for per-
ow

QoS speci�cations while maintainingDS-like scalability and (b) a QoS-mechanism-independent

architecture that adapts to multiple techniques. A common API means that for example a

distance visualization application can specify the distinct requirements of high-volume data

and latency-sensitive control
ows, in a mechanism-independent manner; these
ows might

then be mapped to di�erent mechanisms: e.g., MPLS and DS.

3

High bandwidth
ows. Some applications involve high bandwidth
ows that may require

a large percentage of the available bandwidth on a high-speed link. For example, in recent

work, Rebecca Nitzan and Brian Tierney of Lawrence Berkeley National Laboratory (LBNL)

demonstrated transfer rates of 450 Mb/s over a wide area OC12 network. This characteristic

has signi�cant implications for both mechanisms and policy. QoS mechanisms are required

that can support such
ows while allowing coexistence with other
ows having di�erent

characteristics. At the policy level, we believe that approaches are required that allow for

the coordinated management of resources in multiple domains, so that virtual organizations

(e.g., a scienti�c collaboration) can express policies that coordinate the allocation of the

resources available to them in di�erent domains.

Need for end-to-end QoS. Satisfying application-level QoS requirements often requires

the coordinated management of reousrces other than networks: for example, a high-speed

data transfer can require the scheduling of storage system, network, and CPU resources. As

we shall see, GARA addresses this requirement by de�ning an extensible architecture that can

deal with a range of di�erent resource types and by providing support for the co-allocation

of multiple resources.

Need for application-level control. High end-to-end performance requires that applica-

tions be able to discover resource availability (GARA), monitor achieved service, and modify

QoS requests (to network and to other resources, such as CPUs) and application behavior

dynamically.

Need for advance reservation. Specialized resources required by high-end applications

such as high-bandwidth virtual channels, scienti�c instruments and supercomputers are in

scarce and in high demand; in the absence of advance reservation mechanisms, coordination

of the necessary resources is di�cult. Reservation mechanisms are needed to ensure that

resources and services may be scheduled in advance.

3 The GARA QoS Architecture

We designed the Globus Architecture for Reservation and Allocation (GARA) to meet the

QoS requirements listed above. Here we introduce GARA concepts; we describe below how

we apply these concepts in DS networks to manage the allocation of a particular
avor of

QoS capability, namely premium service as described in RFC2598.

3.1 GARA Overview

GARA de�nes APIs that allows users and applications to manipulate reservations of di�erent

resources in uniform ways. For example, essentially the same calls are used to make an

immediate or advance reservation of a network or CPU resource. Once a reservation is made,

an opaque object called a reservation handle is returned that allows the calling program

to modify, cancel, and monitor the reservation. Other functions allow reservations to be

4

monitored by polling or through a callback mechanism in which a user's function is called

every time the state of the reservation changes in an interesting way.

End-to-End API

Remote API

LRAM API

Resource Manager

Resource

Diffserv
Resource
Manager

Cisco
7507

Gatekeeper

Slot Table

DSRT
Resource
Manager

DSRT
Server

Gatekeeper

Slot Table

Application
Remote

API

LRAM API LRAM API

Figure 1: On the left, the principal APIs used within GARA. On the right, the principal

components of the GARA prototype as instantiated for DS and DSRT (CPU scheduler)

services, with our own resource manager and slot manager being used in both cases. In the

DS case, commands are issued to a router while in the DSRT case commands are issued to

a DSRT server.

As illustrated on the left side of Figure 1, GARA de�nes APIs at multiple levels so as

to maximize both the functionality delivered to the user and opportunities for code reuse

in implementations. In particular, the Local Reservation and Allocation Manager (LRAM)

API provides direct access to reservation functions within a trust domain, while the remote

API provides remote access to LRAM functionality, addressing issues of authentication and

authorization. Both APIs implement the functionality described in the preceding paragraph.

The uniform treatment of reservations provided by GARA makes it possible to de�ne and

reuse co-reservation and co-allocation libraries that encode strategies for the coordinated use

of multiple resources [2]. Because di�erent resources (e.g., computers and storage systems)

can be manipulated via the same function calls, standard libraries can be developed that

encode (for example) fault recovery strategies.

