

Abstract
In recent years, there has been a dramatic increase in the
amount of available computing and storage resources.
Yet few have been able to exploit these resources in an
aggregated form. We present the Condor-G system, which
leverages software from Globus and Condor to allow
users to harness multi-domain resources as if they all
belong to one personal domain. We describe the structure
of Condor-G and how it handles job management,
resource selection, security, and fault tolerance.

1. Introduction

In recent years the scientific community has
experienced a dramatic pluralization of computing and
storage resources. The national high-end computing
centers have been joined by an ever-increasing number of
powerful regional and local computing environments. The
aggregated capacity of these new computing resources is
enormous. Yet, to date, few scientists and engineers have
managed to exploit the aggregate power of this seemingly
infinite Grid of resources. While in principle most users
could access resources at multiple locations, in practice
few reach beyond their home institution, whose resources
are often far from sufficient for increasingly demanding
computational tasks such as simulation, large scale
optimization, Monte Carlo computing, image processing,
and rendering. The problem is the significant “potential
barrier” associated with the diverse mechanisms, policies,
failure modes, performance uncertainties, etc., that
inevitably arise when we cross the boundaries of
administrative domains.

Overcoming this potential barrier requires new
methods and mechanisms that meet the following three
key user requirements for computing in a “Grid” that
comprises resources at multiple locations:

• They want to be able to discover, acquire, and
reliably manage computational resources

dynamically, in the course of their everyday
activities.

• They do not want to be bothered with the location
of these resources, the mechanisms that are
required to use them, with keeping track of the
status of computational tasks operating on these
resources, or with reacting to failure.

• They do care about how long their tasks are likely
to run and how much these tasks will cost.

In this article, we present an innovative distributed
computing framework that addresses these three issues.
The Condor-G system leverages the significant advances
that have been achieved in recent years in two distinct
areas: (1) security, resource discovery, and resource
access in multi-domain environments, as supported within
the Globus Toolkit [12], and (2) management of
computation and harnessing of resources within a single
administrative domain, specifically within the Condor
system [20, 22]. In brief, we combine the inter-domain
resource management protocols of the Globus Toolkit and
the intra-domain resource management methods of
Condor to allow the user to harness multi-domain
resources as if they all belong to one personal domain.
The user defines the tasks to be executed; Condor-G
handles all aspects of discovering and acquiring
appropriate resources, regardless of their location;
initiating, monitoring, and managing execution on those
resources; detecting and responding to failure; and
notifying the user of termination. The result is a powerful
tool for managing a variety of parallel computations in
Grid environments.

Condor-G’s utility has been demonstrated via record-
setting computations. For example, in one recent
computation a Condor-G agent managed a mix of desktop
workstations, commodity clusters, and supercomputer
processors at ten sites to solve a previously open problem
in numerical optimization. In this computation, over
95,000 CPU hours were delivered over a period of less
than seven days, with an average of 653 processors being
active at any one time. In another case, resources at three

Condor-G: A Computation Management Agent for Multi-Institutional Grids

James Frey, Todd Tannenbaum, Miron Livny Ian Foster, Steven Tuecke
 Department of Computer Science Mathematics and Computer Science Division
 University of Wisconsin Argonne National Laboratory
 Madison, WI 53706 Argonne, IL 60439
 { jfrey, tannenba, miron }@cs.wisc.edu { foster, tuecke }@mcs.anl.gov

sites were used to simulate and reconstruct 50,000 high-
energy physics events, consuming 1200 CPU hours in less
than a day and a half.

In the rest of this article, we describe the specific
problem we seek to solve with Condor-G, the Condor-G
architecture, and the results obtained to date.

2. Large-scale sharing of computational
resources

We consider a Grid environment in which an
individual user may, in principle, have access to
computational resources at many sites. Answering why the
user has access to these resources is not our concern. It
may be because the user is a member of some scientific
collaboration, or because the resources in question belong
to a colleague, or because the user has entered into some
contractual relationship with a resource provider [14]. The
point is that the user is authorized to use resources at those
sites to perform a computation. The question that we
address is how to build and manage a multi-site
computation that uses those resources.

