
Database Access and Integration Services on the Grid

Norman W Paton
Department of Computer Science,

University of Manchester,
Manchester, M13 9PL, UK.
email: norm@cs.man.ac.uk

Malcolm P Atkinson
National e-Science Centre,
15 South College Street,

Edinburgh EH8 9AA, UK.
email: mpa@nesc.ac.uk

Vijay Dialani
Dept. of Electronics and Computer Science,

University of Southampton
Southampton SO17 1BJ, UK.

email: vkd00r@ecs.soton.ac.uk

Dave Pearson
Oracle UK Ltd., Thames Valley Park,

Reading RG6 1RA, UK
email: dave.pearson@oracle.com

Tony Storey
IBM United Kingdom Laboratories,

Hursley Park, Winchester, SO21 2JN , UK
email: tony storey@uk.ibm.com

Paul Watson
Department of Computing Science,
University of Newcastle upon Tyne,

Newcastle upon Tyne, NE1 7RU, UK
email: Paul.Watson@ncl.ac.uk

February 1, 2002

Abstract

Research and development activities relating to the Grid
have generally focused on applications where data is
stored in files. Although this has allowed progress to be
made rapidly with various aspects of Grid infrastructure,
database management systems have a central role in data
storage, access, organisation, authorisation, reorganisa-
tion, etc, for numerous applications, including those in e-
Science. This document makes a proposal for a collection
of services that support: (i) consistent access to databases
from Grid applications; and (ii) coordinated use of multi-
ple databases from Grid middleware. It is hoped that the
proposal, which should be considered to be preliminary,
can help to foster a wider activity on the formulation of
standards for databases and the Grid.

1 Introduction

Many scientific applications use database management
systems to structure and store important data sets. Many
such applications stand to benefit from Grid facilities for
supporting the sharing, dissemination and analysis of such
data sets. However, research and development activi-
ties relating to the Grid have generally focused on ap-
plications where data is stored in files. Our analysis of
the requirements of e-Science projects [Pea02] has shown
that there is an urgent and widespread need for the in-
terconnection of pre-existing and independently operated
databases. This document seeks to encourage the devel-
opment of standardised facilities that can meet this need.

In particular, a proposal is made for the staged devel-
opment of a collection of Grid database services. In so
doing, the intention is to encourage wider discussion and
interaction on the most appropriate services for use with

1

UK e-Science Technical Report Series ISSN 1751-5971

databases in a Grid setting.
The proposed services provide generic database-

oriented functionalities, such as, allowing queries and up-
dates to be evaluated over a database, and transactional
coordination of accesses to one or more databases. As
service definitions essentially state what functionality is
to be supported, and not how that functionality is pro-
vided, a single service may come to be implemented in
different ways. This, for example, allows alternative im-
plementations with different performance characteristics,
but also allows the provision of virtual services. For ex-
ample, a vitrual database service might provide the illu-
sion that a single database is being accessed, whereas in
fact, the service is accessing several databases using dis-
tributed query processing techniques. The overall focus,
however, is on services that allow access to and integrated
use of existing, autonomously managed databases within
Grid middleware.

The adoption of a service-oriented approach is intended
to allow the development of composable components,
where individual categories of service provide consistent
and complementary behaviour, while hiding implemen-
tation details. Databases already exist and are being de-
veloped and used within Grid settings without reference
to standards. The hope is that this document can move
forward the process of identifying core services, imple-
mentations of which will allow effective integration of
database systems into Grid middleware. We note that
service-based approaches seem to be on the ascendency,
with both Web Services [Kre01] and the Open Grid Ser-
vice Architecture (OGSA) [FKNT02] promoting service-
based approaches. This document casts its service de-
scriptions within the framework provided by the OGSA,
which in turn exploits the Web Services Description Lan-
guage [CCMW01].

The proposal presented in this document is preliminary;
its purpose is to initiate discussion and identify groups and
individuals that would be interested in contributing to the
development of successors.

How does this document relate to other work on
Databases and the Grid? There are existing proposals
for storage resource brokers (e.g. SRB [BMRW98]) and
database connectivity facilities (e.g. Spitfire [H

�

01])
within a Grid setting. In this document we initiate a search
for a generic framework for composable services that will
support a wide range of database use by grid services and

grid applications, and which will facilitate the integration
of data from multiple sources. These sources can be either
transient or persistent database services, where persistent
services include those operated independently of the grid
infrastructure.

The document is structured as follows. Section 2 makes
some remarks on the scope and emphasis of the proposal.
Section 3 introduces relevant terminology and states some
assumptions relating to services and to databases. Sec-
tion 4 introduces the proposed database services, and
discusses some issues relating to their implementation.
Section 5 describes how the proposed services might
be included within the Open Grid Services Architecture
(OGSA) [FKNT02], and Section 6 indicates how the pro-
posed services can be used to provide access to differ-
ent kinds of resource. Section 7 identifies some issues
relating to the integration of databases services with the
OGSA. Section 8 describes how the proposed services
could be developed in an incremental manner. Section
9 presents some conclusions.

2 Scope of Proposal

This document makes a proposal for the staged devel-
opment of a collection of Grid database services. As
such, its purpose is to encourage the adoption of standards
for integrating database systems into Grid middleware.
Such an activity is only likely to be successful if there
is widespread input into the development of the proposal,
and all aspects of the contents of this document should
be considered to be preliminary. An intention in making
a reasonably concrete proposal at this stage is in part to
elicit responses, which can be used to guide the develop-
ment of better proposals in the future.

This document should be seen as complementary to
[Wat01]. The latter provides an overview of issues asso-
ciated with the integration of Grid and database technolo-
gies, and suggests a service-based approach. This docu-
ment develops that theme.

The proposal has several characteristics:

1. It is largely independent of any specific Grid toolkit.
There are several reasons for this:

� Grid toolkits are evolving; presenting a
database proposal in the context of a specific

2

version of a particular toolkit could skew the
proposal, complicate evolution of the docu-
ment and restrict the community that was in-
clined to contribute to the proposal.

� Incorporating databases into a Grid middleware
is likely to impact on other middleware ser-
vices. For example, database metadata is sure
to impact on the resource discovery functional-
ities of an existing middleware. The full conse-
quences of such changes would be difficult to
address within a database-centred document.

� Service descriptions by their very nature tend
to be amenable to implementation using differ-
ent protocols and runtime environments.

2. It does not propose the development of a new
database management system (DBMS) for the Grid.
The principal focus on connecting to existing sys-
tems hopefully does not require explicit justification.
Thus, supporting the services described in this docu-
ment, for the most part, involves wrapping1 existing
systems so that they adhere to a consistent interface.
Such wrapping need not, in general, require changes
to be made to the wrapped DBMS, although direct
implementation of the services by a DBMS devel-
oper would provide performance gains.