One co-reservation library that we have developed in support of our work with GARA

implements an end-to-end network API that provides end-to-end analogs of each of the remote

API calls. This API allows the user to create, monitor, cancel, etc., network co-reservations:

that is, reservations involving more than one network resource. This API allows users and

applications to ignore details of the underlying network topology.

5

UDP-streamer(host A, host B) {

(PortA,PortB) = establish_socket_connection(A, B)

F = compute_flow_requirement()

Max = EnquireE2EResv(A, B, {NOW,60 mins})

if (Max.forward > F) then R = F else R = Max.forward

H = CreateE2EResv(A, B, R, 0, {NOW,60 mins})

BindE2EResv(H, PortA, PortB)

repeat until done {

<send for a while>

Max = EnquireE2EResv(A, B, {NOW,60 mins})

if (Max.forward > 0 && R < F) then {

R = Max.forward + R

if (R > F) then R = F

ModifyE2EResv(H, R, NOW, 60 mins)

}

}

}

Figure 2: Pseudo-code for a simple application that uses the GARA end-to-end API to �rst

make and subsequently monitor and modify a reservation. For brevity, this code does not

include error checking.

Figure 2 illustrates the use of this end-to-end API. This program �rst determines the

bandwidth requirements of an application and then queries to determine available premium

bandwidth over the path of interest. A reservation is created for the smaller of these two

values and the reservation handle H is used to bind the reservation to the previously created

ow. The application then checks periodically to see whether the reservation can be increased.

Notice that the changes to what is otherwise a conventional socket-based code are small.

We note that while this example emphasizes application-centered monitoring and control

of reservation state, GARA also supports third-party reservation operations. For example, we

could remove the reservation logic from Figure 2 altogether and instead perform appropriate

reservation operations in a separate process.

3.2 GARA Implementation

We review GARA implementation issues and status, working from the bottom of our API

stack.

GARA must provide admission control and reservation enforcement for multiple resources

of di�erent types. Because few resources provide reservation capabilities, we have imple-

mented our own resource manager so as to ensure availability of reservation functions. As

illustrated in Figure 1, this manager uses a slot table [4, 11] to keep track of reservations

and invokes resource-speci�c operations to enforce reservations. Requests to this resource

manager are made via the LRAM API and result in calls to functions that add, modify, or

6

delete slot table entries; timer-based callbacks generate call-outs to resource-speci�c routines

to enable and cancel reservations. Note that only certain elements of this resource manager

need to be replaced to instantiate a new resource interface. To date, we have developed

resource managers for DS networks (described below), for the Distributed Soft Real-Time

(DSRT) CPU scheduler [12], and for the Distributed Parallel Storage System (DPSS), a

network storage system; others are under development.

Our implementation of the end-to-end API invokes a path service to identify the resource

managers that must be contacted to arrange for an end-to-end reservation, and then makes

a series of GARA remote API calls to perform the co-reservation oepration. See below for a

discussion of issues that arise when traversing multiple domains.

Our GARA prototype uses two \Grid" services provided by the Globus toolkit: the

Globus Lightweight Directory Access Protocol (LDAP)-based information service for pub-

lishing reservation status information and for accessing path information, and the public-key

based Grid Security Infrastructure for authentication and authorization services. The inter-

faces to these services are simple and well-de�ned (LDAP and GSS-API, respectively), hence

it is straightforward to substitute alternative implementations.

4 GARA and Di�erentiated Services Networks

The DS architecture is based on a simplemodel where packets entering a network are classi�ed

and possibly conditioned at the boundaries of the network by service provisioning policies,

and assigned to di�erent behavior aggregates. Within the core of the network, packets are

forwarded according to the per-hop behavior (PHB) associated with the DS classi�cation.

These mechanisms have the advantage of not requiring that per-
ow state be maintained

within the network. However, few guarantees can be made about end-to-end behaviors,

which emerge as the composition of the PHBs associated with individual links.

