
Computational Grids�

Ian Foster

Mathematics and Computer Science Division

Argonne National Laboratory

Argonne, IL 60439

Carl Kesselman

Information Sciences Institute

University of Southern California

Marina del Rey, CA 90292

In this introductory chapter, we lay the groundwork for the rest of the book by providing a more
detailed picture of the expected purpose, shape, and architecture of future grid systems. We structure
the chapter in terms of six questions that we believe are central to this discussion: Why do we need
computational grids? What types of applications will grids be used for? Who will use grids? How will
grids be used? What is involved in building a grid? And, what problems must be solved to make grids
commonplace? We provide an overview of each of these issues here, referring to subsequent chapters
for more detailed discussion.

1 Reasons for Computational Grids

Why do we need computational grids? Computational approaches to problem solving have proven
their worth in almost every �eld of human endeavor. Computers are used for modeling and simulat-
ing complex scienti�c and engineering problems, diagnosing medical conditions, controlling industrial
equipment, forecasting the weather, managing stock portfolios, and many other purposes. Yet, al-
though there are certainly challenging problems that exceed our ability to solve them, computers are
still used much less extensively than they could be. To pick just one example, university researchers
make extensive use of computers when studying the impact of changes in land use on biodiversity, but
city planners selecting routes for new roads or planning new zoning ordinances do not. Yet it is local
decisions such as these that, ultimately, shape our future.

There are a variety of reasons for this relative lack of use of computational problem-solving meth-
ods, including lack of appropriate education and tools. But one important factor is that the average
computing environment remains inadequate for such computationally sophisticated purposes. While
today's PC is faster than the Cray supercomputer of 10 years ago, it is still far from adequate for
predicting the outcome of complex actions or selecting from among many choices. That, after all, is
why supercomputers have continued to evolve.

�Reprinted by permission of Morgan Kaufmann Publishers from The Grid: Blueprint for a Future Computing Infras-

tructure, I. Foster and C. Kesselman (Eds), 1998.

1

1.1 Increasing Delivered Computation

We believe that the opportunity exists to provide users|whether city planners, engineers, or scientists|
with substantially more computational power: an increase of three orders of magnitude within �ve
years, and �ve orders of magnitude within a decade. These dramatic increases will be achieved by
innovations in a wide range of areas:

1. Technology improvement: Evolutionary changes in VLSI technology and microprocessor archi-
tecture can be expected to result in a factor of 10 increase in computational capabilities in the
next �ve years, and a factor of 100 increase in the next ten.

2. Increase in demand-driven access to computational power: Many applications have only episodic
requirements for substantial computational resources. For example, a medical diagnosis system
may be run only when a cardiogram is performed, a stockmarket simulation only when a user
recomputes retirement bene�ts, or a seismic simulation only after a major earthquake. If mecha-
nisms are in place to allow reliable, instantaneous, and transparent access to high-end resources,
then from the perspective of these applications it is as if those resources are dedicated to them.
Given the existence of multiteraFLOPS systems, an increase in apparent computational power
of three or more orders of magnitude is feasible.

3. Increased utilization of idle capacity: Most low-end computers (PCs and workstations) are often
idle: various studies report utilizations of around 30% in academic and commercial environ-
ments [47], [21]. Utilization can be increased by a factor of two, even for parallel programs [4],
without impinging signi�cantly on productivity. The bene�t to individual users can be sub-
stantially greater: factors of 100 or 1,000 increase in peak computational capacity have been
reported [41], [75].

4. Greater sharing of computational results: The daily weather forecast involves perhaps 1014 nu-
merical operations. If we assume that the forecast is of bene�t to 107 people, we have 1021

e�ective operations|comparable to the computation performed each day on all the world's
PCs. Few other computational results or facilities are shared so e�ectively today, but they
may be in the future as other scienti�c communities adopt a \big science" approach to com-
putation. The key to more sharing may be the development of collaboratories: \: : : center[s]
without walls, in which the nation's researchers can perform their research without regard to
geographical location|interacting with colleagues, accessing instrumentation, sharing data and
computational resources, and accessing information in digital libraries" [48].

5. New problem-solving techniques and tools: A variety of approaches can improve the e�ciency
or ease with which computation is applied to problem solving. For example, network-enabled
solvers [17], [11] allow users to invoke advanced numerical solution methods without having
to install sophisticated software. Teleimmersion techniques [50] facilitate the sharing of com-
putational results by supporting collaborative steering of simulations and exploration of data
sets.

Underlying each of these advances is the synergistic use of high-performance networking, comput-
ing, and advanced software to provide access to advanced computational capabilities, regardless of the
location of users and resources.

1.2 De�nition of Computational Grids

The current status of computation is analogous in some respects to that of electricity around 1910. At
that time, electric power generation was possible, and new devices were being devised that depended

2

on electric power, but the need for each user to build and operate a new generator hindered use.
The truly revolutionary development was not, in fact, electricity, but the electric power grid and the
associated transmission and distribution technologies. Together, these developments provided reliable,
low-cost access to a standardized service, with the result that power|which for most of human history
has been accessible only in crude and not especially portable forms (human e�ort, horses, water power,
steam engines, candles)|became universally accessible. By allowing both individuals and industries
to take for granted the availability of cheap, reliable power, the electric power grid made possible both
new devices and the new industries that manufactured them.

By analogy, we adopt the term computational grid for the infrastructure that will enable the in-
creases in computation discussed above. A computational grid is a hardware and software infrastruc-
ture that provides dependable, consistent, pervasive, and inexpensive access to high-end computational
capabilities.

We talk about an infrastructure because a computational grid is concerned, above all, with large-
scale pooling of resources, whether compute cycles, data, sensors, or people. Such pooling requires
signi�cant hardware infrastructure to achieve the necessary interconnections and software infrastruc-
ture to monitor and control the resulting ensemble. In the rest of this chapter, and throughout the
book, we discuss in detail the nature of this infrastructure.

The need for dependable service is fundamental. Users require assurances that they will receive pre-
dictable, sustained, and often high levels of performance from the diverse components that constitute
the grid; in the absence of such assurances, applications will not be written or used. The performance
characteristics that are of interest will vary widely from application to application, but may include
network bandwidth, latency, jitter, computer power, software services, security, and reliability.

The need for consistency of service is a second fundamental concern. As with electric power, we
need standard services, accessible via standard interfaces, and operating within standard parameters.
Without such standards, application development and pervasive use are impractical. A signi�cant
challenge when developing standards is to encapsulate heterogeneity without compromising high-
performance execution.

Pervasive access allows us to count on services always being available, within whatever environment
we expect to move. Pervasiveness does not imply that resources are everywhere or are universally
accessible. We cannot access electric power in a new home until wire has been laid and an account
established with the local utility; computational grids will have similarly circumscribed availability
and controlled access. However, we will be able to count on universal access within the con�nes of
whatever environment the grid is designed to support.

Finally, an infrastructure must o�er inexpensive (relative to income) access if it is to be broadly
accepted and used. Homeowners and industrialists both make use of remote billion-dollar power plants
on a daily basis because the cost to them is reasonable. A computational grid must achieve similarly
attractive economics.

It is the combination of dependability, consistency, and pervasiveness that will cause computational
grids to have a transforming e�ect on how computation is performed and used. By increasing the set
of capabilities that can be taken for granted to the extent that they are noticed only by their absence,
grids allow new tools to be developed and widely deployed. Much as pervasive access to bitmapped
displays changed our baseline assumptions for the design of application interfaces, computational grids
can fundamentally change the way we think about computation and resources.

1.3 The Impact of Grids

The history of network computing shows that orders-of-magnitude improvements in underlying tech-
nology invariably enable revolutionary, often unanticipated, applications of that technology, which in

3

turn motivate further technological improvements. As a result, our view of network computing has
undergone repeated transformations over the past 40 years.

There is considerable evidence that another such revolution is imminent. The capabilities of both
computers and networks continue to increase dramatically. Ten years of research on metacomputing
has created a solid base of experience in new applications that couple high-speed networking and
computing. The time seems ripe for a transition from the heroic days of metacomputing to more
integrated computational grids with dependable and pervasive computational capabilities and consis-
tent interfaces. In such grids, today's metacomputing applications will be routine, and programmers
will be able to explore a new generation of yet more interesting applications that leverage teraFLOP
computers and petabyte storage systems interconnected by gigabit networks. We present two simple
examples to illustrate how grid functionality may transform di�erent aspects of our lives.

Today's home �nance software packages leverage the pervasive availability of communication tech-
nologies such as modems, Internet service providers, and the Web to integrate up-to-date stock prices
obtained from remote services into local portfolio value calculations. However, the actual computa-
tions performed on this data are relatively simple. In tomorrow's grid environment, we can imagine
individuals making stock-purchasing decisions on the basis of detailed Monte Carlo analyses of future
asset value, performed on remote teraFLOP computers. The instantaneous use of three orders of
magnitude more computing power than today will go unnoticed by prospective retirees, but their lives
will be di�erent because of more accurate information.

