
 

Abstract 
In recent years, there has been a dramatic increase in the 
amount of available computing and storage resources. 
Yet few have been able to exploit these resources in an 
aggregated form. We present the Condor-G system, which 
leverages software from Globus and Condor to allow 
users to harness multi-domain resources as if they all 
belong to one personal domain. We describe the structure 
of Condor-G and how it handles job management, 
resource selection, security, and fault tolerance. 
 

1. Introduction 

In recent years the scientific community has 
experienced a dramatic pluralization of computing and 
storage resources. The national high-end computing 
centers have been joined by an ever-increasing number of 
powerful regional and local computing environments. The 
aggregated capacity of these new computing resources is 
enormous. Yet, to date, few scientists and engineers have 
managed to exploit the aggregate power of this seemingly 
infinite Grid of resources. While in principle most users 
could access resources at multiple locations, in practice 
few reach beyond their home institution, whose resources 
are often far from sufficient for increasingly demanding 
computational tasks such as simulation, large scale 
optimization, Monte Carlo computing, image processing, 
and rendering. The problem is the significant “potential 
barrier” associated with the diverse mechanisms, policies, 
failure modes, performance uncertainties, etc., that 
inevitably arise when we cross the boundaries of 
administrative domains. 

Overcoming this potential barrier requires new 
methods and mechanisms that meet the following three 
key user requirements for computing in a “Grid” that 
comprises resources at multiple locations: 

• They want to be able to discover, acquire, and 
reliably manage computational resources 

dynamically, in the course of their everyday 
activities. 

• They do not want to be bothered with the location 
of these resources, the mechanisms that are 
required to use them, with keeping track of the 
status of computational tasks operating on these 
resources, or with reacting to failure. 

• They do care about how long their tasks are likely 
to run and how much these tasks will cost. 

In this article, we present an innovative distributed 
computing framework that addresses these three issues. 
The Condor-G system leverages the significant advances 
that have been achieved in recent years in two distinct 
areas: (1) security, resource discovery, and resource 
access in multi-domain environments, as supported within 
the Globus Toolkit [12], and (2) management of 
computation and harnessing of resources within a single 
administrative domain, specifically within the Condor 
system [20, 22]. In brief, we combine the inter-domain 
resource management protocols of the Globus Toolkit and 
the intra-domain resource management methods of 
Condor to allow the user to harness multi-domain 
resources as if they all belong to one personal domain. 
The user defines the tasks to be executed; Condor-G 
handles all aspects of discovering and acquiring 
appropriate resources, regardless of their location; 
initiating, monitoring, and managing execution on those 
resources; detecting and responding to failure; and 
notifying the user of termination. The result is a powerful 
tool for managing a variety of parallel computations in 
Grid environments. 

Condor-G’s utility has been demonstrated via record-
setting computations. For example, in one recent 
computation a Condor-G agent managed a mix of desktop 
workstations, commodity clusters, and supercomputer 
processors at ten sites to solve a previously open problem 
in numerical optimization. In this computation, over 
95,000 CPU hours were delivered over a period of less 
than seven days, with an average of 653 processors being 
active at any one time. In another case, resources at three 
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sites were used to simulate and reconstruct 50,000 high-
energy physics events, consuming 1200 CPU hours in less 
than a day and a half. 

In the rest of this article, we describe the specific 
problem we seek to solve with Condor-G, the Condor-G 
architecture, and the results obtained to date. 

2. Large-scale sharing of computational 
resources 

We consider a Grid environment in which an 
individual user may, in principle, have access to 
computational resources at many sites. Answering why the 
user has access to these resources is not our concern. It 
may be because the user is a member of some scientific 
collaboration, or because the resources in question belong 
to a colleague, or because the user has entered into some 
contractual relationship with a resource provider [14]. The 
point is that the user is authorized to use resources at those 
sites to perform a computation. The question that we 
address is how to build and manage a multi-site 
computation that uses those resources. 

Performing a computation on resources that belong to 
different sites can be difficult in practice for the following 
reasons: 

• Different sites may feature different authentication 
and authorization mechanisms, schedulers, 
hardware architectures, operating systems, file 
systems, etc. 

• The user has little knowledge of the characteristics 
of resources at remote sites, and no easy means of 
obtaining this information. 

• Due to the distributed nature of the multi-site 
computing environment, computers, networks, and 
subcomputations can fail in various ways. 