4.1 Integrating Di�erentiated Services and GARA

We have interfaced GARA concepts and constructs to DS mechanisms in order to manage

the allocation of premium service bandwidth. As shown in Figure 3, we associate GARA

resource managers with the locations at network edges where admission control occurs. These

resource managers are, in essence, what DS papers call \bandwidth brokers": they allocate

their region's marked (premium) tra�c allocations and control the devices (e.g., routers)

used to enforce these allocations. Requests to resource managers are authenticated, ensuring

secure operation.

We have constructed our DS resource manager to support two classes of premium service:

a foreground service, for latency- and jitter-sensitive
ows (e.g., multimedia streaming and

control), and a background service, for long-lived, high bandwidth but latency-insensitive

ows (e.g., bulk data transfer operations). The resource manager changes background reser-

vations dynamically as foreground reservations come and go, generating callbacks to the

application when a reservation changes. This strategy allows bulk data transfers to co-exist

with multimedia
ows. The amount of bandwidth available for background reservations over

a particular time period can then be controlled via policy mechanisms. We report results with

7

this approach below. Our prototype supports multiple foreground reservations but initially

only a single background reservation; the extensions required to support multiple background

ows are not complex.

A resource management framework for DS networks must also address end-to-end issues.

A typical wide area
ow requires allocations of premium bandwidth at multiple edge routers

and also within interior domains. For example, in Figure 3, a premium
ow from ANL

to LBNL should, in principle, require an allocation not only from the ANL domain for

the ANL/ESnet interface (where marking occurs) but also from ESnet for the ANL-LBNL

transit tra�c and from the LBNL domain for the ESnet/LBNL interface. Hence, we need

to associate resource managers with multiple DS domains and to implement co-reservation

strategies. Co-reservation operations must be designed with end-to-end veri�cation in mind.

In our example, an application that omitted to obtain a reservation for ESnet transit tra�c

could cause problems for other ANL-LBNL tra�c, for example if the aggregate ANL-ESnet

tra�c exceeded what was allowed by the current ANL-ESnet service level agreement (SLA).

Most DS work assumes that co-reservation operations are encapsulated in the local do-

main's resource manager: hence, a request to reserve bandwidth from ANL to LBNL results in

the ANL manager contacting the ESnet manager, which in turn contacts the LBNL manager.

Upon receipt of a positive response from both other managers, a reservation is established.

This approach has the advantages of providing trusted co-reservation and of encapsulating

all bandwidth broker communication within a single local entity. The approach has disad-

vantages in settings where end-to-end reservations involve resources other than networks, as

a hierarchical co-reservation structure results, or where allocation policies at interior domains

depend on factors other than the identity of the requesting manager.

An alternative approach to this problem is to de�ne a two-phase commit protocol. In this

approach, an application program|or agent working on behalf of an application program|

contacts each manager in turn. In the �rst phase, a manager can indicate that acceptance

of a reservation is conditional on the requestor securing acceptance (indicated by a signed

certi�cate) from the next manager.

In both approaches, interdomain SLAs can either be established statically (in which case

reservations can only be made if they �t within the pre-established SLAs), or they can

be established dynamically, as reservations are made. The latter approach provides greater

exibility but requires more sophisticated policy and enforcement engines in interior domains,

as discussed below.

Our initial GARA prototype implements neither of the approaches just described but

instead relies on the end-to-end library to implement co-reservations correctly. We assume

two domains and static SLAs between domains; hence, we need to allocate bandwidth at

just two locations. Reservation policies are expressed via access control lists associated with

individual resource managers. These limitations are not inherent in our model and are being

removed in current work.

4.2 Di�erentiated Service Con�guration

The �nal issue to be addressed in a DS implementation relates to how PHBs are con�gured to

provide the premium services desired for particular applications. In our DS implementation,

this con�guration involves the Committed Access Rate (CAR) and Weighted Fair Queueing

8

(WFQ) mechanisms supported by Cisco Systems 7500 Series routers.