Today, citizen groups evaluating a proposed new urban development must study uninspiring
blueprints or perspective drawings at city hall. A computational grid will allow them to call on
powerful graphics computers and databases to transform the architect's plans into realistic virtual re-
ality depictions and to explore such design issues as energy consumption, lighting e�ciency, or sound
quality. Meeting online to walk through and discuss the impact of the new development on their
community, they can arrive at better urban design and hence improved quality of life. Virtual reality-
based simulation models of Los Angeles, produced by William Jepson, and the walkthrough model of
Soda Hall at the University of California{Berkeley, constructed by Carlo Seguin and his colleagues,
are interesting exemplars of this use of computing [9].

1.4 Electric Power Grids

We conclude this section by reviewing briey some salient features of the computational grid's name-
sake. The electric power grid is remarkable in terms of its construction and function, which together
make it one of the technological marvels of the 20th century. Within large geographical regions (e.g.,
North America), it forms essentially a single entity that provides power to billions of devices, in a
relatively e�cient, low-cost, and reliable fashion. The North American grid alone links more than ten
thousand generators with billions of outlets via a complex web of physical connections and trading
mechanisms [12]. The components from which the grid is constructed are highly heterogeneous in
terms of their physical characteristics and are owned and operated by di�erent organizations. Con-
sumers di�er signi�cantly in terms of the amount of power they consume, the service guarantees they
require, and the amount they are prepared to pay.

Analogies are dangerous things, and electricity is certainly very di�erent from computation in
many respects. Nevertheless, the following aspects of the power grid seem particularly relevant to the
current discussion.

Importance of Economics

The role and structure of the power grid are driven to a large extent by economic factors. Oil- and
coal-�red generators have signi�cant economies of scale. A power company must be able to call upon

4

reserve capacity equal to its largest generator in case that generator fails; interconnections between
regions allow for sharing of such reserve capacity, as well as enabling trading of excess power. The
impact of economic factors on computational grids is not well understood [34]. Where and when are
there economies of scale to be obtained in computational capabilities? Might economic factors lead
us away from today's model of a \computer on every desktop"? We note an intriguing development.
Recent advances in power generation technology (e.g., small gas turbines) and the deregulation of
the power industry are leading some analysts to look to the Internet for lessons regarding the future
evolution of the electric power grid!

Importance of Politics

The developers of large-scale grids tell us that their success depended on regulatory, political, and
institutional developments as much as on technical innovation [12]. This lesson should be taken to
heart by developers of future computational grids.

Complexity of Control

The principal technical challenges in power grids|once technology issues relating to e�cient gen-
eration and high-voltage transmission had been overcome|relate to the management of a complex
ensemble in which changes at a single location can have far-reaching consequences [12]. Hence, we �nd
that the power grid includes a sophisticated infrastructure for monitoring, management, and control.
Again, there appear to be many parallels between this control problem and the problem of providing
performance guarantees in large-scale, dynamic, and heterogeneous computational grid environments.

2 Grid Applications

What types of applications will grids be used for? Building on experiences in gigabit testbeds [42], [59],
the I-WAY network [19], and other experimental systems, we have identi�ed �ve major application
classes for computational grids, listed in Table 1 and described briey in this section. More details
about applications and their technical requirements are provided in the referenced chapters.

2.1 Distributed Supercomputing

Distributed supercomputing applications use grids to aggregate substantial computational resources
in order to tackle problems that cannot be solved on a single system. Depending on the grid on
which we are working (see Section 3), these aggregated resources might comprise the majority of the
supercomputers in the country or simply all of the workstations within a company. Here are some
contemporary examples:

� Distributed interactive simulation (DIS) is a technique used for training and planning in the
military. Realistic scenarios may involve hundreds of thousands of entities, each with potentially
complex behavior patterns. Yet even the largest current supercomputers can handle at most
20,000 entities. In recent work, researchers at the California Institute of Technology have shown
how multiple supercomputers can be coupled to achieve record-breaking levels of performance.

� The accurate simulation of complex physical processes can require high spatial and temporal
resolution in order to resolve �ne-scale detail. Coupled supercomputers can be used in such
situations to overcome resolution barriers and hence to obtain qualitatively new scienti�c re-
sults. Although high latencies can pose signi�cant obstacles, coupled supercomputers have been

5

Category Examples Characteristics

Distributed DIS Very large problems needing
supercomputing Stellar dynamics lots of CPU, memory, etc.

Ab initio chemistry

High Chip design Harness many otherwise idle
throughput Parameter studies resources to increase

Cryptographic problems aggregate throughput

On demand Medical instrumentation Remote resources integrated
Network-enabled solvers with local computation, often
Cloud detection for bounded amount of time

Data Sky survey Synthesis of new information
intensive Physics data from many or large data sources

Data assimilation

Collaborative Collaborative design Support communication or
Data exploration collaborative work between
Education multiple participants

Table 1: Five major classes of grid applications.

used successfully in cosmology [54], high-resolution ab initio computational chemistry computa-
tions [52], and climate modeling [45].

Challenging issues from a grid architecture perspective include the need to coschedule what are
often scarce and expensive resources, the scalability of protocols and algorithms to tens or hundreds
of thousands of nodes, latency-tolerant algorithms, and achieving and maintaining high levels of per-
formance across heterogeneous systems.

2.2 High-Throughput Computing

In high-throughput computing, the grid is used to schedule large numbers of loosely coupled or in-
dependent tasks, with the goal of putting unused processor cycles (often from idle workstations) to
work. The result may be, as in distributed supercomputing, the focusing of available resources on a
single problem, but the quasi-independent nature of the tasks involved leads to very di�erent types of
problems and problem-solving methods. Here are some examples:

� Platform Computing Corporation reports that the microprocessor manufacturer Advanced Micro
Devices used high-throughput computing techniques to exploit over a thousand computers during
the peak design phases of their K6 and K7 microprocessors. These computers are located on
the desktops of AMD engineers at a number of AMD sites and were used for design veri�cation
only when not in use by engineers.

� The Condor system from the University of Wisconsin is used to manage pools of hundreds
of workstations at universities and laboratories around the world [41]. These resources have
been used for studies as diverse as molecular simulations of liquid crystals, studies of ground-
penetrating radar, and the design of diesel engines.

� More loosely organized e�orts have harnessed tens of thousands of computers distributed world-
wide to tackle hard cryptographic problems [40].

6

2.3 On-Demand Computing

On-demand applications use grid capabilities to meet short-term requirements for resources that can-
not be cost-e�ectively or conveniently located locally. These resources may be computation, soft-
ware, data repositories, specialized sensors, and so on. In contrast to distributed supercomputing
applications, these applications are often driven by cost-performance concerns rather than absolute
performance. For example:

� The NEOS [17] and NetSolve [11] network-enhanced numerical solver systems allow users to
couple remote software and resources into desktop applications, dispatching to remote servers
calculations that are computationally demanding or that require specialized software.

� A computer-enhanced MRI machine and scanning tunneling microscope (STM) developed at
the National Center for Supercomputing Applications use supercomputers to achieve realtime
image processing [57], [58]. The result is a signi�cant enhancement in the ability to understand
what we are seeing and, in the case of the microscope, to steer the instrument.

� A system developed at the Aerospace Corporation for processing of data from meteorological
satellites uses dynamically acquired supercomputer resources to deliver the results of a cloud
detection algorithm to remote meteorologists in quasi real time [38].

The challenging issues in on-demand applications derive primarily from the dynamic nature of
resource requirements and the potentially large populations of users and resources. These issues
include resource location, scheduling, code management, con�guration, fault tolerance, security, and
payment mechanisms.

2.4 Data-Intensive Computing

In data-intensive applications, the focus is on synthesizing new information from data that is main-
tained in geographically distributed repositories, digital libraries, and databases. This synthesis pro-
cess is often computationally and communication intensive as well.

� Future high-energy physics experiments will generate terabytes of data per day, or around a
petabyte per year. The complex queries used to detect \interesting" events may need to access
large fractions of this data [43]. The scienti�c collaborators who will access this data are widely
distributed, and hence the data systems in which data is placed are likely to be distributed as
well.

� The Digital Sky Survey will, ultimately, make many terabytes of astronomical photographic
data available in numerous network-accessible databases. This facility enables new approaches
to astronomical research based on distributed analysis, assuming that appropriate computational
grid facilities exist.

� Modern meteorological forecasting systems make extensive use of data assimilation to incorporate
remote satellite observations. The complete process involves the movement and processing of
many gigabytes of data.

Challenging issues in data-intensive applications are the scheduling and con�guration of complex,
high-volume data ows through multiple levels of hierarchy.

7

2.5 Collaborative Computing

Collaborative applications are concerned primarily with enabling and enhancing human-to-human
interactions. Such applications are often structured in terms of a virtual shared space. Many col-
laborative applications are concerned with enabling the shared use of computational resources such
as data archives and simulations; in this case, they also have characteristics of the other application
classes just described. For example:

� The BoilerMaker system developed at Argonne National Laboratory allows multiple users to
collaborate on the design of emission control systems in industrial incinerators [20]. The di�erent
users interact with each other and with a simulation of the incinerator.