• Keeping track of the status of different elements of 
a computation involves tedious bookkeeping, 
especially in the event of failure and dependencies 
among subcomputations. 

Furthermore, the user is typically not in a position to 
require uniform software systems on the remote sites. For 
example, if all sites to which a user had access ran DCE 
and DFS, with appropriate cross-realm Kerberos 
authentication arrangements, the task of creating a multi-
site computation would be significantly easier. But it is 
not practical in the general case to assume such 
uniformity. 

The Condor-G system addresses these issues via a 
separation of concerns between the three problems of 
remote resource access, computation management, and 
remote execution environments: 

• Remote resource access issues are addressed by 
requiring that remote resources speak standard 

protocols for resource discovery and management. 
These protocols support secure discovery of remote 
resource configuration and state, and secure 
allocation of remote computational resources and 
management of computation on those resources. 
We use the protocols defined by the Globus Toolkit 
[12], a de facto standard for Grid computing. 

• Computation management issues are addressed via 
the introduction of a robust, multi-functional user 
computation management agent responsible for 
resource discovery, job submission, job 
management, and error recovery. This Condor-G 
component is taken from the Condor system [20]. 

• Remote execution environment issues are addressed 
via the use of mobile sandboxing technology that 
allows a user to create a tailored execution 
environment on a remote node. This Condor-G 
component is also taken from the Condor system. 

This separation of concerns between remote resource 
access and computation management has some significant 
benefits. First, it is significantly less demanding to require 
that a remote resource speak some simple protocols rather 
than to require it to support a more complex distributed 
computing environment. This is particularly important 
given that the deployment of production Grids [4, 18, 27] 
has made it increasingly common that remote resources 
speak these protocols. Second, as we explain below, 
careful design of remote access protocols can significantly 
simplify computation management. 

3. Grid protocol overview 

In this section, we briefly review the Grid protocols 
that we exploit in the Condor-G system: GRAM, GASS, 
MDS-2, and GSI. The Globus Toolkit provides open 
source implementations of each. 

3.1. Grid security infrastructure 

The Globus Toolkit’s Grid Security Infrastructure 
(GSI) [13] provides essential building blocks for other 
Grid protocols and for Condor-G. This authentication and 
authorization system makes it possible to authenticate a 
user just once, using public key infrastructure (PKI) 
mechanisms to verify a user-supplied “Grid credential.” 
GSI then handles the mapping of the Grid credential to the 
diverse local credentials and authentication/authorization 
mechanisms that apply at each site. Hence, users need not 
re-authenticate themselves each time they (or a program 
acting on their behalf, such as a Condor-G computation 
management service) access a new remote resource. 

GSI’s PKI mechanisms require access to a private key 
that they use to sign requests. While in principle a user’s 



private key could be cached for use by user programs, this 
approach exposes this critical resource to considerable 
risk. Instead, GSI employs the user’s private key to create 
a proxy credential, which serves as a new private-public 
key pair that allows a proxy (such as the Condor-G agent) 
to make remote requests on behalf of the user. This proxy 
credential is analogous in many respects to a Kerberos 
ticket [26] or Andrew File System token. 

3.2. GRAM protocol and implementation 

The Grid Resource Allocation and Management 
(GRAM) protocol [10] supports remote submission of a 
computational request (“run program P”) to a remote 
computational resource, and subsequent monitoring and 
control of the resulting computation. Three aspects of the 
protocol are particularly important for our purposes: 
security, two-phase commit, and fault tolerance. The latter 
two mechanisms were developed in collaboration with the 
UW team and are not yet part of the GRAM version 
included in the Globus Toolkit. They will be in the 
GRAM-2 protocol revision scheduled for later in 2001. 

GSI security mechanisms are used in all operations to 
authenticate the requestor and for authorization. 
Authentication is performed using the supplied proxy 
credential, hence providing for single sign-on. 
Authorization implements local policy and may involve 
mapping the user’s “Grid id” into a local subject name; 
however, this mapping is transparent to the user. Work in 
progress will also allow authorization decisions to be 
made on the basis of capabilities supplied with the 
request. 

Two-phase commit is important as a means of 
achieving “exactly once” execution semantics. Each 
request from a client is accompanied by a unique 
sequence number, which is also included in the associated 
response. If no response is received after a certain amount 
of time, the client can repeat the request. The repeated 
sequence number allows the resource to distinguish 
between a lost request and a lost response. Once the client 
has received a response, it then sends a “commit” message 
to signal that job execution can commence. 