Performing a computation on resources that belong to
different sites can be difficult in practice for the following
reasons:

• Different sites may feature different authentication
and authorization mechanisms, schedulers,
hardware architectures, operating systems, file
systems, etc.

• The user has little knowledge of the characteristics
of resources at remote sites, and no easy means of
obtaining this information.

• Due to the distributed nature of the multi-site
computing environment, computers, networks, and
subcomputations can fail in various ways.

• Keeping track of the status of different elements of
a computation involves tedious bookkeeping,
especially in the event of failure and dependencies
among subcomputations.

Furthermore, the user is typically not in a position to
require uniform software systems on the remote sites. For
example, if all sites to which a user had access ran DCE
and DFS, with appropriate cross-realm Kerberos
authentication arrangements, the task of creating a multi-
site computation would be significantly easier. But it is
not practical in the general case to assume such
uniformity.

The Condor-G system addresses these issues via a
separation of concerns between the three problems of
remote resource access, computation management, and
remote execution environments:

• Remote resource access issues are addressed by
requiring that remote resources speak standard

protocols for resource discovery and management.
These protocols support secure discovery of remote
resource configuration and state, and secure
allocation of remote computational resources and
management of computation on those resources.
We use the protocols defined by the Globus Toolkit
[12], a de facto standard for Grid computing.

• Computation management issues are addressed via
the introduction of a robust, multi-functional user
computation management agent responsible for
resource discovery, job submission, job
management, and error recovery. This Condor-G
component is taken from the Condor system [20].

• Remote execution environment issues are addressed
via the use of mobile sandboxing technology that
allows a user to create a tailored execution
environment on a remote node. This Condor-G
component is also taken from the Condor system.

This separation of concerns between remote resource
access and computation management has some significant
benefits. First, it is significantly less demanding to require
that a remote resource speak some simple protocols rather
than to require it to support a more complex distributed
computing environment. This is particularly important
given that the deployment of production Grids [4, 18, 27]
has made it increasingly common that remote resources
speak these protocols. Second, as we explain below,
careful design of remote access protocols can significantly
simplify computation management.

3. Grid protocol overview

In this section, we briefly review the Grid protocols
that we exploit in the Condor-G system: GRAM, GASS,
MDS-2, and GSI. The Globus Toolkit provides open
source implementations of each.

3.1. Grid security infrastructure

The Globus Toolkit’s Grid Security Infrastructure
(GSI) [13] provides essential building blocks for other
Grid protocols and for Condor-G. This authentication and
authorization system makes it possible to authenticate a
user just once, using public key infrastructure (PKI)
mechanisms to verify a user-supplied “Grid credential.”
GSI then handles the mapping of the Grid credential to the
diverse local credentials and authentication/authorization
mechanisms that apply at each site. Hence, users need not
re-authenticate themselves each time they (or a program
acting on their behalf, such as a Condor-G computation
management service) access a new remote resource.

GSI’s PKI mechanisms require access to a private key
that they use to sign requests. While in principle a user’s

private key could be cached for use by user programs, this
approach exposes this critical resource to considerable
risk. Instead, GSI employs the user’s private key to create
a proxy credential, which serves as a new private-public
key pair that allows a proxy (such as the Condor-G agent)
to make remote requests on behalf of the user. This proxy
credential is analogous in many respects to a Kerberos
ticket [26] or Andrew File System token.

3.2. GRAM protocol and implementation

The Grid Resource Allocation and Management
(GRAM) protocol [10] supports remote submission of a
computational request (“run program P”) to a remote
computational resource, and subsequent monitoring and
control of the resulting computation. Three aspects of the
protocol are particularly important for our purposes:
security, two-phase commit, and fault tolerance. The latter
two mechanisms were developed in collaboration with the
UW team and are not yet part of the GRAM version
included in the Globus Toolkit. They will be in the
GRAM-2 protocol revision scheduled for later in 2001.