We use CAR on the ingress ports of edge routers to mark and police the
ows for which

premium bandwidth is required. Speci�cally, we use CAR to �rst rate limit (dropping non-

conforming packets) and then mark packets for speci�ed
ows. As CAR currently does not

support the DS Codepoints de�ned in RFC2474, we use the IP Precedence �eld to mark

packets belonging to premium service
ows.

The operation of CAR is controlled via commands issued to the router by the associated

GARA resource manager as reservations become active, terminate, are modi�ed, or are can-

celled. These commands enter, remove, or modify
ow speci�cations that de�ne a premium

service
ow in terms of its source and destination IP address and port, and its rate limit

speci�cation (desired average transmission rate bandwidth and a normal and excess burst

size). Communication from the resource manager to the Cisco Systems router is performed

via Command Line Interface.

We also use CAR on the ingress ports of inter-domain routers, where it is used to enforce

SLAs negotiated with other domains, by rate limiting the precedence-marked tra�c that will

be accepted from another domain.

We use WFQ on the egress port of edge routers and in interior routers. WFQ ensures

that in periods of congestion|i.e., when packets get queued in the router because the output

link does not provide the capacity for delivering them immediately|each IP precedence class

receives at least the fraction of the output bandwidth de�ned by the weight de�ned for that

class. Hence, as long as the total marked tra�c destined for an output port does not exceed

the allocated output bandwidth, WFQ can be used to ensure that marked tra�c is forwarded

without delay despite congestion.

This use of CAR and WFQ approximates the Expedited Forwarding (EF) PHB described

by the IETF's DS Working Group in RFC2598, but does not match it perfectly. In particular,

packets marked with the EF PHB should always be treated before other packets, but we

merely guarantee a portion of the bandwidth, not a priority service. We considered using

the Priority Queueing mechanism available in Cisco Systems routers, but it does not work

at the higher speeds required by our applications.

This use of CAR and WFQ raises the question of how these mechanisms should be con-

�gured to meet application-level QoS requirements. This question is complicated by the

wide variety of
ows that we wish to support (UDP, TCP, low and high bandwidth) and

the geographic scale over which QoS is required: from a few meters to thousands of kilome-

ters. Considerable experimentation on the testbed described in the next section has been

performed to understand these issues.

5 Experimental Studies

We report on experiments designed to evaluate the e�ectiveness of both the GARA architec-

ture and our DS implementation.

9

Linux Linux

Cisco 7507 Cisco 7507 Cisco 7507

ESnet
(wide-area)

Testbed

ANL

Ultra

Ultra

WFQ

CAR

WFQ

CAR

Resource
Manager

Ultra

MREN EMERGE
TestbedLBNL

Ultra

Ultra

Ultra

LBNL

CAR

WFQ NCSA

iCAIR

Univ of
Chicago

Univ of
Illinois

Figure 3: The experimental con�guration used in this work, showing our local GARNET

testbed and its extensions to remote sites connected via ESnet and MREN.

5.1 Experimental Con�guration

Our experimental con�guration, illustrated in Figure 3, comprises a laboratory testbed at Ar-

gonne National Laboratory (the Globus Advance Reservation Network Testbed: GARNET)

connected to a number of remote sites, including Lawrence Berkeley National Laboratory

(LBNL). Connectivity to LBNL is provided by the Energy Sciences Network (ESnet) DS

testbed. GARNET allows controlled experimentation with basic DS mechanisms; the wide

area extensions allow for more realistic operation, albeit with a small number of sites. No-

tice that end-system resources are located in di�erent domains; hence, we must deal with

distributed authentication and authorization.

Cisco Systems 7507 routers are used for all experiments. Within GARNET, these are

connected by OC3 ATM connections; across wide area links, they are connected by VCs of

varying capacity. We are restricted to these relatively slow speeds because the 7507 cards

do not implement CAR and WFQ at speeds faster than OC3. End system computers are

connected to routers by either switched Fast Ethernet or OC3 connections. CAR and WFQ

are used for QoS enforcement, as described above. Flow speci�cations supplied to CAR

use a bandwidth computed from the user-speci�ed required bandwidth, taking into account

10

packet headers (note that this requires packet size information), with nonconforming tra�c

dropped. Burst size and excess burst size parameters are both set as follows: if using TCP,

to the bandwidth (in bytes/second) times the assumed maximum round trip time, subject

to a minimum of 8 Kbytes and a maximum of 2 Mbytes; if using UDP, to 1/4 of this value,

subject to a minimum of 8 Kbytes. WFQ was con�gured statically in all experiments.