Certain of the functionalities described later, such
as distributed transaction management or distributed
query processing, span multiple databases. Such
functionalities cannot be obtained purely by wrap-
ping individual databases, but would require the de-
velopment or deployment of distributed transaction
managers or query processors as services within a
Grid setting.

3. It is independent of any specific data model or
database access language. This is perhaps a bit more
controversial. We make a few motivating observa-
tions at this stage:

� Many aspects of database connectivity are data
model independent. For example, authorisation

1In this document the term wrapper is not intended to imply that the
only way to access a resource is through a wrapper, but rather that the
wrapper provides a well defined interface through which a resource can
be accessed.

and transaction models are independent of the
data model being accessed.

� Scientific data is stored in many different for-
mats, not all relational, and both XML and ob-
ject models are widely used.

Few of the services discussed in this document are par-
ticularly novel. The purpose of the document is to en-
courage the consistent integration of existing database and
database-oriented functionalities into a Grid environment.

3 Context

This section sets the scene for the remainder of the pa-
per by defining relevant terms and assumptions relating to
Web Services and to databases.

3.1 Services

A service is a network enabled entity that provides some
capability through the exchange of messages [FKNT02].
Web Services standards [Kre01] specify facilities for de-
scribing, discovering and using services. One of the Web
Services standards is the Web Services Description Lan-
guage (WSDL) [CCMW01], which provides an XML
model for describing Web Services. Of particular rele-
vance to this document, a WSDL description of a service
includes specifications of:

Types: the data type definitions that describe the data to
be exchanged.

Messages: the definitions of the data to be sent to or from
the service.

PortTypes: the operations that are supported by the ser-
vice. For each operation this includes its name, input
and output messages, and fault messages.

In essence, these describe what capabilities a service pro-
vides. A WSDL definition also provides information on
where the service is and how (i.e. using what protocol)
messages can be sent.

A WSDL service definition is an XML document. A
service definition can import other WSDL documents,
and thus a service definition can be composed using ex-
isting types, messages and port-types. In this document,

3

we use the term interface to refer to a collection of types,
messages and port-types that describe a specific capabil-
ity. Thus a service can support the capabilities described
in one or more interfaces.

The Open Grid Services Architecture (OGSA) is a col-
lection of web services definitions. These provide (i)
abstract descriptions of existing Grid capabilities using
WSDL; and (ii) collections of standard interfaces that
characterise Grid services, for example, addressing the
lifetime of services, authentication, etc. As such, the
OGSA can be held to provide an organisational frame-
work into which additional services can be slotted. Thus,
by choosing to conform to and implement the standard in-
terfaces, software components can be integrated into the
OGSA. This document makes a proposal for a collection
of database services within the context of the OGSA.

3.2 Databases

A database service can be defined as any service that
supports a database interface. As such, there is no re-
quirement imposed in this document that a database ser-
vice provides persistence or is directly implemented us-
ing a database management system. Service interfaces
are abstract and are not prescriptive in terms of how their
capabilities should be supported. Furthermore, in this
document we are also not prescriptive in terms of the
data model that underpins a database service. Thus spe-
cific database services could provide access to relational
databases, object databases, XML repositories or special-
ist storage systems (e.g. for storing matrices or genome
sequences).

The principal service considered in this document is re-
ferred to as a Grid Database Service (GDS). This service
provides capabilities for querying, updating and evolving
a database. However interfaces are also described for:

Data Delivery: providing facilities for transmitting
structured data. Such a service differs from file
transfer mechanisms in that the internal structure of
the data can be taken account of within the service.

Transactions: providing facilities for coordinating col-
lections of operations, for example, with a view to
controlling interference between concurrent users.

Database Metadata: providing access to information
about the capabilities of a database service and the
data it provides access to.

We note that both Data Delivery and Transaction ca-
pabilities are of relevance whether or not databases are
being used. Thus a data delivery service could be used
to deliver structured results from a real-time data feed to
a laboratory information management system, and trans-
actions can be used to coordinate accesses and updates to
any software system implementing appropriate interfaces.

The provision of a grid database service within the con-
text of the OGSA involves (i) describing interfaces that
extend those already provided as part of the OGSA; (ii)
delimiting the services that import those interfaces; and
(iii) describing how those services fit within the frame-
work provided by the OGSA. Section 4 covers point (i),
and Section 5 addresses points (ii) and (iii).

4 Database Services

This section introduces the functionality of the proposed
database services. The description provided in this sec-
tion is largely independent of the OGSA, and could thus
be associated with database service provision in web ser-
vices in general. Indeed, as Web Services develop, it is
likely that proposals will emerge for standard interfaces to
databases, which might usefully be tracked by standardi-
sation activities relating to Grid services.

Interfaces are described in this section at a somewhat
more abstract level than in WSDL. Future versions of the
document will include WSDL definitions for all the inter-
faces described.

4.1 Database Discovery

In a services architecture, a service provider publishes a
description of a service to a service registry. This registry
can then be consulted, by a service requestor, an appro-
priate service description extracted, and finally a binding
created that allows calls to be made to the service by the
requestor [Kre01].

This means that descriptions of database services, like
other services, must be able to be published. A basic
service description that might be published would be the

4

WSDL of the service. In the case of a database ser-
vice, it might be useful to publish substantial informa-
tion on the contents of the database, in addition to de-
tails of the operations that the database service supports.
The discussion of precisely what details might be pub-
lished about a database and how is beyond the scope of
this document. It is assumed in what follows that a reg-
istry lookup has taken place that returns a Grid Service
Handle (GSH), a globally unique name for each service
instance [FKNT02].

4.2 Database Statements

Database statements allow queries, updates, loads or
schema change operations to be sent to a database sys-
tem for execution. This implies that the database system
over which a service is being provided supports a query or
command language interface. This is certainly true for re-
lational databases, but is less uniformly the case for object
databases or XML repositories. As such, this is a point of
tension with the principle that the proposal should be data
model independent.

The basic operations that form the database service in-
terface are given in Table 1. IN denotes an input param-
eter, OUT denotes an output parameter, and OPTIN and
OPTOUT denote optional parameters. The operations on
a GDS will be atomic – they will either execute com-
pletely or the GDS will behave as if they had never been
invoked. As GDS operations often involve the transfer of
large amounts of data and the use of secondary storage,
they may take a substantial amount of time to execute. As
a consequence, they are prone to interruptions due to vari-
ous failures. The implementations of all database services
must handle such failures in order to achieve atomicity.
Were this not the case, the state of the database accessed
through a service could become indeterminate, making it
impossible for clients to continue using the service with
predictable outcomes.

There is a regular structure in the Query, Update and
bulkLoad operations. These operations will often take
time to perform, as they may require access to or trans-
ferring of substantial amounts of data. We assume that
each operation goes through three phases:

1. Preparation and validation, during which the oper-
ation is checked to ensure that it is internally con-

sistent and that it conforms to the data model of the
database.