GSI security mechanisms are used in all operations to
authenticate the requestor and for authorization.
Authentication is performed using the supplied proxy
credential, hence providing for single sign-on.
Authorization implements local policy and may involve
mapping the user’s “Grid id” into a local subject name;
however, this mapping is transparent to the user. Work in
progress will also allow authorization decisions to be
made on the basis of capabilities supplied with the
request.

Two-phase commit is important as a means of
achieving “exactly once” execution semantics. Each
request from a client is accompanied by a unique
sequence number, which is also included in the associated
response. If no response is received after a certain amount
of time, the client can repeat the request. The repeated
sequence number allows the resource to distinguish
between a lost request and a lost response. Once the client
has received a response, it then sends a “commit” message
to signal that job execution can commence.

Resource-side fault tolerance support addresses the fact
that a single “resource” may often contain multiple
processors (e.g., a cluster or Condor pool) with
specialized “interface” machines running the GRAM
server(s) that maintain the mapping from submitting client
to local process. Consequently, failure of an interface
machine may result in the remote client losing contact
with what is otherwise a correctly queued or executing
job. Hence, our GRAM implementation logs details of all
active jobs to stable storage at the client side, allowing
this information to be retrieved if a GRAM server crashes
and is restarted. This information can include details of

how much standard output and error data has been
received, thus permitting a client to request resending of
this data after a crash of client or server.

3.3. MDS protocols and implementation

The Globus Toolkit’s MDS-2 provides basic
mechanisms for discovering and disseminating
information about the structure and state of Grid resources
[9]. The basic ideas are simple. A resource uses the Grid
Resource Registration Protocol (GRRP) to notify other
entities that it is part of the Grid. Those entities can then
use the Grid Resource Information Protocol (GRIP) to
obtain information about resource status. These two
protocols allow us to construct a range of interesting
structures, including various types of directories that
support discovery of interesting resources. GSI
authentication is used as a basis for access control.

3.4. GASS

The Globus Toolkit’s Global Access to Secondary
Storage (GASS) service [7] provides mechanisms for
transferring data between a remote HTTP, FTP, or GASS
server. In the current context, we use these mechanisms to
stage executables and input files to a remote computer. As
usual, GSI mechanisms are used for authentication.

4. Computation management: the Condor-G
agent

Next, we describe the Condor-G computation
management service (or Condor-G agent).

4.1. User interface

The Condor-G agent allows the user to treat the Grid as
an entirely local resource, with an API and command line
tools that allow the user to perform the following job
management operations:

• submit jobs, indicating an executable name,
input/output files and arguments;

• query a job’s status, or cancel the job;
• be informed of job termination or problems, via

callbacks or asynchronous mechanisms such as
email;

• obtain access to detailed logs, providing a complete
history of their jobs’ execution.

There is nothing new or special about the semantics of
these capabilities, as one of the main objectives of
Condor-G is to preserve the look and feel of a local
resource manager. The innovation in Condor-G is that
these capabilities are provided by a personal desktop

agent and supported in a Grid environment, while
guaranteeing fault tolerance and exactly-once execution
semantics. By providing the user with a familiar and
reliable single access point to all the resources he/she is
authorized to use, Condor-G empowers end-users to
improve the productivity of their computations by
providing a unified view of dispersed resources.

4.2. Supporting remote execution

Behind the scenes, the Condor-G agent executes user
computations on remote resources on the user’s behalf. It
does this by using the Grid protocols described above to
interact with machines on the Grid and mechanisms
provided by Condor to maintain a persistent view of the
state of the computation. In particular, it:

• stages a job's standard I/O and executable using
GASS,

• submits a job to a remote machine using the revised
GRAM job request protocol, and

• subsequently monitors job status and recovers from
remote failures using the revised GRAM protocol

and GRAM callbacks and status calls, while
• authenticating all requests via GSI mechanisms.
The Condor-G agent also handles resubmission of

failed jobs, communications with the user concerning
unusual and erroneous conditions (e.g., credential expiry,
discussed below), and the recording of computation on
stable storage to support restart in the event of its failure.