� The CAVE5D system supports remote, collaborative exploration of large geophysical data sets
and the models that generate them|for example, a coupled physical/biological model of the
Chesapeake Bay [74].

� The NICE system developed at the University of Illinois at Chicago allows children to participate
in the creation and maintenance of realistic virtual worlds, for entertainment and education [60].

Challenging aspects of collaborative applications from a grid architecture perspective are the real-
time requirements imposed by human perceptual capabilities and the rich variety of interactions that
can take place.

We conclude this section with three general observations. First, we note that even in this brief
survey we see a tremendous variety of already successful applications. This rich set has been developed
despite the signi�cant di�culties faced by programmers developing grid applications in the absence of
a mature grid infrastructure. As grids evolve, we expect the range and sophistication of applications to
increase dramatically. Second, we observe that almost all of the applications demonstrate a tremendous
appetite for computational resources (CPU, memory, disk, etc.) that cannot be met in a timely fashion
by expected growth in single-system performance. This emphasizes the importance of grid technologies
as a means of sharing computation as well as a data access and communication medium. Third, we see
that many of the applications are interactive, or depend on tight synchronization with computational
components, and hence depend on the availability of a grid infrastructure able to provide robust
performance guarantees.

3 Grid Communities

Who will use grids? One approach to understanding computational grids is to consider the commu-
nities that they serve. Because grids are above all a mechanism for sharing resources, we ask, What
groups of people will have su�cient incentive to invest in the infrastructure required to enable sharing,
and what resources will these communities want to share?

One perspective on these questions holds that the bene�ts of sharing will almost always outweigh
the costs and, hence, that we will see grids that link large communities with few common interests,
within which resource sharing will extend to individual PCs and workstations. If we compare a
computational grid to an electric power grid, then in this view, the grid is quasi-universal, and every
user has the potential to act as a cogenerator. Skeptics respond that the technical and political costs
of sharing resources will rarely outweigh the bene�ts, especially when coupling must cross institutional
boundaries. Hence, they argue that resources will be shared only when there is considerable incentive
to do so: because the resource is expensive, or scarce, or because sharing enables human interactions
that are otherwise di�cult to achieve. In this view, grids will be specialized, designed to support
speci�c user communities with speci�c goals.

8

Rather than take a particular position on how grids will evolve, we propose what we see as four
plausible scenarios, each serving a di�erent community. Future grids will probably include elements
of all four.

3.1 Government

The �rst community that we consider comprises the relatively small number|thousands or perhaps
tens of thousands|of o�cials, planners, and scientists concerned with problems traditionally assigned
to national government, such as disaster response, national defense, and long-term research and plan-
ning. There can be signi�cant advantage to applying the collective power of the nation's fastest
computers, data archives, and intellect to the solution of these problems. Hence, we envision a grid
that uses the fastest networks to couple relatively small numbers of high-end resources across the
nation|perhaps tens of teraFLOP computers, petabytes of storage, hundreds of sites, thousands of
smaller systems|for two principal purposes:

1. To provide a \strategic computing reserve," allowing substantial computing resources to be
applied to large problems in times of crisis, such as to plan responses to a major environmental
disaster, earthquake, or terrorist attack

2. To act as a \national collaboratory," supporting collaborative investigations of complex scienti�c
and engineering problems, such as global change, space station design, and environmental cleanup

An important secondary bene�t of this high-end national supercomputing grid is to support re-
source trading between the various operators of high-end resources, hence increasing the e�ciency
with which those resources are used.

This national grid is distinguished by its need to integrate diverse high-end (and hence complex)
resources, the strategic importance of its overall mission, and the diversity of competing interests that
must be balanced when allocating resources.

3.2 A Health Maintenance Organization

In our second example, the community supported by the grid comprises administrators and medi-
cal personnel located at a small number of hospitals within a metropolitan area. The resources to be
shared are a small number of high-end computers, hundreds of workstations, administrative databases,
medical image archives, and specialized instruments such as MRI machines, CAT scanners, and car-
dioangiography devices. The coupling of these resources into an integrated grid enables a wide range
of new, computationally enhanced applications: desktop tools that use centralized supercomputer re-
sources to run computer-aided diagnosis procedures on mammograms or to search centralized medical
image archives for similar cases; life-critical applications such as telerobotic surgery and remote car-
diac monitoring and analysis; auditing software that uses the many workstations across the hospital
to run fraud detection algorithms on �nancial records; and research software that uses supercom-
puters and idle workstations for epidemiological research. Each of these applications exists today in
research laboratories, but has rarely been deployed in ordinary hospitals because of the high cost of
computation.

This private grid is distinguished by its relatively small scale, central management, and common
purpose on the one hand, and on the other hand by the complexity inherent in using common in-
frastructure for both life-critical applications and less reliability-sensitive purposes and by the need
to integrate low-cost commodity technologies. We can expect grids with similar characteristics to be
useful in many institutions.

9

3.3 A Materials Science Collaboratory

The community in our third example is a group of scientists who operate and use a variety of instru-
ments, such as electron microscopes, particle accelerators, and X-ray sources, for the characterization
of materials. This community is uid and highly distributed, comprising many hundreds of university
researchers and students from around the world, in addition to the operators of the various instru-
ments (tens of instruments, at perhaps ten centers). The resources that are being shared include the
instruments themselves, data archives containing the collective knowledge of this community, sophis-
ticated analysis software developed by di�erent groups, and various supercomputers used for analysis.
Applications enabled by this grid include remote operation of instruments, collaborative analysis, and
supercomputer-based online analysis.

This virtual grid is characterized by a strong unifying focus and relatively narrow goals on the one
hand, and on the other hand by dynamic membership, a lack of central control, and a frequent need
to coexist with other uses of the same resources. We can imagine similar grids arising to meet the
needs of a variety of multi-institutional research groups and multicompany virtual teams created to
pursue long- or short-term goals.

3.4 Computational Market Economy

The fourth community that we consider comprises the participants in a broad-based market economy
for computational services. This is a potentially enormous community with no connections beyond
the usual market-oriented relationships. We can expect participants to include consumers, with their
diverse needs and interests; providers of specialized services, such as �nancial modeling, graphics
rendering, and interactive gaming; providers of compute resources; network providers, who contract
to provide certain levels of network service; and various other entities such as banks and licensing
organizations.

This public grid is in some respects the most intriguing of the four scenarios considered here, but
is also the least concrete. One area of uncertainty concerns the extent to which the average consumer
will also act as a producer of computational resources. The answer to this question seems to depend on
two issues. Will applications emerge that can exploit loosely coupled computational resources? And,
will owners of resources be motivated to contribute resources? To date, large-scale activity in this
area has been limited to fairly esoteric computations|such as searching for prime numbers, breaking
cryptographic codes [40], or detecting extraterrestrial communications [64]|with the bene�t to the
individuals being the fun of participating and the potential momentary fame if their computer solves
the problem in question.

We conclude this section by noting that, in our view, each of these scenarios seems quite feasible;
indeed, substantial prototypes have been created for each of the grids that we describe. Hence, we
expect to see not just one single computational grid, but rather many grids, each serving a di�erent
community with its own requirements and objectives. Just which grids will evolve depends critically on
three issues: the evolving economics of computing and networking, and the services that these physical
infrastructure elements are used to provide; the institutional, regulatory, and political frameworks
within which grids may develop; and, above all, the emergence of applications able to motivate users
to invest in and use grid technologies.

4 Using Grids

How will grids be used? In metacomputing experiments conducted to date, users have been \heroic"
programmers, willing to spend large amounts of time programming complex systems at a low level.

10

Class Purpose Makes use of Concerns

End users Solve Applications Transparency,
problems performance

Application Develop Programming Ease of use,
developers applications models, tools performance
Tool Develop tools, Grid Adaptivity, exposure of
developers programming models services performance, security
Grid Provide basic Local system Local simplicity,
developers grid services services connectivity, security

System Manage Management Balancing local
administrators grid resources tools and global concerns

Table 2: Classes of grid users.

The resulting applications have provided compelling demonstrations of what might be, but in most
cases are too expensive, unreliable, insecure, and fragile to be considered suitable for general use.

For grids to become truly useful, we need to take a signi�cant step forward in grid programming,
moving from the equivalent of assembly language to high-level languages, from one-o� libraries to
application toolkits, and from hand-crafted codes to shrink-wrapped applications. These goals are
familiar to us from conventional programming, but in a grid environment we are faced with the addi-
tional di�culties associated with wide area operation|in particular, the need for grid applications to
adapt to changes in resource properties in order to meet performance requirements. As in conventional
computing, an important step toward the realization of these goals is the development of standards
for applications, programming models, tools, and services, so that a division of labor can be achieved
between the users and developers of di�erent types of components.