2. Application, during which time updates are per-
formed or the query evaluated, and results con-
structed in the form required as a result.

3. Result Delivery, during which time results are made
available to the caller of the operation.

Since preparation and validation will normally be brief
relative to the sum of the other phases, the operation re-
turns after this phase. Errors at this stage normally in-
dicate a logical failure. Immediate notification of such
errors reduces the likelihood of a client continuing under
false assumptions.

The final result of an operation is made available avail-
able later via the resultHandle parameter. This is the
GSH of a structured data delivery system described in
Section 4.3, providing asynchrony for long-running op-
erations and an opportunity for redirection. Failures that
take place during application of an operation are reported
by way of the data delivery system.

The pairs (queryNotation, query), (updateNotation, up-
date) (loadNotation, valuesHandle) and (editNotation,
edit) are introduced to permit flexibility, in the same way
that MIME types accommodate a variety of attachments
with email. For example, any of the queryNotation, up-
dateNotation, loadNotation and editNotation might be
specified to be SQL’92 and the corresponding second pa-
rameter would contain or yield a string in that notation.
A single database service might often support several no-
tations. For example, Xquery and Xpath might both be
supported by an interface to an XML repository. When a
database service registers with a discovery service, it must
indicate which notations it is prepared to use. This infor-
mation may periodically be modified during the lifetime
of the service. A notation could be represented by a URI
that refers to a definition of the notation.

The final results of an operation are managed via the
triple expires, resultHandle, resultDeliverer. The param-
eter expires requests an expiry time up until which the
result may be claimed. When omitted, a default value is
used. As it requires resources to hold a result, this is nec-
essary to recover those resources if the client fails to use
them. The result handler is either generated dynamically

5

query(IN queryNotation, IN query, OPTIN values, OPTIN txHandle,
OPTIN expires, OUT resultHandle, OUT fail)

update(IN updateNotation, IN update, OPTIN values, OPTIN txHandle,
OPTIN expires, OUT resultHandle, OUT fail)

bulkLoad(IN loadNotation, IN valuesHandle, OPTIN txHandle,
OPTIN expires, OUT resultHandle, OUT fail)

schemaUpdate(IN editNotation, IN edit, OPTIN txHandle, OUT fail)

Table 1: Operations supported by basic database statement interface.

or supplied. Mechanisms provided by the OGSA for man-
aging the lifetimes of services are discussed in Section
5.2.

The operations in Table 1 have transaction handles (tx-
Handle) as optional inputs. Where no transaction han-
dle is given, assuming that the system implementing the
database service supports transactions, each operation can
be expected to run within, and constitute the complete be-
haviour of, a single transaction. A single transaction can
be made to span multiple operations by passing the trans-
action’s handle as a parameter. Support for transactions
that span multiple statements or database services is dis-
cussed in Section 4.4.

4.3 Delivery Systems

A delivery system is a means by which (potentially large
amounts of) structured data is moved from one location
to one or more others. The delivery system mechanism
should be considered complementary to protocols such as
GridFTP, as the emphasis is on providing generic facilities
for managing the internal structure of the data that is to be
delivered. Thus a delivery system could, for example, use
a GridFTP service as a delivery mechanism.

Table 2 shows a possible interface for a delivery sys-
tem. A delivery system has a single source for the data
to be delivered, represented as a URI, plus a collection
of delivery mechanisms. Each delivery mechanism has a
GSH for the service that will actually deliver the data and
a URI describing where the data is to be delivered to. The
deliver operation initiates the delivery of the data from the
single source to the multiple destinations.

A more comprehensive deliver system could include fa-
cilities for conducting format mappings before or after de-
livery, encryption, progress monitoring, etc.

4.4 Transactions

Transactions are crucial to database management, in that
they are central to reliability and concurrency control.
Transactions, however, are not database-specific artifacts
– other programs can and do provide transactional fea-
tures through middleware services that conform to indus-
try standards (e.g. OMG, J2EE). This section gives an
indication of how a transaction service might be used in
conjunction with a database service, and it also explains
how such a service may be extended to satisfy a more flex-
ible requirement to coordinate operations across a grid.

A minimal transaction interface that a grid service
might support is given in Table 3. In this case, the inter-
face is straightforward, and essentially performs the role
of conferring a guaranteed unique identity on the transac-
tion. It may additionally offer status enquiry and moni-
toring facilities. Given a transaction handle, other opera-
tions over a database service can be put explicitly within
the context of a transaction, using the txHandle parameter
introduced in Table 1.

The operations described to date allow a client to coor-
dinate accesses to a single database service. However, it
may be necessary for a transaction to span multiple ser-
vices. If a database service is to be able to participate
in a distributed transactions, it must provide operations
for use by the transaction manager that is overseeing the
distributed transaction. Such additional operations are il-
lustrated in Table 4. The startTransaction operation has
been extended to include an expires parameter to limit
the consumption of resources – the transaction manager
can request a duration for which the transaction will re-
main active, and the participating service may accept the
request or return an alternative, probably reduced, period.
The prepareCommit operation can be used by a two-phase

6

setSource(IN URI, OUT fail)
addChannel(IN deliveryMechanism, IN destURI, OPTIN expires, OUT fail)

deliver(OUT fail)

Table 2: Operations supported by basic delivery-system interface.

startTransaction(OUT txHandle , OUT fail)
rollback(IN txHandle, OUT fail)
commit(IN txHandle, OUT fail)

Table 3: Operations supported by a basic transaction interface.

startTransaction(OUT txHandle, OPTINOUT expires, OUT fail)
prepareCommit(IN txHandle, OPTIN expires, OUT fail)

Table 4: Operations required for participation in distributed transactions.

commit protocol to ensure that all or none of the database
services participating in a distributed transaction commit.

Although transactions are a fundamental concept for
database operations, the Grid requires additional and
more flexible mechanisms for controlling requests and
outcomes than are typically offered by traditional dis-
tributed and database transaction models. Some specific
differences between the Grid and traditional object trans-
action environments are:

� Multi-site collaborations that often rely on asyn-
chronous messaging. While this model also oc-
curs in traditional distributed and database systems,
the transactions in a traditional system are typically
chained together rather than considered as a part of
an overall concurrently executing collaboration.

� Operations across the Grid inherently are composed
of business processes that span multiple regions of
control. Such an environment contrasts significantly
with traditional distributed and database systems,
where the processing dedicates resources exclusively
to the executing transaction (database locks, threads,
and so on).

� Traditional distributed and database transaction
models optimize execution for high-volume, short-

duration transactions and conversations. Grid opera-
tions will typically be of longer duration.

Instead of simply extending an existing transaction
model to the Grid, an incremental approach is suggested:

1. Construction of a core activity service model that
provides the capability to specify an operational con-
text for a request (or series of requests), controlling
the duration of the activity, and defining the par-
ticipants engaged in the outcome decision. An ex-
ample of such a service is the Additional Structur-
ing Mechanisms for the OTS Specification from the
OMG [OMG00], which is also being adopted within
the Java Activity Service.