We have structured the Condor-G agent
implementation as depicted in Figure 1. The Scheduler
responds to a user request to submit jobs destined to run
on Grid resources by creating a new GridManager
daemon to submit and manage those jobs. One
GridManager process handles all jobs for a single user
and terminates once all jobs are complete. Each
GridManager job submission request (via the modified
two-phase commit GRAM protocol) results in the creation
of one Globus JobManager daemon. This daemon
connects to the GridManager using GASS in order to
transfer the job’s executable and standard input files, and
subsequently to provide real-time streaming of standard
output and error. Next, the JobManager submits the jobs
to the execution site’s local scheduling system. Updates

Job Submission Machine Job Execution Site

Globus
GateKeeper

Condor-G
Scheduler

Globus
JobManager

Site Job Scheduler

(PBS, Condor, LSF, LoadLeveler, NQE, etc.)

Job X

Globus
JobManager

Job Y

S
ubm

it

Condor-G
GridManager

GASS
Server

S
ubm

it

Fork

Fo
rk

 Fork

Persistant
Job Queue

End User
Requests

Figure 1. Remote execution by Condor-G on Globus-managed resources

on job status are sent by the JobManager back to the
GridManager, which then updates the Scheduler, where
the job status is stored persistently as we describe below.
When the job is started, a process environment variable
points to a file containing the address/port (URL) of the
listening GASS server in the GridManager process. If the
address of the GASS server should change, perhaps
because the submission machine was restarted, the
GridManager requests the JobManager to update the file
with the new address. This allows the job to continue file
I/O after a crash recovery.

Condor-G is built to tolerate four types of failure: crash
of the Globus JobManager, crash of the machine that
manages the remote resource (the machine that hosts the
GateKeeper and JobManager), crash of the machine on
which the GridManager is executing (or crash of the the
GridManager alone), and failures in the network
connecting the two machines.

The GridManager detects remote failures by
periodically probing the JobManagers of all the jobs it
manages. If a JobManager fails to respond, the
GridManager then probes the GateKeeper for that
machine. If the GateKeeper responds, then the
GridManager knows that the individual JobManager
crashed. Otherwise, either the whole resource
management machine crashed or there is a network failure
(the GridManager cannot distinguish these two cases). If
only the JobManager crashed, the GridManager attempts
to start a new JobManager to resume watching the job.
Otherwise, the GridManager waits until it can reestablish
contact with the remote machine. When it does, it attempts
to reconnect to the JobManager. This can fail for two
reasons: the JobManager crashed (because the whole
machine crashed), or the JobManager exited normally
(because the job completed during a network failure). In
either case, the GridManager starts a new JobManager,
which will resume watching the job or tell the
GridManager that the job has completed.

To protect against local failure, all relevant state for
each submitted job is stored persistently in the scheduler’s
job queue. This persistent information allows the
GridManager to recover from a local crash. When
restarted, the GridManager reads the information and
reconnects to any of the JobManagers that were running at
the time of the crash. If a JobManager fails to respond, the
GridManager starts a new JobManager to watch that job.

4.3. Credential management

A GSI proxy credential used by the Condor-G agent to
authenticate with remote resources on the user’s behalf is
given a finite lifetime so as to limit the negative
consequences of its capture by an adversary. A long-lived
Condor-G computation must be able to deal with

credential expiration. The Condor-G agent addresses this
requirement by periodically analyzing the credentials for
all users with currently queued jobs. (GSI provides query
functions that support this analysis.) If a user’s credentials
have expired or are about to expire, the agent places the
job in a hold state in its queue and sends the user an e-
mail message explaining that their job cannot run again
until their credentials are refreshed by using a simple tool.
Condor-G also allows credential alarms to be set. For
instance, it can be configured to e-mail a reminder when
less than a specified time remains before a credential
expires.

Credentials may have been forwarded to a remote
location, in which case the remote credentials need to be
refreshed as well. At the start of a job, the Condor-G agent
forwards the user's proxy certificate from the submission
machine to the remote GRAM server. When an expired
proxy is refreshed, Condor-G not only needs to refresh the
certificate on the local (submit) side of the connection, but
it also needs to re-forward the refreshed proxy to the
remote GRAM server.