Resource-side fault tolerance support addresses the fact 
that a single “resource” may often contain multiple 
processors (e.g., a cluster or Condor pool) with 
specialized “interface” machines running the GRAM 
server(s) that maintain the mapping from submitting client 
to local process. Consequently, failure of an interface 
machine may result in the remote client losing contact 
with what is otherwise a correctly queued or executing 
job.  Hence, our GRAM implementation logs details of all 
active jobs to stable storage at the client side, allowing 
this information to be retrieved if a GRAM server crashes 
and is restarted. This information can include details of 

how much standard output and error data has been 
received, thus permitting a client to request resending of 
this data after a crash of client or server. 

3.3. MDS protocols and implementation 

The Globus Toolkit’s MDS-2 provides basic 
mechanisms for discovering and disseminating 
information about the structure and state of Grid resources 
[9]. The basic ideas are simple. A resource uses the Grid 
Resource Registration Protocol (GRRP) to notify other 
entities that it is part of the Grid.  Those entities can then 
use the Grid Resource Information Protocol (GRIP) to 
obtain information about resource status. These two 
protocols allow us to construct a range of interesting 
structures, including various types of directories that 
support discovery of interesting resources. GSI 
authentication is used as a basis for access control.  

3.4. GASS 

The Globus Toolkit’s Global Access to Secondary 
Storage (GASS) service [7] provides mechanisms for 
transferring data between a remote HTTP, FTP, or GASS 
server. In the current context, we use these mechanisms to 
stage executables and input files to a remote computer. As 
usual, GSI mechanisms are used for authentication. 

4. Computation management: the Condor-G 
agent 

Next, we describe the Condor-G computation 
management service (or Condor-G agent).  

4.1. User interface 

The Condor-G agent allows the user to treat the Grid as 
an entirely local resource, with an API and command line 
tools that allow the user to perform the following job 
management operations: 

• submit jobs, indicating an executable name, 
input/output files and arguments; 

• query a job’s status, or cancel the job;  
• be informed of job termination or problems, via 

callbacks or asynchronous mechanisms such as 
email; 

• obtain access to detailed logs, providing a complete 
history of their jobs’ execution. 

There is nothing new or special about the semantics of 
these capabilities, as one of the main objectives of 
Condor-G is to preserve the look and feel of a local 
resource manager. The innovation in Condor-G is that 
these capabilities are provided by a personal desktop 



agent and supported in a Grid environment, while 
guaranteeing fault tolerance and exactly-once execution 
semantics. By providing the user with a familiar and 
reliable single access point to all the resources he/she is 
authorized to use, Condor-G empowers end-users to 
improve the productivity of their computations by 
providing a unified view of dispersed resources. 

4.2. Supporting remote execution 

Behind the scenes, the Condor-G agent executes user 
computations on remote resources on the user’s behalf. It 
does this by using the Grid protocols described above to 
interact with machines on the Grid and mechanisms 
provided by Condor to maintain a persistent view of the 
state of the computation. In particular, it: 

• stages a job's standard I/O and executable using 
GASS, 

• submits a job to a remote machine using the revised 
GRAM job request protocol, and 

• subsequently monitors job status and recovers from 
remote failures using the revised GRAM protocol 

and GRAM callbacks and status calls, while 
• authenticating all requests via GSI mechanisms. 
The Condor-G agent also handles resubmission of 

failed jobs, communications with the user concerning 
unusual and erroneous conditions (e.g., credential expiry, 
discussed below), and the recording of computation on 
stable storage to support restart in the event of its failure. 

We have structured the Condor-G agent 
implementation as depicted in Figure 1. The Scheduler 
responds to a user request to submit jobs destined to run 
on Grid resources by creating a new GridManager 
daemon to submit and manage those jobs. One 
GridManager process handles all jobs for a single user 
and terminates once all jobs are complete. Each 
GridManager job submission request (via the modified 
two-phase commit GRAM protocol) results in the creation 
of one Globus JobManager daemon. This daemon 
connects to the GridManager using GASS in order to 
transfer the job’s executable and standard input files, and 
subsequently to provide real-time streaming of standard 
output and error. Next, the JobManager submits the jobs 
to the execution site’s local scheduling system. Updates 
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Figure 1. Remote execution by Condor-G on Globus-managed resources 



on job status are sent by the JobManager back to the 
GridManager, which then updates the Scheduler, where 
the job status is stored persistently as we describe below. 
When the job is started, a process environment variable 
points to a file containing the address/port (URL) of the 
listening GASS server in the GridManager process. If the 
address of the GASS server should change, perhaps 
because the submission machine was restarted, the 
GridManager requests the JobManager to update the file 
with the new address. This allows the job to continue file 
I/O after a crash recovery. 