2. Development of a High Level Service (HLS) that
provides implementation of patterns typical in a Grid
environment, e.g.

� Traditional distributed and database model
where operations occur completely or not at all.
Such a completion processing semantic pro-
vides the behaviour of a traditional transaction
model (i.e. a two-phase commitment seman-
tic).

� Relaxed semantics such as conversations or
collaborations, where a series of operations

7

occur in a more loosely coordinated activity.
The participants determine the requirements
for completion processing, which may include
patterns for compensation, reconciliation, or
other styles of collaboration, as required.

Note that the requirement exists to provide a stan-
dardized client interface to allow applications to
make use of any HLS implementation. A spe-
cific proposal for such a client API is outlined in
Java, JSR000156 XML Transactioning API for Java
(JAXTX), which is intended to provide a generic API
supporting both transactions and extended transac-
tions in a J2EE environment.

The behaviours cited by no means represent a complete
list. The relaxed transaction model, however, allows the
participating sites to supplement their existing implemen-
tations to support more complex processing and relaxed
transaction processing models. The sites can build on
their internal transaction and business logic environments
to provide increased flexibility.

4.5 Database Metadata

The OGSA includes a standard, but abstract, discovery
interface that all grid services should support. This exist-
ing interface provides the operations that can be used to
obtain information about a database service. In essence,
the discovery interface provides a query facility not un-
like that described in Section 4.2 for requesting informa-
tion about a service. As such, the questions left to the
developers of a database service are: (i) what metadata
should be provided to describe a database service; and (ii)
how should this be modelled for convenient access by the
discovery interface?

Database metadata that it could be useful to have access
to includes:

Content description: The metamodel of the data in the
database describes what the database contains. There
are several categories of such data: the database
schema – the data model, the logical and physical
structures of the database, such as, respectively, the
tables and indexes of a relational database; proper-
ties affecting access to and use of the data – autho-
risation, ownership, reliability and provenance data;

statistical characteristics, such as the number of ob-
jects in a collection, the cardinality of a relationship,
or the selectivity of an attribute. The statistical char-
acteristics of a database are important, for example,
for query optimization during distributed query pro-
cessing, as described in Section 4.6.

Capability description: The capabilities of a DBMS are
many and varied, and a service architecture must be
able to accommodate systems with diverse facilities.
This is supported by individual services making their
capabilities known. There are several categories of
such data, such as: language capabilities – which
query and update operations are supported or made
available; transactional capabilities – the transaction
semantics supported by the system, including its fa-
cilities for participating in distributed transactions;
connection options – the protocols and encodings
that can be supported; and quality of service with
respect to media and site failures.

The above metadata needs to be modelled in a man-
ner that allows the discovery interface to be used to ac-
cess the data. This could be done, for example, by allow-
ing access to the data dictionary of a relational database
using SQL. The data dictionary of a typical relational
database stores much of the data described above. How-
ever, such an approach leaves the database metadata in
a database service-specific format. It would be useful if
there were standard representations of database metadata,
for example as XML documents, provided by different
database services. It would be the responsibility of the
database service provider to describe the service in a stan-
dard way. This could involve supporting a mapping from
stored metadata to the standard model, or manual specifi-
cation of the model. However, significant portions of the
metadata of a database are data model specific). In addi-
tion, a complete model for database metadata is likely to
be complex – for example, the JDBC DatabaseMeta-
Data interface includes over 150 methods. The identifi-
cation of appropriate models for database metadata there-
fore requires significant further work.

As an aside, we discuss data model variants, to ex-
plain another category of metadata. Many data models
are defined by standards, but these are not uniformly im-
plemented. Often vendors introduce variations, or vari-
ations occur as a result of a succession of versions of a

8

standard. A service interface will normally make best ef-
forts to avoid inflicting these variations on clients (JDBC
[EHF01] also states this as one of its goals). However, it
is sometimes necessary to consider these variations, e.g.
when implementing code to hide them from clients. These
variations should therefore be described and obtainable
from some database services, although they should not
concern most programmers.

4.6 Virtual Databases

The Grid is an environment for distributed computing. Al-
though service architectures are designed for use within
distributed environments, there has been no systematic at-
tempt to indicate how techniques relating to distributed
or federated database systems might be introduced into a
Grid setting. This section provides some suggestions.

4.6.1 Distribution and Databases

Firstly, a few definitions. A distributed database is a
database that has been deliberately distributed over a
number of sites. For example, a gas exploration company
may choose to store drilling information close to each of
the exploration activities in which it is involved. A dis-
tributed database is designed as a whole, and is associated
with considerable centralised control.

In a federated database, many databases contribute
data and resources to a multi-database federation, but
each participant has full local autonomy. In a loosely-
coupled federated database, the schemas of the participat-
ing databases remain distinguishable, whereas in a tightly-
coupled federated database, a global schema hides (to a
greater or lesser extent) schematic and semantic differ-
ences between sources [MP00].

From the perspective of a service-based model, an ex-
isting distributed or federated database can be seen as a
database service in which it happens that some or all of
the data being accessed is remote from the system pro-
viding the service. As such, a distributed or federated
database system provides standard database functional-
ity, and could implement a database service using the
interface described in Section 4.2. However, from the
point of view of the service user, such an approach es-
sentially encapsulates issues relating to distribution, and
there could well be merit in developing virtual database

services specifically for use in Grid settings. Such an ac-
tivity stands to benefit from standard service definitions,
as these provide uniform access to existing databases. A
further opportunity exists to use Grid resource allocation
facilities, etc, to support efficient distributed query evalu-
ation.

4.6.2 Distributed Query Service

This section discusses how a Distributed Query Service
could be developed, both providing and using database
service descriptions. Assume that database services have
been developed, supporting statement, transaction and
metadata interfaces, as described above, and that multi-
ple databases implement the services, and are available on
the Grid. Any Grid application would be able to establish
connections to multiple databases at the same time, and a
distributed transaction service would allow coordination
of queries and updates over the databases. However, any
single query would only be able to refer to data from a
single database, thereby requiring applications to subdi-
vide and order requests that require access to data from
more than one database. The role of a distributed query
service is to allow individual queries to access multiple
databases, thereby allowing the system to take responsi-
bility for query optimization and efficient evaluation.

Figure 1 illustrates three database services, one of
which (Database Service 1) happens to be a distributed
query service, and two others, which we assume are
not (i.e., they are directly associated with stored data).
The administrator of Database Service 1 has provided a
schema for the distributed query processor to act over by
importing schema information from Database Service 2
and Database Service 3, as illustrated in Figure 1. It is
assumed in Figure 1 that the participating databases and
the distributed query service act over relations.