To reduce user hassle in dealing with expired
credentials, Condor-G could be enhanced to work with a
system like MyProxy [23]. MyProxy lets a user store a
long-lived proxy credential (e.g. a week) on a secure
server. Remote services acting on behalf of the user can
then obtain short-lived proxies (e.g. 12 hours) from the
server. Condor-G could use these short-lived proxies to
authenticate with and forward to remote resources and
refresh them automatically from the MyProxy server when
they expire. This limits the exposure of the long-lived
proxy (only the MyProxy server and Condor-G have
access to it).

4.4. Resource discovery and scheduling

We have not yet addressed the critical question of how
the Condor-G agent determines where to execute user
jobs. A number of strategies are possible.

A simple approach, which we used in the initial
Condor-G implementation, is to employ a user-supplied
list of GRAM servers. This approach is a good starting
point for further development.

A more sophisticated approach is to construct a
personal resource broker that runs as part of the Condor-
G agent and combines information about user
authorization, application requirements and resource
status (obtained from MDS) to build a list of candidate
resources. These resources will be queried to determine
their current status, and jobs will be submitted to
appropriate resources depending on the results of these
queries. Available resources can be ranked by user
preferences such as allocation cost and expected start or
completion time. One promising approach to constructing

such a resource broker is to use the Condor Matchmaking
framework [25] to implement the brokering algorithm.
Such an approach is described by Vazhkudai et al. [28].
They gather information from MDS servers about Grid
storage resources, format that information and user
storage requests into ClassAds, and then use the
Matchmaker to make brokering decisions. A similar
approach could be taken for computational resources for
use with Condor-G.

In the case of high throughput computations, a simple
but effective technique is to “flood” candidate resources
with requests to execute jobs. These can be the actual jobs
submitted by the user or Condor “GlideIns” as discussed
below. Monitoring of actual queuing and execution times
allows for the tuning of where to submit subsequent jobs
and to migrate queued jobs.

5. GlideIn mechanism

The techniques described above allow a user to
construct, submit, and monitor the execution of a task
graph, with failures and credential expirations handled
seamlessly and appropriately. The result is a powerful

management tool for Grid computations. However, we
still have not addressed issues relating to what happens
when a job executes on a remote platform where required
files are not available and local policy may not permit
access to local file systems. Local policy may also impose
restrictions on the running time of the job, which may
prove inadequate for the job to complete. These additional
system and site policy heterogeneities can represent
substantial barriers.

We address these concerns via what we call mobile
sandboxing. In brief, we use the mechanisms described
above to start on a remote computer not a user job, but a
daemon process that performs the following functions:

• It uses standard Condor mechanisms to advertise its
availability to a Condor Collector process, which is
queried by the Scheduler to learn about available
resources. Condor-G uses standard Condor
mechanisms to match locally queued jobs with the
resources advertised by these daemons and to
remotely execute them on these resources [25].

• It runs each user task received in a “sandbox,”
using system call trapping technologies provided
by the Condor system [20] to redirect system calls

Figure 2. Remote job execution via GlideIn

Job Submission Machine

Job Execution Site

Job

Condor-G
GridManager

GASS
Server

Condor-G
Scheduler

Persistant
Job Queue

End User
Requests

Condor
Shadow

Process for
Job X

Condor-G
Collector

Fork

Globus Daemons
+

Local Site Scheduler

[See Figure 1]

F ork

Condor
Daemons

Job X

Condor System Call

Trapping & Checkpoint
Library

For k

Resource

Information

Transfer Job X

Redirected
System Call

Data

issued by the task back to the originating system. In
the process, this both increases portability and
protects the local system.

• It periodically checkpoints the job to another
location (e.g., the originating location or a local
checkpoint server) and migrates the job to another
location if requested to do so (for example, when a
resource is required for another purpose or the
remote allocation expires) [21].