No tra�c shaping is performed on premium
ows beyond the limited shaping provided

by WFQ in the presence of congestion. While the lack of shaping has not proven to be a

signi�cant problem to date, it will likely be required in future, more dynamic environments.

The network speeds supported in this testbed are clearly not adequate for the high-

end applications discussed above: the largest premium
ow that we can support is around

80 Mb/s. Nevertheless, this testbed con�guration has allowed us to validate multiple aspects

of our general approach. We plan to extend our approach to higher-speed networks in future

work.

5.2 Multiple Flows: Local Area Case

Our �rst experiments evaluate our ability to support multiple
ows simultaneously and to

support application monitoring of, and adaptation to, changes in reservation status.

We �rst report on experiments conducted on our local GARNET testbed: see Figure 3.

We con�gured GARNET to create a 45 Mb/s premium channel in a 100 Mb/s network. We

then created �ve distinct
ows: a bulk data transfer, operating as a \background"
ow; a

competing 80 Mb/s best-e�ort UDP
ow (a tra�c generator submitting 1,000 byte packets

every 100 �secs); and three independent, short-lived foreground
ows with immediate reser-

vations. In this and subsequent experiments we used a simple data transfer program, ttcp,

as our \application." (Experiments with more complex applications have started and give

promising results; these will be reported in subsequent work.) The premium and competing

ows are sourced and sinked by di�erent computers.

Figure 4 shows the bandwidth delivered to the foreground, background, and best e�ort

ows during the experiment. We succeed in delivering \excess" premium bandwidth to the

bulk transfer application without comprising the foreground
ows. The good bulk transfer

performance achieved is made possible by the manager's callbacks to the bulk transfer appli-

cation, which allow that application to change its sending rate in response to changes in its

allocating bandwidth, hence avoiding packet drops and invocation of TCP slow-start. The

following is a more detailed explanation of the graph:

1. The graph begins with the background TCP tra�c, which has a bulk-transfer reserva-

tion. This
ow is initially allocated 40.5 Mb/s premium bandwidth: that is, 90 percent

of the 45 Mb/s premium tra�c.

2. The competitive UDP tra�c is started shortly after the bulk transfer but does not

a�ect it due to the premium status of the bulk transfer
ow.

3. At 25 secs, another application makes an immediate 36 Mb/s reservation and initiates

a 32 Mb/s foreground
ow. A callback noti�es the bulk transfer application, which

reduces its sending rate to adapt to the reduced reservation. (The and other similar

transitions take a little time due to the time required to control the router.)

11

0

20000

40000

60000

80000

100000

0 50 100 150 200 250

Time

B
an

dw
id

th
 (

K
bp

s)

background
foreground
competitive

Figure 4: Performance achieved for a mixture of premium and best e�ort services on GAR-

NET. We demonstrate that a bulk-transfer (background) application is able to exploit unused

premium tra�c without a�ecting foreground reservations. See text for details.

4. At 48 secs, the foreground application �nishes its transmission and then cancels its

reservation. Another callback allows the bulk transfer process to increase its sending

rate to adapt to the newly available premium tra�c.

5. Subsequently, two other foreground
ows are created, with similar e�ects: a 9 Mb/s

reservation (8 Mb/s
ow) from 75 to 105 secs and an 18 Mb/s reservation (16 Mb/s

ow) from 130 to 160 secs.

6. At time 185, the background
ow completes and cancels its reservation. The competing

tra�c rate increases to its target of 80 Mb/s, actually exceeding this brie
y because of

the �lled router queues.

Notice that each time the bulk transfer reservation is reduced, the bulk-transfer rate

drops momentarily then recovers. We attribute this behavior to the fact that TCP shrinks

12

its window size when packets are dropped, either by falling into its slow start phase or into

its congestion avoidance phase.