Figure 2 illustrates the distributed query processing ser-
vice in action. Firstly, a query that joins data from tables
in different databases is submitted to the distributed query
service. The query is parsed and optimized, to produce
an execution plan. Secondly, the plan is executed, which
leads to subqueries being sent to the relevant databases –
in this case, the tables required for the join are obtained
from the relevant databases for joining by the distributed
query processor. Thirdly, the results of the subqueries are
collected and joined by the distributed query processor.

9

The technologies required to support such a distributed
query service are not run-of-the-mill, but have been the
subject of considerable research, and can be considered
reasonably mature (e.g. [HKWY97]). However, these
might benefit from some adaptation for incorporation into
a Grid setting, for example, by making use of Grid re-
source management facilities to identify suitable com-
putational resources for evaluating distributed queries or
storing intermediate results.

A services architecture is useful to the development and
deployment of a distributed query processor, as the “vir-
tual database” that results from the use of the service: (i)
can be advertised and accessed like any other database
service; and (ii) can use consistent facilities to discover,
integrate and query existing database services.

4.6.3 Selective Replication

Replication functionalities for files are part of existing
Grid middleware. Existing DBMSs also provide replica-
tion capabilities. For example, a relational DBMS may
be able to replicate some or all of a relation, and to pro-
vide alternative update policies. One such update policy
could involve one copy of a table being available for read
or update, and the others available only for update. An al-
ternative may involve read and write access to any of the
copies of the table, with either strict concurrency control
or some form of conflict resolution.

It is reasonable to assume that selective replication ca-
pabilities could be useful in e-Science applications. Such
facilities could, for example, extend to the use of remote
view materialisation, with incremental propagation of up-
dates. In such a scheme, the information to be replicated

Tables S, T

Tables T, U

Import schema

Import schema

Database Service 1

Database Service 2

Database Service 3

Tables: DS2:S, DS2:T,
 DS3:T, DS3:U

Figure 1: Setting up a distributed query service.

Tables S, T

Tables T, U

Database Service 1

Database Service 2

Database Service 3

Tables: DS2:S, DS2:T,
 DS3:T, DS3:U

SELECT *
FROM DS2:T, DS3:U
WHERE DS2:T.name = DS3:U.name

SELECT *
FROM DS2:T

(1)

(2)

(2)

SELECT *
FROM DS3:U

(3) Results

(3) Results

Figure 2: Using up a distributed query service.

is described as a named database query (a view). This
view is then materialized at some location. A notification
service can then be used to detect updates that should be
reflected in the materialised view, so that relevant changes
to the view are propagated to the view automatically.

As with other functionality of an existing database sys-
tem, replication mechanisms within existing database sys-
tems could be wrapped and made visible through the
generic services interface. This would require few if any
changes to the query and update interfaces, but the pres-
ence of replicated data could usefully be made explicit
through the metadata service. Knowledge about DBMS-
maintained replicated data could be used by Grid schedul-
ing services.

Providing additional replication services within the
Grid setting, for example through an incremental view
maintenance scheme based on a distributed query pro-
cessing service (as discussed in Section 4.6.2), would re-
quire the development of significant extensions to the dis-
tributed query processor. However, it would allow signif-
icant additional functionalities compared with those cur-
rently available (which are intra-vendor), could provide
significant added-value for a distributed query service,
and could fit in well with current practices for the stor-
age and analysis of scientific data.

10

4.7 Connection Services

The general architecture for database services described
above is more complex to use than established connec-
tion APIs such as JDBC and ODBC. This is unsurpris-
ing, since those protocols eliminate most of the flexibility
needed for grid applications. For example, they fix the
data model and parameter representations, they eliminate
the possibility of obtaining values from or sending val-
ues to third parties, and they use synchronous operations.
There are two significant reasons for doing this:

1. They are simpler to understand and use, and applica-
tion programmers benefit from that simplicity when
the generality and flexibility is not needed.

2. It permits optimisations, such as caching informa-
tion about the database at the client end, caching and
buffering results, data flow management optimised
for the particular pair of end points, private value
representations, etc.

In the short term particularly, the first factor will be im-
portant in encouraging projects currently using traditional
DBMS connections to adopt the service-based approach.
A connection service should therefore be considered as
the logical equivalent of consistently partially applying
the operations of a particular GDS with standard values
for such parameters as: updateNotation, expires, result-
Deliverer, editNotation, queryNotation, etc.

Such a service should be straightforward to use and
provide good average-case performance. In addition, it
would be possible to cache at the client the content meta-
data of the target schema, and validate operations before
transmitting them. This has the major advantage of en-
abling prompt detection of many errors without commu-
nication costs and delays. It would also convert the asyn-
chronous API into a synchronous API by obtaining result
sets before returning.

4.8 Management Services

There are clearly management tasks associated both with
databases and with a Grid environment. Thus services
could be envisaged specifically for creating, administer-
ing, monitoring and maintaining databases within a Grid
setting. Such services might be considered higher-level

than those described above, but are nevertheless impor-
tant to containing the cost of database activities within the
Grid. The publication of information about a database ser-
vice so that it can subsequently be identified and used can
also be seen as a necessary management service. The de-
velopment of management facilities for database services
involves relationships both with the management services
of existing databases and with wider Grid management
services.

5 Database Services in OGSA

The interfaces described in Section 4 have been presented
with minimal reference to a broader services architecture.
Thus many features of an architectural framework, such
as how services are created, evolved and destroyed, how
access to services is controlled, and how notifications are
passed between services, have not so far been discussed.
This section discusses how the interfaces described in
Section 4 can be used as the basis for database services
that obtain these additional characteristics through partic-
ipation in the OGSA.

5.1 Service Granularity

The interfaces described in Section 4 can be imported by
service descriptions. As such, specific services may im-
port different interfaces, and thus support different func-
tionalities. The following would provide coherent capa-
bilities:

BasicDatabaseService: such a service would import the
interfaces from Table 1. Such a service would pro-
vide minimal transaction facilities, as each operation
invoked on the service would be run independently
of all others.

TransactionalDatabaseService: such a service descrip-
tion would import the interfaces in Tables 1 and 3.
Such a service would allow transactions to span mul-
tiple query and update operations, but would not be
able to participate in distributed transactions using
two-phase commit.

CoordinatableDatabaseService: such a service descrip-
tion would import the interfaces in Tables 1, 3 and 4.

11

Such a service would allow transactions to span mul-
tiple query and update operations, and would be able
to participate in distributed transactions using two-
phase commit.

Other (non-database) services would be able to include
transactional behaviour in a consistent manner by import-
ing (and implementing) the operations from Tables 3 and
4. It is assumed that a delivery system, an interface for
which was described in Section 4.3, is a distinct service.