These various functions are precisely those provided
by the daemon process that is run on any computer
participating in a Condor pool. The difference is that in
Condor-G, these daemon processes are started not by the
user, but by using the GRAM remote job submission
protocol. In effect, the Condor-G GlideIn mechanism uses
Grid protocols to dynamically create a personal Condor
pool out of Grid resources by “gliding-in” Condor
daemons to the remote resource. Daemons shut down
gracefully when their local allocation expires or when they
do not receive any jobs to execute after a (configurable)
amount of time, thus guarding against runaway daemons.
Our implementation of this “GlideIn” capability submits
an initial GlideIn executable (a portable shell script),
which in turn uses GSI-authenticated GridFTP to retrieve
the Condor executables from a central repository, hence
avoiding a need for individual users to store binaries for
all potential architectures on their local machines.

Another advantage of using GlideIns is that they allow
the Condor-G agent to delay the binding of an application
to a resource until the instant when the remote resource
manager decides to allocate the resource(s) to the user. By
doing so, the agent minimizes queuing delays by
preventing a job from waiting at one remote resource
while another resource capable of serving the job is
available. By submitting GlideIns to all remote resources
capable of serving a job, Condor-G can guarantee optimal
queuing times to its users. One can view the GlideIn as an
empty shell script submitted to a queuing system that can
be populated once it is allocated the requested resources.

6. Experiences

Three very different examples illustrate the range and
scale of application that we have already encountered for
Condor-G technology.

An early version of Condor-G was used by a team of
four mathematicians from Argonne National Laboratory,
Northwestern University, and University of Iowa to
harness the power of over 2,500 CPUs at 10 sites (eight
Condor pools, one Cluster managed by PBS, and one
supercomputer managed by LSF) to solve a very large
optimization problem [3]. In less than a week the team
logged over 95,000 CPU hours to solve more than 540
billion Linear Assignment Problems controlled by a

sophisticated branch and bound algorithm. This
computation used an average of 653 CPUs during that
week, with a maximum of 1007 in use at any one time.
Each worker in this Master-Worker application was
implemented as an independent Condor job that used
Remote I/O services to communicate with the Master.

A group at Caltech that is part of the CMS Energy
Physics collaboration has been using Condor-G to
perform large-scale distributed simulation and
reconstruction of high-energy physics events. A two-node
Directed Acyclic Graph (DAG) of jobs submitted to a
Condor-G agent at Caltech triggers 100 simulation jobs on
the Condor pool at the University of Wisconsin. Each of
these jobs generates 500 events. The execution of these
jobs is also controlled by a DAG that makes sure that
local disk buffers do not overflow and that all events
produced are transferred via GridFTP to a data repository
at NCSA. Once all simulation jobs terminate and all data
is shipped to the repository, the Condor-G agent at
Caltech submits a subsequent reconstruction job to the
PBS system that manages the reconstruction cluster at
NCSA.

Condor-G has also been used in the GridGaussian
project at NCSA to prototype a portal for running
Gaussian98 jobs on Grid resources. This Portal uses
GlideIns to optimize access to remote resources and
employs a shared Mass Storage System (MSS) to store
input and output data. Users of the portal have two
requirements for managing the output of their Gaussian
jobs. First, the output should be reliably stored at MSS
when the job completes. Second, the users should be able
to view the output as it is produced. These requirements
are addressed by a utility program called G-Cat that
monitors the output file and sends updates to MSS as
partial file chunks. G-Cat hides network performance
variations from Gaussian by using local scratch storage as
a buffer for Gaussian’s output, rather than sending the
output directly over the network. Users can view the
output as it is received at MSS using a standard FTP client
or by running a script that retrieves the file chunks from
MSS and assembles them for viewing.

7. Related work

The management of batch jobs within a single
distributed system or domain has been addressed by many
research and commercial systems, notably Condor [20],
DQS [17], LSF [29], LoadLeveler [16], and PBS [15].
Some of these systems were extended with restrictive and
ad hoc capabilities for routing jobs submitted in one
domain to a queue in a different domain. In all cases, both
domains must run the same resource management
software. With the exception of Condor, they all use a
resource allocation framework that is based on a system-

wide collection of queues–each representing a different
class of service.