We structure our discussion of grid tools and programming in terms of the classi�cation illustrated
in Table 2. At the lowest level, we have grid developers|the designers and implementors of what we
might call the \Grid Protocol," by analogy with the Internet Protocol that provides the lowest-level
services in the Internet|who provide the basic services required to construct a grid. Above this, we
have tool developers, who use grid services to construct programming models and associated tools,
layering higher-level services and abstractions on top of the more fundamental services provided by
the grid architecture. Application developers, in turn, build on these programming models, tools, and
services to construct grid-enabled applications for end users who, ideally, can use these applications
without being concerned with the fact that they are operating in a grid environment. A �fth class
of users, system administrators, is responsible for managing grid components. We now examine this
model in more detail.

4.1 Grid Developers

A very small group of grid developers are responsible for implementing the basic services referred to
above. We discuss the concerns encountered at this level in Section 5.

4.2 Tool Developers

Our second group of users are the developers of the tools, compilers, libraries, and so on that implement
the programming models and services used by application developers. Today's small population of grid
tool developers (e.g., the developers of Condor [41], Nimrod [1], NEOS [17], NetSolve [11], Horus [68],

11

grid-enabled implementations of the Message Passing Interface (MPI) [27], and CAVERN [39]) must
build their tools on a very narrow foundation, comprising little more than the Internet Protocol. We
envision that future grid systems will provide a richer set of basic services, hence making it possible
to build more sophisticated and robust tools. We discuss the nature and implementation of those
basic services in Section 5; briey, they comprise versions of those services that have proven e�ective
on today's end systems and clusters, such as authentication, process management, data access, and
communication, plus new services that address speci�c concerns of the grid environment, such as
resource location, information, fault detection, security, and electronic payment.

Tool developers must use these basic services to provide e�cient implementations of the program-
ming models that will be used by application developers. In constructing these translations, the tool
developer must be concerned not only with translating the existing model to the grid environment, but
also with revealing to the programmer those aspects of the grid environment that impact performance.
For example, a grid-enabled MPI [27] can seek to adapt the MPI model for grid execution by incorpo-
rating specialized techniques for point-to-point and collective communication in highly heterogeneous
environments; implementations of collective operations might use multicast protocols and adapt a
combining tree structure in response to changing network loads. It should probably also extend the
MPI model to provide programmers with access to resource location services, information about grid
topology, and group communication protocols.

4.3 Application Developers

Our third class of users comprises those who construct grid-enabled applications and components.
Today, these programmers write applications in what is, in e�ect, an assembly language: explicit
calls to the Internet Protocol's User Datagram Protocol (UDP) or Transmission Control Protocol
(TCP), explicit or no management of failure, hard-coded con�guration decisions for speci�c computing
systems, and so on. We are far removed from the portable, e�cient, high-level languages that are
used to develop sequential programs, and the advanced services that programmers can rely upon when
using these languages, such as dynamic memory management and high-level I/O libraries.

Future grids will need to address the needs of application developers in two ways. They must
provide programming models (supported by languages, libraries, and tools) that are appropriate for
grid environments and a range of services (for security, fault detection, resource management, data
access, communication, etc.) that programmers can call upon when developing applications.

The purpose of both programming models and services is to simplify thinking about and implement-
ing complex algorithmic structures, by providing a set of abstractions that hide details unrelated to the
application, while exposing design decisions that have a signi�cant impact on program performance
or correctness. In sequential programming, commonly used programming models provide us with ab-
stractions such as subroutines and scoping; in parallel programming, we have threads and condition
variables (in shared-memory parallelism), message passing, distributed arrays, and single-assignment
variables. Associated services ensure that resources are allocated to processes in a reasonable fashion,
provide convenient abstractions for tertiary storage, and so forth.

There is no consensus on what programming model is appropriate for a grid environment, although
it seems clear that many models will be used. Table 3 summarizes some of the models that have been
proposed; new models will emerge as our understanding of grid programming evolves.

As Table 3 makes clear, one approach to grid programming is to adapt models that have already
proved successful in sequential or parallel environments. For example, a grid-enabled distributed
shared-memory (DSM) system would support a shared-memory programming model in a grid envi-
ronment, allowing programmers to specify parallelism in terms of threads and shared-memory oper-
ations. Similarly, a grid-enabled MPI would extend the popular message-passing model [27], and a

12

Model Examples Pros Cons

Datagram/stream UDP, TCP, Low overhead Low level
communication Multicast
Shared memory, POSIX Threads High level Scalability
multithreading DSM
Data parallelism HPF, HPC++ Automatic Restricted

parallelization applicability
Message passing MPI, PVM High performance Low level
Object-oriented CORBA, DCOM, Support for Performance

Java RMI large-system design
Remote procedure DCE, ONC Simplicity Restricted
call applicability
High throughput Condor, LSF, Ease of use Restricted

Nimrod applicability
Group ordered Isis, Totem Robustness Performance,

scalability
Agents Aglets, Flexibility Performance,

Telescript robustness

Table 3: Potential grid programming models and their advantages and disadvantages.

grid-enabled �le system would permit remote �les to be accessed via the standard UNIX application
programming interface (API) [66]. These approaches have the advantage of potentially allowing ex-
isting applications to be reused unchanged, but can introduce signi�cant performance problems if the
models in question do not adapt well to high-latency, dynamic, heterogeneous grid environments.

Another approach is to build on technologies that have proven e�ective in distributed computing,
such as Remote Procedure Call (RPC) or related object-based techniques such as the Common Ob-
ject Request Broker Architecture (CORBA). These technologies have signi�cant software engineering
advantages, because their encapsulation properties facilitate the modular construction of programs
and the reuse of existing components. However, it remains to be seen whether these models can sup-
port performance-focused, complex applications such as teleimmersion or the construction of dynamic
computations that span hundreds or thousands of processors.

The grid environment can also motivate new programming models and services. For example,
high-throughput computing systems, as exempli�ed by Condor [41] and Nimrod [1], support problem-
solving methods such as parameter studies in which complex problems are partitioned into many
independent tasks. Group-ordered communication systems represent another model that is important
in dynamic, unpredictable grid environments; they provide services for managing groups of processes
and for delivering messages reliably to group members. Agent-based programming models represent
another approach apparently well suited to grid environments; here, programs are constructed as
independent entities that roam the network searching for data or performing other tasks on behalf of
a user.

A wide range of new services can be expected to arise in grid environments to support the devel-
opment of more complex grid applications. In addition to grid analogs of conventional services such as
�le systems, we will see new services for resource discovery, resource brokering, electronic payments,
licensing, fault tolerance, speci�cation of use conditions, con�guration, adaptation, and distributed
system management, to name just a few.

13

4.4 End Users

Most grid users, like most users of computers or networks today, will not write programs. Instead, they
will use grid-enabled applications that make use of grid resources and services. These applications
may be chemistry packages or environmental models that use grid resources for computing or data;
problem-solving packages that help set up parameter study experiments [1]; mathematical packages
augmented with calls to network-enabled solvers [17], [11]; or collaborative engineering packages that
allow geographically separated users to cooperate on the design of complex systems.

End users typically place stringent requirements on their tools, in terms of reliability, predictability,
con�dentiality, and usability. The construction of applications that can meet these requirements in
complex grid environments represents a major research and engineering challenge.

4.5 System Administrators

The �nal group of users that we consider are the system administrators who must manage the infras-
tructure on which computational grids operate. This task is complicated by the high degree of sharing
that grids are designed to make possible. The user communities and resources associated with a par-
ticular grid will frequently span multiple administrative domains, and new services will arise|such
as accounting and resource brokering|that require distributed management. Furthermore, individ-
ual resources may participate in several di�erent grids, each with its own particular user community,
access policies, and so on. For a grid to be e�ective, each participating resource must be administered
so as to strike an appropriate balance between local policy requirements and the needs of the larger
grid community. This problem has a signi�cant political dimension, but new technical solutions are
also required.

The Internet experience suggests that two keys to scalability when administering large distributed
systems are to decentralize administration and to automate trans-site issues. For example, names and
routes are administered locally, while essential trans-site services such as route discovery and name
resolution are automated. Grids will require a new generation of tools for automatically monitoring
and managing many tasks that are currently handled manually.

New administration issues that arise in grids include establishing, monitoring, and enforcing local
policies in situations where the set of users may be large and dynamic; negotiating policy with other
sites and users; accounting and payment mechanisms; and the establishment and management of mar-
kets and other resource-trading mechanisms. There are interesting parallels between these problems
and management issues that arise in the electric power and banking industries 114, [31], [28].

5 Grid Architecture

What is involved in building a grid? To address this question, we adopt a system architect's perspec-
tive and examine the organization of the software infrastructure required to support the grid users,
applications, and services discussed in the preceding sections.

As noted above, computational grids will be created to serve di�erent communities with widely
varying characteristics and requirements. Hence, it seems unlikely that we will see a single grid
architecture. However, we do believe that we can identify basic services that most grids will provide,
with di�erent grids adopting di�erent approaches to the realization of these services.