5.2 Life Cycles

The OGSA distinguishes between persistent and transient
services. A persistent service is created outside the grid
service environment, yet made available for discovery, ac-
cess, etc, using standard grid service conventions. By con-
trast, a transient grid service is typically created within
the OGSA. A transient service is created by a factory, for
which a standard interface is defined. This interface al-
lows information on such properties of a transient service
as its lifespan and access rights to be specified when it
is created. In the case of a database service factory, ad-
ditional information such as the schema of the database
might be given when the transient service is created.

A GDS can be a transient or persistent grid service. In
the former case, the GDS is established within OGSA and
operates entirely within the OGSA framework. Though
it is transient, it may be long-lived. In the latter case,
the creation, management and possible termination of the
GDS is beyond the realm of OGSA.

Where a database system is managed outside the
OGSA, it may not be accessible directly via OGSA pro-
tocols because it doesn’t yet support them. In this case,
a proxy behaving as a a GDS can permit standard OGSA
behaviour and bridge this to the established DBMS. The
proxy could be transient or persistent, and therefore it-
self potentially subject to OGSA life cycle management.
We hope that as the OGSA develops, database manage-
ment systems will directly support the protocols and APIs
of the OGSA, as this will improve efficiency and lead to
beneficial co-evolution.

Operations for managing the lifetime of a transient ser-
vice are specified as part of OGSA. These allow explicit
or soft-state description [FKNT02].

As a database factory is itself a service, it must be able
to describe its capabilities. If an application is consider-
ing creating a GDS, it must find a database factory service
(DFS) that is capable of producing a GDS of the right
form. It is no use asking a factory specialising in creat-
ing services that perform similarity searches over protein
sequences to generate a GDS for managing XML data ac-
cording to a specific XML schema. Consequently, when
registering with a discovery service, the DFS must spec-
ify the classes of GDS it is able to create and manage.
The capabilities of the services that can be created should
be described using representations that are consistent with
the descriptions of services that already have been created,
as discussed in Section 4.5.

5.3 Types and Namespaces

Types used in the definition of database service operations
need to be represented in the XML Schema namespace
[TBMM01] used in the WSDL definitions of database ser-
vices. This namespace should have a standard URI, such
as http://schemas.ogsa/GDS/parameters/.
This should cover the types used for describing results,
status, errors, etc.

For each data model there will need to be
types defined for transmitting parameter val-
ues and result sets. These need to use common
namespaces at URIs with a general form such
as http://schemas.ogsa/GDS/<data-
model>.values/. In addition, many scientific
applications that are prevalent users of the Grid have
commonly occurring types that will be used in queries
and results. For example, complex numbers represented
with a defined numerical precision, matrices, banded
matrices, diagonal matrices, etc. To prevent unnecessary
translations and redefinitions a namespace containing a
set of types for these should be established at URI such
as http://schemas.ogsa/scientific/data/.

5.4 Authorization

The OGSA assumes that authentication of a requesting
party is carried out by the network protocol binding. This
results in the service being able to identify the authenti-
cated requestor by way of a URI. In addition, an interface

12

is provided that allows it to be stated who is able to invoke
each operation under what conditions.

However, in database systems, authorization is often
sophisticated, and fine grained control can be provided
over access to or update of data items. Furthermore, au-
thorization facilities may check that the person on behalf
of whom an update is requested is working in a group
identified in the data to be updated. Overall, a wide
range of authorization constraints may be encountered in
database system; it is beyond the scope of this document
to explore the issues associated with making database au-
thorization facilities fully accessible within the OGSA.

5.5 Notification

Notification services allow asynchronous communication
of events and event descriptions. In the OGSA, interface
definitions are provided what allow services to act as no-
tification sources or sinks.

A GDS should be able to act as a source of notifica-
tions, as other Grid services may be interested to know,
for example, of changes made to a database or operations
taking place within a database. Further, it is also clear that
a database may seek to receive and respond to notifica-
tions – for example, a database supporting an Information
Service may need to be updated to reflect changes in the
status of another Grid entity.

Some database systems come with reactive capabilities;
for example, the SQL-99 trigger facility is described in
[KMC99]. It is not always the case, however, that such
facilities are able to monitor events taking place outside
the database itself, or to invoke operations that are im-
mediately visible outside the database. It is straightfor-
ward to use a database wrapper to forward external noti-
fications to a database, but more challenging to cause a
passive database to inform interested external parties of
relevant events.

6 Examples of Grid Database Ser-
vices

To explore the Grid Database Services approach, we con-
sider a few illustrative examples. In so doing, we don’t
cover relational or object databases directly, as it is hope-
fully fairly obvious how they fit within the framework.

6.1 An XML Repository

Consider a simple GDS that handles concurrent queries
over an XML repository, but for which updates require
exclusive access to the service. Such a concurrency con-
trol scheme could be implemented using a file system’s
locking mechanisms. As discussed in Section 5.2, if the
service is to be transient, an XML Factory Service will be
required that can create instances of the XML Repository
Service, with the service creation operation taking vari-
ous parameters relating to the lifespan, access rights and
schema of the service.

The operations supported by the service are essentially
those in Table 1. However, the straightforward XML
repository only supports one form of updateNotation that
loads an XML document, and verifies that it complies
with the stored XML schema. If it complies, it stores the
document, otherwise it records the errors in result and re-
ports a failure in fail. This simple service might support
only one queryNotation, such as XPath, and may only be
able to deliver results using a limited range of protocols.

More advanced versions of the service could extend its
capabilities without requiring a change to the signature of
the operations. For example:

1. An updateNotation called insertXML might specify a
path to a location in the update parameter, where the
XML document specified by the values parameter is
to be inserted. The resulting document would have to
comply with the bound schema or the update would
fail.

2. There might be an index to accelerate queries.

3. All versions of the document’s history might be re-
trievable.

4. The query operation might accept a queryNotation of
either XPath or Xquery, with an optional time param-
eter. Specifying a time would cause the evaluation to
occur as if it was against the document at the state it
was in at that time.

5. The storage regime might store quiescent documents
in compressed form.

This range of extensions illustrates that there are many
variations and developments possible within the services

13

framework when considering the provision of just one ser-
vice. The actual operations and development for a partic-
ular service would be driven by application requirements.

6.2 A Sequence Repository

This section describes a biological Sequence Repository
Service as a composition of two existing services. One of
these services is the XML Repository Service from Section
6.1. The other is a Sequence Search Service that allows
similarity searching on sequences. It is assumed that an
application needs to associate some application metadata
encoded in XML (for example, on experimental methods)
with the actual sequence data. By combining the capabil-
ities of the XML Repository Service for storing the meta-
data and the Sequence Search Service for conducting sim-
ilarity searches, a new Sequence Repository Service can
be developed.

Two new services must be developed:

Sequence Repository Factory Service: the creation of a
sequence repository service requires the creation of
an XML Repository Service and a Sequence Search
Service. As such, the create operation of the Se-
quence Repository Factory Service must call the two
factory services that are able to create the needed
XML Repository and Sequence Search services, the
GHSs of which are stored by the newly created Se-
quence Repository Service.