Condor-G is built to tolerate four types of failure: crash 
of the Globus JobManager, crash of the machine that 
manages the remote resource (the machine that hosts the 
GateKeeper and JobManager), crash of the machine on 
which the GridManager is executing (or crash of the the 
GridManager alone), and failures in the network 
connecting the two machines. 

The GridManager detects remote failures by 
periodically probing the JobManagers of all the jobs it 
manages. If a JobManager fails to respond, the 
GridManager then probes the GateKeeper for that 
machine. If the GateKeeper responds, then the 
GridManager knows that the individual JobManager 
crashed. Otherwise, either the whole resource 
management machine crashed or there is a network failure 
(the GridManager cannot distinguish these two cases). If 
only the JobManager crashed, the GridManager attempts 
to start a new JobManager to resume watching the job. 
Otherwise, the GridManager waits until it can reestablish 
contact with the remote machine. When it does, it attempts 
to reconnect to the JobManager. This can fail for two 
reasons: the JobManager crashed (because the whole 
machine crashed), or the JobManager exited normally 
(because the job completed during a network failure). In 
either case, the GridManager starts a new JobManager, 
which will resume watching the job or tell the 
GridManager that the job has completed. 

To protect against local failure, all relevant state for 
each submitted job is stored persistently in the scheduler’s 
job queue. This persistent information allows the 
GridManager to recover from a local crash. When 
restarted, the GridManager reads the information and 
reconnects to any of the JobManagers that were running at 
the time of the crash. If a JobManager fails to respond, the 
GridManager starts a new JobManager to watch that job. 

4.3. Credential management 

A GSI proxy credential used by the Condor-G agent to 
authenticate with remote resources on the user’s behalf is 
given a finite lifetime so as to limit the negative 
consequences of its capture by an adversary. A long-lived 
Condor-G computation must be able to deal with 

credential expiration. The Condor-G agent addresses this 
requirement by periodically analyzing the credentials for 
all users with currently queued jobs. (GSI provides query 
functions that support this analysis.) If a user’s credentials 
have expired or are about to expire, the agent places the 
job in a hold state in its queue and sends the user an e-
mail message explaining that their job cannot run again 
until their credentials are refreshed by using a simple tool. 
Condor-G also allows credential alarms to be set. For 
instance, it can be configured to e-mail a reminder when 
less than a specified time remains before a credential 
expires. 

Credentials may have been forwarded to a remote 
location, in which case the remote credentials need to be 
refreshed as well. At the start of a job, the Condor-G agent 
forwards the user's proxy certificate from the submission 
machine to the remote GRAM server. When an expired 
proxy is refreshed, Condor-G not only needs to refresh the 
certificate on the local (submit) side of the connection, but 
it also needs to re-forward the refreshed proxy to the 
remote GRAM server. 

To reduce user hassle in dealing with expired 
credentials, Condor-G could be enhanced to work with a 
system like MyProxy [23]. MyProxy lets a user store a 
long-lived proxy credential (e.g. a week) on a secure 
server. Remote services acting on behalf of the user can 
then obtain short-lived proxies (e.g. 12 hours) from the 
server. Condor-G could use these short-lived proxies to 
authenticate with and forward to remote resources and 
refresh them automatically from the MyProxy server when 
they expire. This limits the exposure of the long-lived 
proxy (only the MyProxy server and Condor-G have 
access to it). 

4.4. Resource discovery and scheduling 

We have not yet addressed the critical question of how 
the Condor-G agent determines where to execute user 
jobs. A number of strategies are possible. 

A simple approach, which we used in the initial 
Condor-G implementation, is to employ a user-supplied 
list of GRAM servers. This approach is a good starting 
point for further development. 