One major driver for the techniques used to implement grid services is scale. Computational
infrastructure, like other infrastructures, is fractal, or self-similar at di�erent scales. We have networks
between countries, organizations, clusters, and computers; between components of a computer; and
even within a single component. However, at di�erent scales, we often operate in di�erent physical,

14

Comp. model I/O model Resource manag. Security

Endsystem:

Multithreading, Local I/O, Process creation OS kernel,
automatic disk-striping OS signal delivery hardware
parallelization, OS scheduling

Cluster (increased scale, reduced integration):

Synchronous Parallel I/O Parallel process Shared
communication, (e.g., MPI-IO), creation, gang security
distributed shared �le systems scheduling, OS-level databases
memory signal propagation

Intranet (heterogeneity, separate administration, lack of global knowledge):

Client/server, Distributed �le Resource discovery, Network
loosely synchronous: systems signal distribution security
pipelines, coupling (DFS, HPSS), networks, (Kerberos)
manager/worker databases high throughput

Internet (lack of centralized control, geographical distribution, intl. issues):

Collaborative Remote �le access, Brokers, Trust dele-
systems, remote digital libraries, trading, gation, public
control, data data warehouses mobile code key,
mining negotiation sandboxes

Table 4: Computer systems operating at di�erent scales.

economic, and political regimes. For example, the access control solutions used for a laptop computer's
system bus are probably not appropriate for a trans-Paci�c cable.

In this section, we adopt scale as the major dimension for comparison. We consider four types
of systems, of increasing scale and complexity, asking two questions for each: What new concerns
does this increase in scale introduce? And how do these new concerns inuence how we provide basic
services? These system types are as follows (see also Table 4):

1. The end system provides the best model we have for what it means to compute, because it is
here that most research and development e�orts have focused in the past four decades.

2. The cluster introduces new issues of parallelism and distributed management, albeit of homoge-
neous systems.

3. The intranet introduces the additional issues of heterogeneity and geographical distribution.

4. The internet introduces issues associated with a lack of centralized control.

An important secondary driver for architectural solutions is the performance requirements of the
grid. Stringent performance requirements amplify the e�ect of scale because they make it harder
to hide heterogeneity. For example, if performance is not a big concern, it is straightforward to
extend UNIX �le I/O to support access to remote �les, perhaps via a HyperText Transport Protocol
(HTTP) gateway [66]. However, if performance is critical, remote access may require quite di�erent
mechanisms|such as parallel transfers over a striped network from a remote parallel �le system to a
local parallel computer|that are not easily expressed in terms of UNIX �le I/O semantics. Hence, a

15

high-performance wide area grid may need to adopt quite di�erent solutions to data access problems.
In the following, we assume that we are dealing with high-performance systems; systems with lower
performance requirements are generally simpler.

5.1 Basic Services

We start our discussion of architecture by reviewing the basic services provided on conventional com-
puters. We do so because we believe that, in the absence of strong evidence to the contrary, services
that have been developed and proven e�ective in several decades of conventional computing will also
be desirable in computational grids. Grid environments also require additional services, but we claim
that, to a signi�cant extent, grid development will be concerned with extending familiar capabilities
to the more complex wide area environment.

Our purpose in this subsection is not to provide a detailed exposition of well-known ideas but
rather to establish a vocabulary for subsequent discussion. We assume that we are discussing a
generic modern computing system, and hence refrain from pre�xing each statement with \in general,"
\typically," and the like. Individual systems will, of course, di�er from the generic systems described
here, sometimes in interesting and important ways.

The �rst step in a computation that involves shared resources is an authentication process, designed
to establish the identity of the user. A subsequent authorization process establishes the right of the
user to create entities called processes. A process comprises one or more threads of control, created
for either concurrency or parallelism, and executing within a shared address space. A process can
also communicate with other processes via a variety of abstractions, including shared memory (with
semaphores or locks), pipes, and protocols such as TCP/IP.

A user (or process acting on behalf of a user) can control the activities in another process|
for example, to suspend, resume, or terminate its execution. This control is achieved by means of
asynchronously delivered signals.

A process acts on behalf of its creator to acquire resources, by executing instructions, occupying
memory, reading and writing disks, sending and receiving messages, and so on. The ability of a
process to acquire resources is limited by underlying authorization mechanisms, which implement a
system's resource allocation policy, taking into account the user's identity, prior resource consumption,
and/or other criteria. Scheduling mechanisms in the underlying system deal with competing demands
for resources and may also (for example, in realtime systems) support user requests for performance
guarantees.

Underlying accounting mechanisms keep track of resource allocations and consumption, and pay-

ment mechanisms may be provided to translate resource consumption into some common currency.
The underlying system will also provide protection mechanisms to ensure that one user's computation
does not interfere with another's.

Other services provide abstractions for secondary storage. Of these, virtual memory is implicit,
extending the shared address space abstraction already noted; �le systems and databases are more
explicit representations of secondary storage.

5.2 End Systems

Individual end systems|computers, storage systems, sensors, and other devices|are characterized by
relatively small scale and a high degree of homogeneity and integration. There are typically just a few
tens of components (processors, disks, etc.), these components are mostly of the same type, and the
components and the software that controls them have been co-designed to simplify management and
use and to maximize performance. (Specialized devices such as scienti�c instruments may be more

16

signi�cantly complex, with potentially thousands of internal components, of which hundreds may be
visible externally.)

Such end systems represent the simplest, and most intensively studied, environment in which to
provide the services listed above. The principal challenges facing developers of future systems of this
type relate to changing computer architectures (in particular, parallel architectures) and the need to
integrate end systems more fully into clusters, intranets, and internets.

State of the Art

The software architectures used in conventional end systems are well known [61]. Basic services
are provided by a privileged operating system, which has absolute control over the resources of the
computer. This operating system handles authentication and mediates user process requests to acquire
resources, communicate with other processes, access �les, and so on. The integrated nature of the
hardware and operating system allows high-performance implementations of important functions such
as virtual memory and I/O.

Programmers develop applications for these end systems by using a variety of high-level languages
and tools. A high degree of integration between processor architecture, memory system, and compiler
means that high performance can often be achieved with relatively little programmer e�ort.

Future Directions

A signi�cant de�ciency of most end-system architectures is that they lack features necessary for
integration into larger clusters, intranets, and internets. Much current research and development is
concerned with evolving system end architectures in directions relevant to future computational grids.
To list just three: Operating systems are evolving to support operation in clustered environments,
in which services are distributed over multiple networked computers, rather than replicated on every
processor [3], [65]. A second important trend is toward a greater integration of end systems (computers,
disks, etc.) with networks, with the goal of reducing the overheads incurred at network interfaces
and hence increasing communication rates [22], [35]. Finally, support for mobile code is starting to
appear, in the form of authentication schemes, secure execution environments for downloaded code
(\sandboxes"), and so on [32], [72], [71], [44].

The net e�ect of these various developments seems likely to be to reduce the currently sharp
boundaries between end system, cluster, and intranet/internet, with the result that individual end
systems will more fully embrace remote computation, as producers and/or consumers.

5.3 Clusters

The second class of systems that we consider is the cluster, or network of workstations: a collection
of computers connected by a high-speed local area network and designed to be used as an integrated
computing or data processing resource. A cluster, like an individual end system, is a homogeneous
entity|its constituent systems di�er primarily in con�guration, not basic architecture|and is con-
trolled by a single administrative entity who has complete control over each end system. The two
principal complicating factors that the cluster introduces are as follows:

1. Increased physical scale: A cluster may comprise several hundred or thousand processors, with
the result that alternative algorithms are needed for certain resource management and control
functions.

17

2. Reduced integration: A desire to construct clusters from commodity parts means that clusters
are often less integrated than end systems. One implication of this is reduced performance for
certain functions (e.g., communication).

State of the Art

The increased scale and reduced integration of the cluster environment make the implementation of
certain services more di�cult and also introduce a need for new services not required in a single
end system. The result tends to be either signi�cantly reduced performance (and hence range of
applications) or software architectures that modify and/or extend end-system operating systems in
signi�cant ways.

We use the problem of high-performance parallel execution to illustrate the types of issues that
can arise when we seek to provide familiar end-system services in a cluster environment. In a single
(multiprocessor) end system, high-performance parallel execution is typically achieved either by using
specialized communication libraries such as MPI or by creating multiple threads that communicate
by reading and writing a shared address space.

Both message-passing and shared-memory programming models can be implemented in a cluster.
Message passing is straightforward to implement, since the commodity systems from which clusters
are constructed typically support at least TCP/IP as a communication protocol. Shared memory
requires additional e�ort: in an end system, hardware mechanisms ensure a uniform address space
for all threads, but in a cluster, we are dealing with multiple address spaces. One approach to this
problem is to implement a logical shared memory by providing software mechanisms for translating
between local and global addresses, ensuring coherency between di�erent versions of data, and so
forth. A variety of such distributed shared-memory systems exist, varying according to the level at
which sharing is permitted [76], [24], [53].