Sequence Repository Service: the operations of this
service are essentially those from Table 1. The
query operation might support a number of functions
that combine searches over the XML and sequence
repositories. For example, a search could retrieve the
XML metadata of all sequences that are similar to a
given sequence.

This kind of application requirement, where experi-
mental results (sequences in the example) are paired with
some additional information about the way the data was
collected or some manual annotations describing the data,
is quite common in e-Science. The example has shown
how the GDS service interface can be used to package
and combine rather diverse capabilities.

6.3 A Matrix Storage Service

This section assumes that there are enough applications
that wish to store matrices to make a specialised service
useful. Indeed, there are already a variety of matrix stor-
age schemes in use in Grid projects. Assuming that a
Matrix Storage Service may be transient, we simply in-
troduce a Matrix Factory Service and a Matrix Storage
Service.

The developers of such a service within a grid database
service context have a range of design issues to face. For
example:

1. Is it worth developing a standard notation for de-
scribing matrices to be stored, call it a Matrix De-
scription Language (MDL)?

2. Is it worth developing a standard notation for extract-
ing data from matrices, call it a Matrix Query Lan-
guage (MQL).

The actual form and detailed design of such languages
will not be considered here, only the rationale for design-
ing and supporting them. Consider first an MDL. Nota-
tions such as � � �������	��
���
�����
�
�������
������������ are familiar as a
description of the shape of an n-dimensional hyper-cuboid
array of elements of type � . It is possible to extend this
notation to describe other forms of (constraints on) matri-
ces, e.g. symmetric, triangular, or to indicate information
useful to storage systems, e.g. sparseness.

As suggested, the description may be used both to or-
ganise validation of operations, and to optimise storage
and operation evaluation. In addition, it may be used
as information to clients about the properties of the data.
This is achieved at the cost of complexity in implementing
the service. The trade-off would need investigation.

Once the structure of a matrix store is defined, it is
possible to introduce specialised query languages that use
this structure. DataCutter [BFK

�

00] is a particular ex-
ample. Such languages achieve an important optimisa-
tion, moving selection close to data, rather than moving
large volumes of data to a process. But DataCutter es-
sentially provides a language for identifying hyper-cuboid
slices of a matrix and filtering those. There are many
other selections possible. More importantly, it is often
some derivative of a subset of the matrix that is required,
e.g. a random sample, an average, a standard deviation,

14

a fitted hyper-surface and residuals, etc. This suggests
that attempts to capture the full gamut of requirements
in a special purpose matrix query language may be futile.
However, frequently occurring requirements might be met
by a language, whereas general requirements can only be
met by using a general purpose programming language.
For safety, this either requires that the data is moved to
a client’s process where this code is executed, or that the
GMSS provide a mechanism for accepting a “query” as
code, e.g. a Java compiled class satisfying a specified sig-
nature, dynamically binding this into a sand-boxed con-
text and running it against the stored matrices.

7 Developing Grid Database Ser-
vices

We consider here two aspects of the further development
of Grid Database Services: the requirements it imposes
on OGSA and the issues in the OGSA model that require
development.

7.1 Requirements from OGSA

Many of the planned features of OGSA will be exploited
by grid database services. A few examples illustrate the
synergy.

1. All activations and parameter/result transmission de-
pend on the standard OGSA mechanisms.

2. The secure connection and authentication mecha-
nism underpins all GDS security and authentication.

3. The lifetime management model carries over un-
changed as the lifetime management model for GDS.

4. The soft-state model applies to all of the transient
service instances, such as connections, delivery ser-
vices and transactions.

5. The notification mechanism specified in OGSA ap-
pears to satisfy the GDS needs.

It is instructive to try to identify where extensions to the
current GS infrastructure are likely to be necessary. This
will only be clarified by exploratory prototypes that test

the capacity of OGSA to carry GDS implementation, and
the capacity of DBMS to conform to GS requirements.
Some anticipated issues are:

1. Supporting the authorisation requirements of exter-
nal databases. The database will require informa-
tion about the user causing the activation, potentially
through many intermediate grid services. A certifi-
cate establishes a bone fide identity, but yields little
information about the properties of the user that may
be needed to establish entitlement to perform an op-
eration. A way forward that retains flexibility could
be to introduce user identification services, and ref-
erences to them in a certificate.

2. Certification of the services themselves may be nec-
essary. The trust needed to commit data to some ser-
vice and repository has to be established. There is
a risk that a discovery service has been tricked into
returning a GDS that mimics the intended GDS but
exposes the data sent or the area being probed. Does
this require digital signatures for GS that can be ver-
ified by a validation authority?

3. The types needed for e-Science applications and for
database integration need to be defined as XML
Schema namespaces. If this is not done, different
e-Science application groups will develop their own
standards, which will generate integration problems
and eliminate potential economies.

4. Some external databases charge for their use. To
allow these to be used via the grid it is necessary
to support a digital payment process. Since pay-
ment is in arrears, and since a user may be spending
concurrently via many grid services, a sophisticated,
distributed credit rating/accounting system must be
available.

5. Extensions of information discovery services may be
required to handle extra properties, e.g. transactional
and coordinatable. An extension will also be needed
to handle content information, and the structures for
describing content will need to be agreed.

15

7.2 Issues for Grid Database Services

Conversely, the provision of grid database services places
demands on the service providers. Some examples illus-
trate the issues that arise.

1. External persistent database systems must allow con-
nection from the grid. The associated technical prob-
lems can be overcome, but the political challenge of
persuading the owners of the data to permit access
to a large number of remote users via the grid may
inhibit development.

2. When a GDS is used as a transient service, installa-
tion and set-up becomes an issue. Present systems
require system administrators and database admin-
istrators to perform incantations establishing opera-
tional parameters and context before operations can
commence. An alternative is required, driven via the
services infrastructure, using automatically derived
information about the context and parameters.

3. A database system on which a GDS is based could
be vulnerable to accidental or deliberate overload.
Mechanisms must therefore be developed that enable
the resources used by each client to be appropriately
controlled or scheduled.

4. In the grid context, it is necessary to perform co-
scheduling and reservation, so that other resources
are not squandered because they are waiting for a re-
source that is not yet available. Interfaces for such
scheduling and reservation will need to be devel-
oped. Some DBMSs provide scheduled production
of a snapshot, essentially of evaluation of a previ-
ously defined query, but none at present will reserve
resources to evaluate a query or accept an update at
some specified future moment.

5. DBMSs often require careful tuning to handle their
expected workload. The sharing and distribution in-
herent in service-based computation may lead to un-
predictable and less stable loads. The DBMS will
need to respond to this with automatic tuning. In
the interim, the operations for monitoring and tuning
will need to be accessible via the service interface.