A more sophisticated approach is to construct a 
personal resource broker that runs as part of the Condor-
G agent and combines information about user 
authorization, application requirements and resource 
status (obtained from MDS) to build a list of candidate 
resources. These resources will be queried to determine 
their current status, and jobs will be submitted to 
appropriate resources depending on the results of these 
queries. Available resources can be ranked by user 
preferences such as allocation cost and expected start or 
completion time. One promising approach to constructing 



such a resource broker is to use the Condor Matchmaking 
framework [25] to implement the brokering algorithm. 
Such an approach is described by Vazhkudai et al. [28]. 
They gather information from MDS servers about Grid 
storage resources, format that information and user 
storage requests into ClassAds, and then use the 
Matchmaker to make brokering decisions. A similar 
approach could be taken for computational resources for 
use with Condor-G. 

In the case of high throughput computations, a simple 
but effective technique is to “flood” candidate resources 
with requests to execute jobs. These can be the actual jobs 
submitted by the user or Condor “GlideIns” as discussed 
below. Monitoring of actual queuing and execution times 
allows for the tuning of where to submit subsequent jobs 
and to migrate queued jobs. 

5. GlideIn mechanism 

The techniques described above allow a user to 
construct, submit, and monitor the execution of a task 
graph, with failures and credential expirations handled 
seamlessly and appropriately. The result is a powerful 

management tool for Grid computations. However, we 
still have not addressed issues relating to what happens 
when a job executes on a remote platform where required 
files are not available and local policy may not permit 
access to local file systems. Local policy may also impose 
restrictions on the running time of the job, which may 
prove inadequate for the job to complete. These additional 
system and site policy heterogeneities can represent 
substantial barriers. 

We address these concerns via what we call mobile 
sandboxing. In brief, we use the mechanisms described 
above to start on a remote computer not a user job, but a 
daemon process that performs the following functions: 

• It uses standard Condor mechanisms to advertise its 
availability to a Condor Collector process, which is 
queried by the Scheduler to learn about available 
resources. Condor-G uses standard Condor 
mechanisms to match locally queued jobs with the 
resources advertised by these daemons and to 
remotely execute them on these resources [25]. 

• It runs each user task received in a “sandbox,” 
using system call trapping technologies provided 
by the Condor system [20] to redirect system calls 

Figure 2. Remote job execution via GlideIn 
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issued by the task back to the originating system. In 
the process, this both increases portability and 
protects the local system. 

• It periodically checkpoints the job to another 
location (e.g., the originating location or a local 
checkpoint server) and migrates the job to another 
location if requested to do so (for example, when a 
resource is required for another purpose or the 
remote allocation expires) [21]. 

These various functions are precisely those provided 
by the daemon process that is run on any computer 
participating in a Condor pool. The difference is that in 
Condor-G, these daemon processes are started not by the 
user, but by using the GRAM remote job submission 
protocol. In effect, the Condor-G GlideIn mechanism uses 
Grid protocols to dynamically create a personal Condor 
pool out of Grid resources by “gliding-in” Condor 
daemons to the remote resource. Daemons shut down 
gracefully when their local allocation expires or when they 
do not receive any jobs to execute after a (configurable) 
amount of time, thus guarding against runaway daemons. 
Our implementation of this “GlideIn” capability submits 
an initial GlideIn executable (a portable shell script), 
which in turn uses GSI-authenticated GridFTP to retrieve 
the Condor executables from a central repository, hence 
avoiding a need for individual users to store binaries for 
all potential architectures on their local machines.  

Another advantage of using GlideIns is that they allow 
the Condor-G agent to delay the binding of an application 
to a resource until the instant when the remote resource 
manager decides to allocate the resource(s) to the user. By 
doing so, the agent minimizes queuing delays by 
preventing a job from waiting at one remote resource 
while another resource capable of serving the job is 
available. By submitting GlideIns to all remote resources 
capable of serving a job, Condor-G can guarantee optimal 
queuing times to its users. One can view the GlideIn as an 
empty shell script submitted to a queuing system that can 
be populated once it is allocated the requested resources.  

6. Experiences 

Three very different examples illustrate the range and 
scale of application that we have already encountered for 
Condor-G technology. 

An early version of Condor-G was used by a team of 
four mathematicians from Argonne National Laboratory, 
Northwestern University, and University of Iowa to 
harness the power of over 2,500 CPUs at 10 sites (eight 
Condor pools, one Cluster managed by PBS, and one 
supercomputer managed by LSF) to solve a very large 
optimization problem [3]. In less than a week the team 
logged over 95,000 CPU hours to solve more than 540 
billion Linear Assignment Problems controlled by a 

sophisticated branch and bound algorithm. This 
computation used an average of 653 CPUs during that 
week, with a maximum of 1007 in use at any one time. 
Each worker in this Master-Worker application was 
implemented as an independent Condor job that used 
Remote I/O services to communicate with the Master. 