In low-performance environments, the cluster developer's job is done at this point; message-passing
and DSM systems can be run as user-level programs that use conventional communication protocols
and mechanisms (e.g., TCP/IP) for interprocessor communication. However, if performance is im-
portant, considerable additional development e�ort may be required. Conventional network proto-
cols are orders of magnitude slower than intra-end-system communication operations. Low-latency,
high-bandwidth inter-end-system communication can require modi�cations to the protocols used for
communication, the operating system's treatment of network interfaces, or even the network interface
hardware [70], [56].

The cluster developer who is concerned with parallel performance must also address the problem
of coscheduling. There is little point in communicating extremely rapidly to a remote process that
must be scheduled before it can respond. Coscheduling refers to techniques that seek to schedule
simultaneously the processes constituting a computation on di�erent processors [23], [63]. In certain
highly integrated parallel computers, coscheduling is achieved by using a batch scheduler: processors
are space shared, so that only one computation uses a processor at a time. Alternatively, the schedulers
on the di�erent systems can communicate, or the application itself can guide the local scheduling
process to increase the likelihood that processes will be coscheduled [3], [14].

To summarize the points illustrated by this example: in clusters, the implementation of services
taken for granted in end systems can require new approaches to the implementation of existing services
(e.g., interprocess communication) and the development of new services (e.g., DSM and coscheduling).
The complexity of the new approaches and services, as well as the number of modi�cations required
to the commodity technologies from which clusters are constructed, tends to increase proportionally
with performance requirements.

We can paint a similar picture in other areas, such as process creation, process control, and I/O.

18

Experience shows that familiar services can be extended to the cluster environment without too much
di�culty, especially if performance is not critical; the more sophisticated cluster systems provide
transparent mechanisms for allocating resources, creating processes, controlling processes, accessing
�les, and so forth, that work regardless of a program's location within the cluster. However, when
performance is critical, new implementation techniques, low-level services, and high-level interfaces
can be required [65], [25].

Future Directions

Cluster architectures are evolving in response to three pressures:

1. Performance requirements motivate increased integration and hence operating system and hard-
ware modi�cations (for example, to support fast communications).

2. Changed operational parameters introduce a need for new operating system and user-level ser-
vices, such as coscheduling.

3. Economic pressures encourage a continued focus on commodity technologies, at the expense of
decreased integration and hence performance and services.

It seems likely that, in the medium term, software architectures for clusters will converge with
those for end systems, as end-system architectures address issues of network operation and scale.

5.4 Intranets

The third class of systems that we consider is the intranet, a grid comprising a potentially large
number of resources that nevertheless belong to a single organization. Like a cluster, an intranet can
assume centralized administrative control and hence a high degree of coordination among resources.
The three principal complicating factors that an intranet introduces are as follows:

1. Heterogeneity: The end systems and networks used in an intranet are almost certainly of di�erent
types and capabilities. We cannot assume a single system image across all end systems.

2. Separate administration: Individual systems will be separately administered; this feature intro-
duces additional heterogeneity and the need to negotiate potentially conicting policies.

3. Lack of global knowledge: A consequence of the �rst two factors, and the increased number of
end systems, is that it is not possible, in general, for any one person or computation to have
accurate global knowledge of system structure or state.

State of the Art

The software technologies employed in intranets focus primarily on the problems of physical and
administrative heterogeneity. The result is typically a simpler, less tightly integrated set of services
than in a typical cluster. Commonly, the services that are provided are concerned primarily with the
sharing of data (e.g., distributed �le systems, databases, Web services) or with providing access to
specialized services, rather than with supporting the coordinated use of multiple resources. Access to
nonlocal resources often requires the use of simple, high-level interfaces designed for \arm's-length"
operation in environments in which every operation may involve authentication, format conversions,
error checking, and accounting. Nevertheless, centralized administrative control does mean that a
certain degree of uniformity of mechanism and interface can be achieved; for example, all machines

19

may be required to run a speci�c distributed �le system or batch scheduler, or may be placed behind
a �rewall, hence simplifying security solutions.

Software architectures commonly used in intranets include the Distributed Computing Environ-
ment (DCE), DCOM, and CORBA. In these systems, programs typically do not allocate resources
and create processes explicitly, but rather connect to established \services" that encapsulate hardware
resources or provide de�ned computational services. Interactions occur via remote procedure call [33]
or remote method invocation [55], [36], models designed for situations in which the parties involved
have little knowledge of each other. Communications occur via standardized protocols (typically lay-
ered on TCP/IP) that are designed for portability rather than high performance. In larger intranets,
particularly those used for mission-critical applications, reliable group communication protocols such
as those implemented by ISIS [7] and Totem [46] can be used to deal with failure by ordering the
occurrence of events within the system.

The limited centralized control provided by a parent organization can allow the deployment of
distributed queuing systems such as Load Sharing Facility (LSF), Codine, or Condor, hence providing
uniform access to compute resources. Such systems provide some support for remote management of
computation, for example, by distributing a limited range of signals to processes through local servers
and a logical signal distribution network. However, issues of security, payment mechanisms, and policy
often prevent these solutions from scaling to large intranets.

In a similar fashion, uniform access to data resources can be provided by means of wide area �le
system technology (such as DFS), distributed database technology, or remote database access (such as
SQL servers). High-performance, parallel access to data resources can be provided by more specialized
systems such as the High Performance Storage System [73]. In these cases, the interfaces presented
to the application would be the same as those provided in the cluster environment.

The greater heterogeneity, scale, and distribution of the intranet environment also introduce the
need for services that are not needed in clusters. For example, resource discovery mechanisms may be
needed to support the discovery of the name, location, and other characteristics of resources currently
available on the network. A reduced level of trust and greater exposure to external threats may
motivate the use of more sophisticated security technologies. Here, we can once again exploit the
limited centralized control that a parent organization can o�er. Solutions such as Kerberos [51] can be
mandated and integrated into the computational model, providing a uni�ed authentication structure
throughout the intranet.

Future Directions

Existing intranet technologies do a reasonable job of projecting a subset of familiar programming
models and services (procedure calls, �le systems, etc.) into an environment of greater complexity
and physical scale, but are inadequate for performance-driven applications. We expect future de-
velopments to overcome these di�culties by extending lighter-weight interaction models originally
developed within clusters into the more complex intranet environment, and by developing specialized
performance-oriented interfaces to various services.

5.5 Internets

The �nal class of systems that we consider is also the most challenging on which to perform network
computing|internetworked systems that span multiple organizations. Like intranets, internets tend
to be large and heterogeneous. The three principal additional complicating factors that an internet
introduces are as follows:

20

1. Lack of centralized control: There is no central authority to enforce operational policies or to
ensure resource quality, and so we see wide variation in both policy and quality.

2. Geographical distribution: Internets typically link resources that are geographically widely dis-
tributed. This distribution leads to network performance characteristics signi�cantly di�erent
from those in local area or metropolitan area networks of clusters and intranets. Not only does
latency scale linearly with distance, but bisection bandwidth arguments [18], [26] suggest that
accessible bandwidth tends to decline linearly with distance, as a result of increased competition
for long-haul links.

3. International issues: If a grid extends across international borders, export controls may constrain
the technologies that can be used for security, and so on.

State of the Art

The internet environment's scale and lack of central control have so far prevented the successful
widespread deployment of grid services. Approaches that are e�ective in intranets often break down
because of the increased scale and lack of centralized management. The set of assumptions that one
user or resource can make about another is reduced yet further, a situation that can lead to a need
for implementation techniques based on discovery and negotiation.

We use two examples to show how the internet environment can require new approaches. We �rst
consider security. In an intranet, it can be reasonable to assume that every user has a preestablished
trust relationship with every resource that he wishes to access. In the more open internet environment,
this assumption becomes intractable because of the sheer number of potential process-to-resource
relationships. This problem is accentuated by the dynamic and transient nature of computation, which
makes any explicit representation of these relationships infeasible. Free-owing interaction between
computations and resources requires more dynamic approaches to authentication and access control.
One potential solution is to introduce the notion of delegation of trust into security relationships; that
is, we introduce mechanisms that allow an organization A to trust a user U because user U is trusted
by a second organization B, with which A has a formal relationship. However, the development of
such mechanisms remains a research problem.

As a second example, we consider the problem of coscheduling. In an intranet, it can be reasonable
to assume that all resources run a single scheduler, whether a commercial system such as LSF or a
research system such as Condor. Hence, it may be feasible to provide coscheduling facilities in support
of applications that need to run on multiple resources at once. In an internet, we cannot rely on the
existence of a common scheduling infrastructure. In this environment, coscheduling requires that a
grid application (or scheduling service acting for an application) obtain knowledge of the scheduling
policies that apply on di�erent resources and inuence the schedule either directly through an external
scheduling API or indirectly via some other means [16].

Future Directions

Future development of grid technologies for internet environments will involve the development of
more sophisticated grid services and the gradual evolution of the services provided at end systems
in support of those services. There is little consensus on the shape of the grid architectures that
will emerge as a result of this process, but both commercial technologies and research projects point
to interesting potential directions. Three of these directions|commodity technologies, Legion, and
Globus|are explored in detail in later chapters. We note their key characteristics here but avoid
discussion of their relative merits. There is as yet too little experience in their use for such discussion
to be meaningful.