6. Best performance will be achieved by establishing
infrastructure and computation close to data. For ex-

ample, with large bodies of scientific data, perfor-
mance can be substantially improved by using in-
dexes that are tuned to current requirements [HAI01,
SKT

�

00]. These are often large. They would need
to be dynamically created and installed as new us-
age emerged. Where data has to be scanned, it is
normally best to move the scanning algorithm to the
data. This requires a safe mechanism for dynami-
cally installing it close to the data.

7.3 Co-evolving Data and Grid Services

The preceding sections suggest that there are likely to
be changes to both the grid service mechanisms and the
data management mechanisms as a result of developing
GDS. This is happening in an era of significant develop-
ment in the treatment of scientific data as new approaches
to archiving, provenance, integration and interpretation
are emerging. Tools that derive and use semantic mod-
els to assist with these processes will emerge [RJS02]
and substantially change the patterns of use and conse-
quent workloads. There are also dramatic changes in
the scale of data. For example, astronomy data collec-
tion rates are doubling every year, the available biologi-
cal sequence data are doubling every 9 months and there
is a marked trend towards digital data capture in medical
imaging. These forces will not abate in the foreseeable fu-
ture. Similar effects pervade e-business. The development
of a robust framework for grid data services is therefore
of great importance, as our ability to adapt and develop
will be determined by the quality of its design. The terri-
tory must be explored through prototypes until sufficient
understanding is available to guide this design.

8 Incremental Development

This section makes some tentative suggestions as to how a
staged development of the services described in this doc-
ument might proceed.

1. Source-at-a-time, Single Paradigm. The most
straightforward database service would allow di-
rect connections to individual sources, where these
sources belong to a single database paradigm. The
most obvious initial paradigm would be relational.

16

An initial implementation phase would be expected
to provide no inter-service transactions.

2. Source-at-a-time, Multiple Paradigm. A good early
test of the generality of the overall service speci-
fication would be to develop support for a second
database paradigm, for example, for object databases
or XML repositories.

3. Multiple source, Loose Coupling. Coordinated ac-
cess to multiple sources could be supported by de-
veloping or deploying a distributed transaction man-
ager. This would allow multiple connections to par-
ticipate in a single transaction, but would not allow
a single query or update statement to refer to more
than one source.

4. Multiple source, Tight Coupling. This level of func-
tionality would allow a single query or update state-
ment to refer to more than one source, and thus in-
volves the development of a distributed query pro-
cessor. A distributed query processor could be de-
veloped before a distributed transaction manager, but
this would reduce the coherence of the results of dis-
tributed queries.

5. Multiple source, Tight Coupling with Replication.
Comprehensive and fine grained replication facili-
ties build on both distributed query processing and
distributed transaction models. More coarse grained
replication schemes do not need a distributed query
processor.

9 Conclusions

This document has made a preliminary, service-oriented,
proposal for integrating database functionality into a Grid
setting. It is hoped that the document will provoke dis-
cussion on how best databases can be integrated with
Grid middleware, and subsequently that descendents of
this document can direct implementation efforts relating
to databases and the Grid.

Please feel invited to provide feedback, and
to suggest improvements, preferably be email to:
norm@cs.man.ac.uk.

Acknowledgements: The authors are grateful to Ian
Foster and Heinz Stockinger for their feedback on earlier
versions of the document.

References

[BFK
�

00] M. Beynon, R. Ferreira, T. Kurc, A. Suss-
man, and J. Saltz. Datacutter: Middleware
for filtering very large scientific datasets on
archival storage systems. In Proc. 9th Het-
erogeneous Computing Workshop (HCW),
2000. Cancun, Mexico.

[BMRW98] C. Baru, R. Moore, A. Rajasekar, and
M. Wan. The sdsc storage resource broker.
In Proc. CASCON, pages 4–18, 1998.

[CCMW01] E. Christensen, F. Curbera, G. Meredith, and
S. Weerawarana. Web Services Description
Language (WSDL) 1.1. Technical report,
W3C Note, www.w3.org/TR/wsdl, 2001.

[EHF01] J. Ellis, L. Ho, and M. Fisher. Jdbc 3.0 spec-
ification. Technical Report Proposed Final
Draft 3, Sun Microsystems, 2001.

[FKNT02] I. Foster, C. Kesselman, J. Nick, and
S. Tuecke. Open Grid Services Ar-
chitecture: A Unifying Framework for
Distributed Systems Integration. Technical
report, Globus Project Technical Report,
www.globus.org/research/papers/ogsa.pdf,
2002.

[H
�

01] W. Hoschek et al. Data management
(wp2) architecture report. Technical Re-
port DataGrid-02-D2.2-0103-1 2, European
Data Grid, 2001.

[HAI01] E. Hunt, M.P. Atkinson, and R.W. Irving.
A database index to large biological se-
quences. In Proc. 27th VLDB, pages 139–
148. Morgan-Kaufmann, 2001.

[HKWY97] L. Haas, D. Kossmann, E.L. Wimmers, and
J. Yang. Optimizing Queries Across Diverse
Data Sources. In Proc. VLDB, pages 276–
285. Morgan-Kaufmann, 1997.

17

[KMC99] K. Kulkarni, N. Mattos, and R. Cochrane.
Active Database Features in SQL3. In N.W.
Paton, editor, Active Rules in Database
Systems, pages 197–291. Springer-Verlag,
1999.

[Kre01] H. Kreger. Web Services Conceptual Archi-
tecture. Technical Report WCSA 1.0, IBM
Software Group, 2001.

[MP00] P. McBrien and A. Poulovassilis. Dis-
tributed Databases. In M. Piattini and
O. Diaz, editors, Advanced Database Tech-
nology and Design, pages 291–327. Artech
House, 2000.

[OMG00] OMG. Additional structuring mechanisms
for the ots specification. Technical Re-
port ORBOS/2000-04-02, Object Manage-
ment Group, 2000.

[Pea02] D. Pearson. Grid database re-
quirements. Technical Report
http://www.cs.man.ac.uk/grid-db/, Pa-
per for Databases and the Grid BOF, GGF4,
2002.

[RJS02] D. De Roure, N. Jennings, and N. Shad-
bolt. The semantic grid. Techni-
cal report, Southampton University,
http://www.semanticgrid.org/, 2002.

[SKT
�

00] A. Szalay, P. Z. Kunszt, A. Thakar, J. Gray,
and D. R. Slut. Designing and mining multi-
terabyte astronomy archives: The sloan dig-
ital sky survey. In Proc. ACM SIGMOD,
pages 451–462. ACM Press, 2000.

[TBMM01] H.S. Thompson, D. Beech, M. Mal-
oney, and N. Mendelsohn. XML
Schema Part 1: Structures. Tech-
nical report, W3C Recommendation,
http://www.w3.org/TR/xmlschema-1/,
2001.

[Wat01] P. Watson. Databases and the Grid. Techni-
cal Report CS-TR-755, University of New-
castle, 2001.

18