5.3 Multiple Flows: Wide Area Case

0

10000

20000

30000

40000

50000

0 20 40 60 80 100 120 140 160 180

Time

B
an

dw
id

th
 (

K
bp

s)

background
foreground
competitive

Figure 5: Performance achieved for a mixture of premium and best e�ort services on a wide

area testbed. We demonstrate good performance even in the wide area. See text for details.

Our next experiments repeat those just described over the wide area network from ANL

to LBNL: see Figure 3. Here, we used WFQ to con�gure our testbed with 55 Mb/s premium

tra�c over the 60 Mb/s UBR VC between ANL and LBNL and 27 Mb/s premium tra�c

within GARNET. Note that when congested this wide area premium tra�c con�guration is

a good approximation to priority queuing. (Only 27 Mb/s premium tra�c was allowed on

GARNET in these particular experiments because of either extra tra�c or a bad device on a

fast Ethernet segment of the network that we were unable to control; in other experiments, we

have successfully con�gured up to 45 Mb/s premium.) Here, the background
ow is initially

13

allocated 24.3 Mb/s premium bandwidth (that is, 90 percent of 27 Mb/s), the competing

best-e�ort UDP
ow operates at 50 Mb/s (1,250 byte packets every 200 �secs), and two

foreground
ows are created: a 16 Mb/s
ow (18 Mb/s reservation) at 37 secs and an 8 Mb/s

ow (9 Mb/s reservation) at 94 secs.

As shown in Figure 5, the results obtained in the wide area are almost as good as in the

local area. We attribute the somewhat more dynamic behavior during reservation changes

to the fact that the kernel bu�ers associated with the bulk transfer socket take some time to

empty. Hence, data is initially sent too rapidly for the updated router con�guration, forcing

packets to be dropped and TCP to go into slow-start mode. This e�ect is magni�ed by the

larger bandwidth-delay product and hence larger socket bu�ers (1 MB in this case) in the

wide area network.

5.4 Co-Reservation of CPU and Network

An important challenge addressed by GARA is the co-reservation of multiple resources: for

example, network and CPU to ensure that a receiver can process incoming data. The ex-

periment reported here demonstrates our ability to support such co-reservation. Speci�cally,

we establish a TCP
ow and show that we can maintain data transfer performance despite

competing tra�c on the network and competing computational load on the receiving host.

We conducted this experiment on GARNET and use the 100 Mb/s network as before,

except that this time premium tra�c is con�gured to use up to 95 Mb/s. A TCP
ow is

started and network and CPU reservations and load are applied in various combinations.

1. A ttcp application is started without network congestion and without any reservation.

2. At 10 secs, an 80 Mb/s tra�c generator is started. Because of network congestion,

ttcp switches to the slow start feature and congestion control, with the result that ttcp

performance drops precipitiously and most available bandwidth is consumed by the

competitive tra�c.

3. At 40 secs, the TCP application creates an immediate network reservation through

GARA. Performance increases dramatically.

4. At 60 secs, a signi�cant competing CPU load is imposed on the TCP receiver host.

TCP throughput is signi�cantly e�ected, due to contention for the CPU.

5. At 80 secs, we use GARA to reserve a signi�cant amount of CPU for the receiving

TCP process through the DSRT manager. The achieved rate increases immediately,

although some variation remains due to the interval-based scheduling used by DSRT.

6. At 120 secs, we cancel the network reservation; TCP performance drops precipitiously

once again.

7. At 160 secs, we cancel the CPU reservation; this has little further impact on perfor-

mance.

14

0

20000

40000

60000

80000

100000

0 50 100 150 200 250

Time

B
an

dw
id

th
 (

K
bp

s)

TCP Flow
Competitive Traffic

Figure 6: Performance achieved for a TCP
ow in the presence of competing UDP tra�c

and host load, for various combinations of network and CPU reservation. We demonstrate

GARA's ability to co-reserve multiple resource types.

6 Policy in Multidomain Settings

We sketch here the approach that we propose to take in the future when expanding GARA

to support more sophisticated policy enforcement, particularly in multi-domain settings.