21

The commodity approach to grid architecture adopts as the basis for grid development the vast
range of commodity technologies that are emerging at present, driven by the success of the Internet
and Web and by the demands of electronic information delivery and commerce. These technologies
are being used to construct three-tier architectures, in which middle-tier application servers mediate
between sophisticated back-end services and potentially simple front ends. Grid applications are
supported in this environment by means of specialized high-performance back-end and application
servers.

The Legion approach to grid architecture seeks to use object-oriented design techniques to simplify
the de�nition, deployment, application, and long-term evolution of grid components. Hence, the Legion
architecture de�nes a complete object model that includes abstractions of compute resources called
host objects, abstractions of storage systems called data vault objects, and a variety of other object
classes. Users can use inheritance and other object-oriented techniques to specialize the behavior of
these objects to their own particular needs, as well as develop new objects.

The Globus approach to grid architecture is based on two assumptions:

1. Grid architectures should provide basic services, but not prescribe particular programming mod-
els or higher-level architectures.

2. Grid applications require services beyond those provided by today's commodity technologies.

Hence, the focus is on de�ning a \toolkit" of low-level services for security, communication, resource
location, resource allocation, process management, and data access. These services are then used to
implement higher-level services, tools, and programming models.

In addition, hybrids of these di�erent architectural approaches are possible and will almost certainly
be addressed; for example, a commodity three-tier system might use Globus services for its back end.

A wide range of other projects are exploring technologies of potential relevance to computational
grids, for example, WebOS [67], Charlotte [6], UFO [2], ATLAS [5], Javelin [15], Popcorn [10], and
Globe [69].

6 Research Challenges

What problems must be solved to enable grid development? In preceding sections, we outlined what
we expect grids to look like and how we expect them to be used. In doing so, we tried to be as
concrete as possible, with the goal of providing at least a plausible view of the future. However, there
are certainly many challenges to be overcome before grids can be used as easily and exibly as we have
described. In this section, we summarize the nature of these challenges, most of which are discussed
in much greater detail in the chapters that follow.

6.1 The Nature of Applications

Early metacomputing experiments provide useful clues regarding the nature of the applications that
will motivate and drive early grid development. However, history also tells us that dramatic changes in
capabilities such as those discussed here are likely to lead to radically new ways of using computers|
ways as yet unimagined. Research is required to explore the bounds of what is possible, both within
those scienti�c and engineering domains in which metacomputing has traditionally been applied, and
in other areas such as business, art, and entertainment.

22

6.2 Programming Models and Tools

As noted in Section 4, grid environments will require a rethinking of existing programming models
and, most likely, new thinking about novel models more suitable for the speci�c characteristics of
grid applications and environments. Within individual applications, new techniques are required
for expressing advanced algorithms, for mapping those algorithms onto complex grid architectures,
for translating user performance requirements into system resource requirements, and for adapting
to changes in underlying system structure and state. Increased application and system complexity
increases the importance of code reuse, and so techniques for the construction and composition of
grid-enabled software components will be important. Another signi�cant challenge is to provide tools
that allow programmers to understand and explain program behavior and performance.

6.3 System Architecture

The software systems that support grid applications must satisfy a variety of potentially conicting
requirements. A need for broad deployment implies that these systems must be simple and place
minimal demands on local sites. At the same time, the need to achieve a wide variety of complex,
performance-sensitive applications implies that these systems must provide a range of potentially
sophisticated services. Other complicating factors include the need for scalability and evolution to
future systems and services. It seems likely that new approaches to software architecture will be
needed to meet these requirements|approaches that do not appear to be satis�ed by existing Internet,
distributed computing, or parallel computing technologies.

6.4 Algorithms and Problem-Solving Methods

Grid environments di�er substantially from conventional uniprocessor and parallel computing systems
in their performance, cost, reliability, and security characteristics. These new characteristics will
undoubtedly motivate the development of new classes of problem-solving methods and algorithms.
Latency-tolerant and fault-tolerant solution strategies represent one important area in which research
is required [5], [6], [10]. Highly concurrent and speculative execution techniques may be appropriate
in environments where many more resources are available than at present.

6.5 Resource Management

A de�ning feature of computational grids is that they involve sharing of networks, computers, and
other resources. This sharing introduces challenging resource management problems that are be-
yond the state of the art in a variety of areas. Many of the applications described in later chapters
need to meet stringent end-to-end performance requirements across multiple computational resources
connected by heterogeneous, shared networks. To meet these requirements, we must provide im-
proved methods for specifying application-level requirements, for translating these requirements into
computational resources and network-level quality-of-service parameters, and for arbitrating between
conicting demands.

6.6 Security

Sharing also introduces challenging security problems. Traditional network security research has
focused primarily on two-party client-server interactions with relatively low performance requirements.
Grid applications frequently involve many more entities, impose stringent performance requirements,
and involve more complex activities such as collective operations and the downloading of code. In
larger grids, issues that arise in electronic markets become important. Users may require assurance

23

and licensing mechanisms that can provide guarantees (backed by �nancial obligations) that services
behave as advertised [37].

6.7 Instrumentation and Performance Analysis

The complexity of grid environments and the performance complexity of many grid applications make
techniques for collecting, analyzing, and explaining performance data of critical importance. Depend-
ing on the application and computing environment, poor performance as perceived by a user can be
due to any one or a combination of many factors: an inappropriate algorithm, poor load balancing, in-
appropriate choice of communication protocol, contention for resources, or a faulty router. Signi�cant
advances in instrumentation, measurement, and analysis are required if we are to be able to relate
subtle performance problems in the complex environments of future grids to appropriate application
and system characteristics.

6.8 End Systems

Grids also have implications for the end systems from which they are constructed. Today's end systems
are relatively small and are connected to networks by interfaces and with operating systemmechanisms
originally developed for reading and writing slow disks. Grids require that this model evolve in two
dimensions. First, by increasing demand for high-performance networking, grid systems will motivate
new approaches to operating system and network interface design in which networks are integrated
with computers and operating systems at a more fundamental level than is the case today. Second,
by developing new applications for networked computers, grids will accelerate local integration and
hence increase the size and complexity of the end systems from which they are constructed.

6.9 Network Protocols and Infrastructure

Grid applications can be expected to have signi�cant implications for future network protocols and
hardware technologies. Mainstream developments in networking, particularly in the Internet commu-
nity, have focused on best-e�ort service for large numbers of relatively low-bandwidth ows. Many
of the future grid applications discussed in this book require both high bandwidths and stringent
performance assurances. Meeting these requirements will require major advances in the technologies
used to transport, switch, route, and manage network ows.

7 Summary

This chapter has provided a high-level view of the expected purpose, shape, and architecture of
future grid systems and, in the process, sketched a road map for more detailed technical discussion in
subsequent chapters. The discussion was structured in terms of six questions.

Why do we need computational grids? We explained how grids can enhance human creativity by,
for example, increasing the aggregate and peak computational performance available to important
applications and allowing the coupling of geographically separated people and computers to support
collaborative engineering. We also discussed how such applications motivate our requirement for a
software and hardware infrastructure able to provide dependable, consistent, and pervasive access to
high-end computational capabilities.

What types of applications will grids be used for? We described �ve classes of grid applications:
distributed supercomputing, in which many grid resources are used to solve very large problems; high
throughput, in which grid resources are used to solve large numbers of small tasks; on demand, in
which grids are used to meet peak needs for computational resources; data intensive, in which the

24

focus is on coupling distributed data resources; and collaborative, in which grids are used to connect
people.

Who will use grids? We examined the shape and concerns of four grid communities, each supporting
a di�erent type of grid: a national grid, serving a national government; a private grid, serving a
health maintenance organization; a virtual grid, serving a scienti�c collaboratory; and a public grid,
supporting a market for computational services.

How will grids be used? We analyzed the requirements of �ve classes of users for grid tools and
services, distinguishing between the needs and concerns of end users, application developers, tool
developers, grid developers, and system managers.

What is involved in building a grid? We discussed potential approaches to grid architecture,
distinguishing between the di�ering concerns that arise and technologies that have been developed
within individual end systems, clusters, intranets, and internets.

What problems must be solved to enable grid development? We provided a brief review of the
research challenges that remain to be addressed before grids can be constructed and used on a large
scale.

Further Reading

For more information on the topics covered in this chapter, see www.mkp.com/grids and also the
following references:

� A series of books published by the Corporation for National Research Initiatives [29], [30], [31],
[28] review and draw lessons from other large-scale infrastructures, such as the electric power
grid, telecommunications network, and banking system.

� Catlett and Smarr's original paper on metacomputing [13] provides an early vision of how high-
performance distributed computing can change the way in which scientists and engineers use
computing.

� Papers in a 1996 special issue of the International Journal of Supercomputer Applications [19]
describe the architecture and selected applications of the I-WAY metacomputing experiment.