Condor flocking [11] supports multi-domain
computation management by using multiple Condor flocks
to exchange load. The major difference between Condor
flocking and Condor-G is that Condor-G allows inter-
domain operation on remote resources that require
authentication, and uses standard protocols that provide
access to resources controlled by other resource
management systems, rather than the special-purpose
sharing mechanisms of Condor.

Recently, various research and commercial groups
have developed software tools that support the harnessing
of idle computers for specific computations, via the use of
simple remote execution agents (workers) that, once
installed on a computer, can download problems (or, in
some cases, Java applications) from a central location and
run them when local resources are available (i.e.
SETI@home [19], Entropia, and Parabon). These tools
assume a homogeneous environment where all resource
management services are provided by their own system.
Furthermore, a single master (i.e., a single submission
point) controls the distribution of work amongst all
available worker agents. Application-level scheduling
techniques [5, 6] provide “personalized” policies for
acquiring and managing collections of heterogeneous
resources. These systems employ resource management
services provided by batch systems to make the resources
available to the application and to place elements of the
application on these resources. An application-level
scheduler for high-throughput scheduling that takes data
locality information into account in interesting ways has
been constructed [8]. Condor-G mechanisms complement
this work by addressing issues of uniform remote access,
failure, credential expiry, etc. Condor-G could potentially
be used as a backend for an application-level scheduling
system.

Nimrod [2] provides a user interface for describing
“parameter sweep” problems, with the resulting
independent jobs being submitted to a resource
management system; Nimrod-G [1] generalizes Nimrod to
use Globus mechanisms to support access to remote
resources. Condor-G addresses issues of failure, credential
expiry, and interjob dependencies that are not addressed
by Nimrod or Nimrod-G.

8. Acknowledgment

This research was supported by the NASA Information
Power Grid program.

9. References

[1] Abramson, D., Giddy, J., and Kotler, L., “High
Performance Parametric Modeling with Nimrod/G: Killer
Application for the Global Grid?”, IPDPS’2000, IEEE Press,
2000.

[2] Abramson, D., Sosic, R., Giddy, J., and Hall, B., “Nimrod:
A Tool for Performing Parameterized Simulations Using
Distributed Workstations”, Proc. 4th IEEE Symp. on High
Performance Distributed Computing, 1995.

[3] Anstreicher, K., Brixius, N., Goux, J.-P., and Linderoth, J.,
“Solving Large Quadratic Assignment Problems on
Computational Grids”, Mathematical Programming, 2000.

[4] Beiriger, J., Johnson, W., Bivens, H., Humphreys, S., and
Rhea, R., “Constructing the ASCI Grid”, Proc. 9th IEEE
Symposium on High Performance Distributed Computing, IEEE
Press, 2000.

[5] Berman, F., “High-Performance Schedulers”, Foster, I. and
Kesselman, C. eds., The Grid: Blueprint for a New Computing
Infrastructure, Morgan Kaufmann, 1999, pp. 279-309.

[6] Berman, F., Wolski, R., Figueira, S., Schopf, J., and Shao,
G., “Application-Level Scheduling on Distributed
Heterogeneous Networks”, Proc. Supercomputing ’96, 1996.

[7] Bester, J., Foster, I., Kesselman, C., Tedesco, J., and
Tuecke, S., “GASS: A Data Movement and Access Service for
Wide Area Computing Systems”, Sixth Workshop on I/O in
Parallel and Distributed Systems, May 5, 1999.

[8] Casanova, H., Obertelli, G., Berman, F., and Wolski, R.,
“The AppLeS Parameter Sweep Template: User-Level
Middleware for the Grid”, Proc. SC’2000, 2000.

[9] Czajkowski, K., Fitzgerald, S., Foster, I., and Kesselman,
C., “Grid Information Services for Distributed Resource
Sharing”, 2001.

[10] Czajkowski, K., Foster, I., Karonis, N., Kesselman, C.,
Martin, S., Smith, W., Tuecke, S., “A Resource Management
Architecture for Metacomputing Systems”, Proc. IPPS/SPDP
’98 Workshop on Job Scheduling Strategies for Parallel
Processing, 1998.