A group at Caltech that is part of the CMS Energy 
Physics collaboration has been using Condor-G to 
perform large-scale distributed simulation and 
reconstruction of high-energy physics events. A two-node 
Directed Acyclic Graph (DAG) of jobs submitted to a 
Condor-G agent at Caltech triggers 100 simulation jobs on 
the Condor pool at the University of Wisconsin. Each of 
these jobs generates 500 events. The execution of these 
jobs is also controlled by a DAG that makes sure that 
local disk buffers do not overflow and that all events 
produced are transferred via GridFTP to a data repository 
at NCSA. Once all simulation jobs terminate and all data 
is shipped to the repository, the Condor-G agent at 
Caltech submits a subsequent reconstruction job to the 
PBS system that manages the reconstruction cluster at 
NCSA. 

Condor-G has also been used in the GridGaussian 
project at NCSA to prototype a portal for running 
Gaussian98 jobs on Grid resources. This Portal uses 
GlideIns to optimize access to remote resources and 
employs a shared Mass Storage System (MSS) to store 
input and output data. Users of the portal have two 
requirements for managing the output of their Gaussian 
jobs. First, the output should be reliably stored at MSS 
when the job completes. Second, the users should be able 
to view the output as it is produced. These requirements 
are addressed by a utility program called G-Cat that 
monitors the output file and sends updates to MSS as 
partial file chunks. G-Cat hides network performance 
variations from Gaussian by using local scratch storage as 
a buffer for Gaussian’s output, rather than sending the 
output directly over the network. Users can view the 
output as it is received at MSS using a standard FTP client 
or by running a script that retrieves the file chunks from 
MSS and assembles them for viewing. 

7. Related work 

The management of batch jobs within a single 
distributed system or domain has been addressed by many 
research and commercial systems, notably Condor [20], 
DQS [17], LSF [29], LoadLeveler [16], and PBS [15]. 
Some of these systems were extended with restrictive and 
ad hoc capabilities for routing jobs submitted in one 
domain to a queue in a different domain. In all cases, both 
domains must run the same resource management 
software. With the exception of Condor, they all use a 
resource allocation framework that is based on a system-



wide collection of queues–each representing a different 
class of service.  

Condor flocking [11] supports multi-domain 
computation management by using multiple Condor flocks 
to exchange load. The major difference between Condor 
flocking and Condor-G is that Condor-G allows inter-
domain operation on remote resources that require 
authentication, and uses standard protocols that provide 
access to resources controlled by other resource 
management systems, rather than the special-purpose 
sharing mechanisms of Condor. 

Recently, various research and commercial groups 
have developed software tools that support the harnessing 
of idle computers for specific computations, via the use of 
simple remote execution agents (workers) that, once 
installed on a computer, can download problems (or, in 
some cases, Java applications) from a central location and 
run them when local resources are available (i.e. 
SETI@home [19], Entropia, and Parabon). These tools 
assume a homogeneous environment where all resource 
management services are provided by their own system. 
Furthermore, a single master (i.e., a single submission 
point) controls the distribution of work amongst all 
available worker agents. Application-level scheduling 
techniques [5, 6] provide “personalized” policies for 
acquiring and managing collections of heterogeneous 
resources. These systems employ resource management 
services provided by batch systems to make the resources 
available to the application and to place elements of the 
application on these resources. An application-level 
scheduler for high-throughput scheduling that takes data 
locality information into account in interesting ways has 
been constructed [8]. Condor-G mechanisms complement 
this work by addressing issues of uniform remote access, 
failure, credential expiry, etc. Condor-G could potentially 
be used as a backend for an application-level scheduling 
system. 

Nimrod [2] provides a user interface for describing 
“parameter sweep” problems, with the resulting 
independent jobs being submitted to a resource 
management system; Nimrod-G [1] generalizes Nimrod to 
use Globus mechanisms to support access to remote 
resources. Condor-G addresses issues of failure, credential 
expiry, and interjob dependencies that are not addressed 
by Nimrod or Nimrod-G. 
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