We assume the following system model. An end-to-end reservation may involve multiple

resources located in di�erent domains. Resource allocation decisions within a domain remain

the responsibility of that domain; hence, end-to-end reservations must be authorized by all

appropriate domains or by entities to which domains have delegated this authority.

Our policy approach is designed to support a
exible mix of policy options, for example:

� A domain may allocate resources on the basis of user identity. Such a policy may be

appropriate in the case of unique resources for which users make distinct requests, e.g.,

supercomputers or specialized network resources such as a low-bandwidth outgoing

15

connection.

� A domain may allocate resources in response to a request forwarded from another

domain with which some agreement has been negotiated previously. For example, an

transit service domain (e.g., ESnet in Figure 3) might negotiate an agreement to accept

any allocation request forwarded from another DS domain, up to some SLA limit.

� A domain may allocate resources in response to a request authorized by some third

party, such as a virtual organization with which the domain has negotiated an agree-

ment previously [1]. This delegation of authorization allows a community to negotiate

agreements with multiple domains in order to obtain control of some amounf of pre-

mium end-to-end bandwidth.

We anticipate multiple such authorization policies being active at one time. For example,

in an environment such as that of Figure 3, a transit domain such as ESnet might support

the following policies:

� Accept immediate reservations of premium bandwidth from any domain with a pre-

viously negotiated SLA, subject to the constraint that no single request can be more

than 100 Mb/s and the total requests from a domain cannot exceed its SLA.

� Accept immediate and advance reservation requests labeled as \HEP" if approved by

a server operated by the high energy physics community, up to limits and at times

previously negotiated with that community.

We believe that authorization and authentication mechanisms provided in the Globus

toolkit provide a basis on which to explore these issues. The Akenti system [17] also provides

important relevant technology.

7 Related Work

The general problem of QoS implementation and management is receiving increased attention

(see, e.g., [9]). However, there has been little work on the speci�c problems addressed in this

paper, namely advance reservation and co-reservation of heterogeneous collections of resources

for end-to-end QoS and the use of DS mechanisms to support
ow types encountered in high-

end applications.

Proposals for advance reservations typically employ cooperating servers that coordinate

advance reservations along an end-to-end path [18, 5, 4, 10]. Techniques have been proposed

for representing advance reservations, for balancing immediate and advance reservations [5],

for advance reservation of predictive
ows [4]. However, this work has not addressed the

co-reservation of resources of di�erent types.

The concept of a bandwidth broker is due to Jacobson. The Internet 2 Qbone initiative

and the related Bandwidth Broker Working Group are developing testbeds and requirements

speci�cations and design approaches for bandwidth brokering approaches intended to scale

to the Internet [16]. However, advance reservations do not form part of their design. Other

groups have investigated the use of DS mechanisms (e.g., [19]) but not for multiple
ow types.

16

The co-reservation of multiple resource types has been investigated in the multimedia

community: see, for example, [13, 15, 14]. However, these techniques are specialized to

speci�c resource types.

8 Conclusions and Future Work

We have described a QoS architecture that supports immediate and advance reservation (and

co-reservation) of multiple resource types; application-level monitoring and control of QoS

behavior; and support for multiple concurrent
ows with di�erent characteristics. We have

also described how this architecture can be realized in the context of di�erentiated service

networks. We presented experimental results that demonstrate our ability to deliver QoS to

multiple
ows in local and wide area networks.

In future work we plan to improve and extend GARA in a variety of areas, includ-

ing improved representation and implementation of policy, more sophisticated adaptation

mechanisms (including real-time monitoring of network status), and more sophisticated co-

reservation algorithms [2]. We also plan to extend our evaluation of GARA mechanisms to

a wider range of applications and more complex networks.