[11] Epema, D.H.J., Livny, M., Dantzig, R.v., Evers, X., and
Pruyne, J., “A Worldwide Flock of Condors: Load Sharing
among Workstation Clusters”, Future Generation Computer
Systems, 12, 1996.

[12] Foster, I. and Kesselman, C., “Globus: A Toolkit-Based
Grid Architecture”, Foster, I. and Kesselman, C. eds., The Grid:
Blueprint for a New Computing Infrastructure, Morgan
Kaufmann, 1999, pp. 259-278.

[13] Foster, I., Kesselman, C., Tsudik, G., and Tuecke, S., “A
Security Architecture for Computational Grids”, ACM
Conference on Computers and Security, 1998, pp. 83-91.

[14] Foster, I., Kesselman, C., and Tuecke, S., “The Anatomy
of the Grid: Enabling Scalable Virtual Organizations”, Intl. J.
Supercomputer Applications, (to appear), 2001.
http://www.globus.org/research/papers/anatomy.pdf.

[15] Henderson, R. and Tweten, D., “Portable Batch System:
External Reference Specification”, 1996.

[16] IBM, “Using and Administering IBM LoadLeveler,
Release 3.0”, IBM CorporationSC23-3989, 1996.

[17] Institute, S.C.R., “DQS 3.1.3 User Guide”, Florida State
University, Tallahassee, 1996.

[18] Johnston, W.E., Gannon, D., and Nitzberg, B., “Grids as
Production Computing Environments: The Engineering Aspects
of NASA's Information Power Grid”, Proc. 8th IEEE
Symposium on High Performance Distributed Computing, IEEE
Press, 1999.

[19] Korpela, E., Werthimer, D., Anderson, D., Cobb, J., and
Lebofsky, M., “SETI@home: Massively Distributed Computing
for SETI”, Computing in Science and Engineering, 3(1), 2001.

[20] Litzkow, M., Livny, M., and Mutka, M., “Condor - A
Hunter of Idle Workstations”, Proc. 8th Intl Conf. on
Distributed Computing Systems, 1988, pp. 104-111.

[21] Litzkow, M., Tannenbaum, T., Basney, J., and Livny., M.,
“Checkpoint and Migration of UNIX Processes in the Condor
Distributed Processing System”, University of Wisconsin-
Madison Computer Sciences, Technical Report 1346, 1997.

[22] Livny, M., “High-Throughput Resource Management”,
Foster, I. and Kesselman, C. eds., The Grid: Blueprint for a New
Computing Infrastructure, Morgan Kaufmann, 1999, pp. 311-
337.

[23] Novotny, J., Tuecke, S., and Welch, V., “An Online
Credential Repository for the Grid: MyProxy”, to appear in
HPDC10.

[24] Papakhian, M., “Comparing Job-Management Systems:
The User's Perspective”, IEEE Computational Science &
Engineering, (April-June) 1998. See also http://pbs.mrj.com.

[25] Raman, R., Livny, M., and Solomon, M., “Resource
Management through Multilateral Matchmaking”, Proceedings
of the Ninth IEEE Symposium on High Performance Distributed
Computing (HPDC9), Pittsburgh, Pennsylvania, August 2000,
pp. 290-291.

[26] Steiner, J., Neuman, B.C., and Schiller, J., “Kerberos: An
Authentication System for Open Network Systems”, Proc.
Usenix Conference, 1988, pp. 191-202.

[27] Stevens, R., Woodward, P., DeFanti, T., and Catlett, C.,
“From the I-WAY to the National Technology Grid”,
Communications of the ACM, 40(11), 1997, pp. 50-61.

[28] Vazhkudai, S., Tuecke, S., and Foster, I., “Replica
Selection in the Globus Data Grid”, Proc. Of the First
IEEE/ACM International Conference on Cluster Computing and
the Grid (CCGRID 2001), IEEE Computer Society Press, May
2001, pp. 106-113.

[29] Zhou, S., “LSF: Load Sharing in Large-Scale
Heterogeneous Distributed Systems”, Proc. Workshop on
Cluster Computing, 1992.