Acknowledgments

We gratefully acknowledge assistance provided by Rebecca Nitzan and Robert Olson with

experimental studies. Numerous discussions with our colleagues Gary Hoo, Bill Johnston,

Carl Kesselman, and Steven Tuecke have helped shape our approach to quality of service. We

also thank Cisco Systems for an equipment donation that allowed creation of the GARNET

testbed. This work was supported in part by the Mathematical, Information, and Com-

putational Sciences Division subprogram of the O�ce of Advanced Scienti�c Computing

Research, U.S. Department of Energy, under Contract W-31-109-Eng-38; by the Defense Ad-

vanced Research Projects Agency under contract N66001-96-C-8523; by the National Science

Foundation; and by the NASA Information Power Grid program.

References

[1] S. Blake, D. Black, M. Carlson, M. Davies, Z. Wang, and W. Weiss. An architecture for

di�erentiated services. Internet RFC 2475, 1998.

[2] Karl Czajkowski, Ian Foster, and Carl Kesselman. Co-allocation services for computa-

tional grids. In Proc. 8th IEEE Symp. on High Performance Distributed Computing.

IEEE Computer Society Press, 1999.

[3] Tom DeFanti and Rick Stevens. Teleimmersion. In [7], pages 131{156.

[4] M. Degermark, T. Kohler, S. Pink, and O. Schelen. Advance reservations for predictive

service in the internet. ACM/Springer Verlag Journal on Multimedia Systems, 5(3),

1997.

17

[5] D. Ferrari, A. Gupta, and G. Ventre. Distributed advance reservation of real-time con-

nections. ACM/Springer Verlag Journal on Multimedia Systems, 5(3), 1997.

[6] I. Foster and C. Kesselman. Globus: A toolkit-based grid architecture. In [7], pages

259{278.

[7] I. Foster and C. Kesselman, editors. The Grid: Blueprint for a Future Computing

Infrastructure. Morgan Kaufmann Publishers, 1999.

[8] I. Foster, C. Kesselman, C. Lee, R. Lindell, K. Nahrstedt, and A. Roy. A distributed

resource management architecture that supports advance reservations and co-allocation.

In Proceedings of the International Workshop on Quality of Service, pages 27{36, 1999.

[9] Roch Gu�erin and Henning Schulzrinne. Network quality of service. In [7], pages 479{503.

[10] A. Ha�d, G. Bochmann, and R. Dssouli. A quality of service negotiation approach with

future reservations (nafur): A detailed study. Computer Networks and ISDN Systems,

30(8), 1998.

[11] G. Hoo, W. Johnston, I. Foster, and A. Roy. QoS as middleware: Bandwidth broker

system design. Technical report, LBNL, 1999.

[12] Hao hua Chu and Klara Nahrstedt. CPU service classes for multimedia applications. In

Proceedings of IEEE International Conference on Multimedia Computing and Systems.

IEEE Computer Society Press, 1999.

[13] A. Mehra, A. Indiresan, and K. Shin. Structuring communication software for quality-

of-service guarantees. In Proc. of 17th Real-Time Systems Symposium, December 1996.

[14] K. Nahrstedt, H. Chu, and S. Narayan. QoS-aware resource management for distributed

multimedia applications. Journal on High-Speed Networking, IOS Press, December 1998.

[15] K. Nahrstedt and J. M. Smith. Design, implementation and experiences of the OMEGA

end-point architecture. IEEE JSAC, Special Issue on Distributed Multimedia Systems

and Technology, 14(7):1263{1279, September 1996.

[16] B. Teitelbaum, S. Hares, L. Dunn, V. Narayan, R. Neilson, and F. Reichmeyer. Internet2

QBone - Building a testbed for di�erentiated services. IEEE Network, 13(5), 1999.

[17] Mary Thompson, William Johnston, Srilekha Mudumbai, Gary Hoo, Keith Jackson, and

Abdelilah Essiari. Certi�cate-based access control for widely distributed resources. In

Proceedings of the Eighth Usenix Security Symposium. 1999.

[18] L.C. Wolf and R. Steinmetz. Concepts for reservation in advance. Kluwer Journal on

Multimedia Tools and Applications, 4(3), May 1997.

[19] Ikjun Yeom and A. L. Narasimha Reddy. Modeling tcp behavior in a di�erentiated-

services network. Technical report, TAMU ECE, 1999.

18