� Papers in a 1997 special issue of the Communications of the ACM [62] describe plans for a
National Technology Grid.

� Several reports by the National Research Council touch upon issues relevant to grids [49], [50],
[48].

� Birman and van Renesse [8] discuss the challenges that we face in achieving reliability in grid
applications.

References

[1] D. Abramson, R. Sosic, J. Giddy, and B. Hall. Nimrod: A tool for performing parameterised simulations
using distributed workstations. In Proc. 4th IEEE Symp. on High Performance Distributed Computing.
IEEE Computer Society Press, 1995.

[2] A. D. Alexandrov, M. Ibel, K. E. Schauser, and C. J. Scheiman. Extending the operating system at the
user level: The UFO global �le system. In 1997 Annual Technical Conference on UNIX and Advanced
Computing Systems (USENIX'97), January 1997.

[3] T. Anderson. Glunix: A global layer Unix for NOW. http://now.cs.berkeley.edu/Glunix/glunix.html.

25

[4] R. Arpaci, A. Dusseau, A. Vahdat, L. Liu, T. Anderson, and D. Patterson. The interaction of parallel and
sequential workloads on a network of workstations. In Proc. SIGMETRICS, 1995.

[5] J. Baldeschwieler, R. Blumofe, and E. Brewer. ATLAS: An infrastructure for global computing. In Proc.
Seventh ACM SIGOPS European Workshop on System Support for Worldwide Applications, 1996.

[6] A. Baratloo, M. Karaul, Z. Kedem, and P. Wycko�. Charlotte: Metacomputing on the Web. In Proc. 9th
Conference on Parallel and Distributed Computing Systems, 1996.

[7] K. P. Birman and R. van Rennesse. Reliable Distributed Computing Using the Isis Toolkit. IEEE Computer
Society Press, 1994.

[8] Kenneth P. Birman and Robbert van Renesse. Software for reliable networks. Scienti�c American, May
1996.

[9] Richard Bukowski and Carlo Sequin. Interactive simulation of �re in virtual building environments. In
Proceedings of SIGGRAPH 97, 1997.

[10] N. Camiel, S. London, N. Nisan, and O. Regev. The POPCORN project: Distributed computation over
the Internet in Java. In Proc. 6th International World Wide Web Conference, 1997.

[11] Henri Casanova and Jack Dongarra. Netsolve: A network server for solving computational science problems.
Technical Report CS-95-313, University of Tennessee, November 1995.

[12] J. Casazza. The Development of Electric Power Transmission: The Role Played by Technology, Institutions
and People. IEEE Computer Society Press, 1993.

[13] C. Catlett and L. Smarr. Metacomputing. Communications of the ACM, 35(6):44{52, 1992.

[14] A. Chien, S. Pakin, M. Lauria, M. Buchanan, K. Hane, L. Giannini, and J. Prusakova. High perfor-
mance virtual machines (HPVM): Clusters with supercomputing APIs and performance. In Eighth SIAM
Conference on Parallel Processing for Scienti�c Computing (PP97), March 1997.

[15] B. Christiansen, P. Cappello, M. Ionescu, M. Neary, K. Schauser, and D. Wu. Javelin: Internet-based
parallel computing using Java. In Proc. 1997 Workshop on Java in Computational Science and Engineering,
1997.

[16] K. Czajkowski, I. Foster, N. Karonis, C. Kesselman, S. Martin, W. Smith, and S. Tuecke. A resource
management architecture for metacomputing systems. In The 4th Workshop on Job Scheduling Strategies
for Parallel Processing, 1998.

[17] Joseph Czyzyk, Michael P. Mesnier, and Jorge J. Mor�e. The Network-Enabled Optimization System
(NEOS) Server. Preprint MCS-P615-0996, Argonne National Laboratory, Argonne, Illinois, 1996.

[18] W. Dally. A VLSI Architecture for Concurrent Data Structures. Kluwer Academic Publishers, 1987.

[19] T. DeFanti, I. Foster, M. Papka, R. Stevens, and T. Kuhfuss. Overview of the i-way: Wide area visual
supercomputing. International Journal of Supercomputer Applications, 10(2):123{130, 1996.

[20] D. Diachin, L. Freitag, D. Heath, J. Herzog, W. Michels, and P. Plassmann. Remote engineering tools
for the design of pollution control systems for commercial boilers. International Journal of Supercomputer
Applications, 10(2):208{218, 1996.

[21] F. Douglis and J. Ousterhout. Transparent process migration: Design alternatives and the Sprite imple-
mentation. Software|Practice and Experience, 21(8):757{85, 1991.

[22] Peter Druschel, Mark B. Abbott, Michael A. Pagels, and Larry L. Peterson. Network subsystem design.
IEEE Network, 7(4):8{17, July 1993.

[23] Andrea C. Dusseau, Remzi H. Arpaci, and David E. Culler. E�ective distributed scheduling of parallel
workloads. In ACM SIGMETRICS '96 Conference on the Measurement and Modeling of Computer Systems,
1996.

26

[24] S. Dwarkadas, P. Keleher, A. Cox, and W. Zwaenepoel. An evaluation of software distributed shared
memory for next-generation processors and networks. In Proceedings of the 20th International Symposium
on Computer Architecture, San Diego, CA, May 1993.

[25] D. Engler, M. Kaashoek, , and J. O'Toole Jr. Exokernel: An operating system architecture for application-
level resource management. In Proceedings of the Fifteenth ACM Symposium on Operating Systems Prin-
ciples, pages 251{266. ACM Press, 1995.

[26] I. Foster. Designing and Building Parallel Programs. Addison-Wesley, 1995.

[27] I. Foster, J. Geisler, W. Gropp, N. Karonis, E. Lusk, G. Thiruvathukal, and S. Tuecke. A wide-area
implementation of the Message Passing Interface. Parallel Computing, 1998. to appear.

[28] Amy Friedlander. In God We Trust All Others Pay Cash: Banking as an American Infrastructure 1800{
1935. Corporation for National Research Initiatives, Reston, VA, 199.

[29] Amy Friedlander. Emerging Infrastructure: The Growth of Railroads. Corporation for National Research
Initiatives, Reston, VA, 1995.

[30] Amy Friedlander. Natural Monopoly and Universal Service: Telephones and Telegraphs in the U.S. Telecom-
munications Infrastructure 1837{1940. Corporation for National Research Initiatives, Reston, VA, 1995.

[31] Amy Friedlander. Power and Light: Electricity in the U.S. Energy Infrastructure 1870{1940. Corporation
for National Research Initiatives, Reston, VA, 1996.

[32] I. Goldberg, D.Wagner, R. Thomas, and E. Brewer. A secure environment for untrusted helper applications.
In Proceedings of the Sixth Usenix Security Symposium, July 1996.

[33] Jr Harold Lockhart. OSF DCE: Guide to Developing Distributed Applications. McGraw Hill, 1994.

[34] Bernardo Huberman, editor. The Ecology of Computation. Elsevier Science Publishers/North-Holland,
1988.

[35] Van Jacobson. E�cient protocol implementation. In ACM SIGCOMM '90 tutorial, September 1990.

[36] JavaSoft. RMI, The JDK 1.1 Speci�cation. http://javasoft.com/products/
jdk/1.1/docs/guide/rmi/index.html. 1997.

[37] Charlie Lai, Gennady Medvinsky, and Cli�ord Neuman. Endorsements, licensing, and insurance for dis-
tributed system services. In Proceedings of the Second ACM Conference on Computer and Communications
Security, November 1994.

[38] C. Lee, C. Kesselman, and S. Schwab. Near-realtime satellite image processing: Metacomputing in CC++.
IEEE Computer Graphics and Applications, 16(4):79{84, 1996.

[39] Jason Leigh, Andrew Johnson, and Thomas A. DeFanti. CAVERN: A distributed architecture for sup-
porting scalable persistence and interoperability in collaborative virtual environments. Virtual Reality:
Research, Development and Applications, 2(2):217{237, December 1997.

[40] A. Lenstra. Factoring integers using the Web and the number �eld sieve. Technical report, Bellcore, August
1995.

[41] Michael J. Litzkow, Miron Livny, and Matt W. Mutka. Condor|a hunter of idle workstations. In Proceed-
ings of the 8th International Conference of Distributed Computing Systems, pages 104{111, June 1988.

[42] P. Lyster, L. Bergman, P. Li, D. Stan�ll, B. Crippe, R. Blom, C. Pardo, and D. Okaya. CASA giga-
bit supercomputing network: CALCRUST three-dimensional real-time multi-dataset rendering. In Proc.
Supercomputing '92, 1992.

[43] K. Marzullo, M. Ogg, A. Ricciardi, A. Amoroso, F. Calkins, and E. Rothfus. NILE: Wide-area computing
for high energy physics. Proceedings of the 1996 SIGOPS Conference, 1996.

[44] G. McGraw and E. Felten. Java Security: Hostile Applets, Holes and Antidotes. John Wiley and Sons,
1996.

27

[45] C. Mechoso, C.-C. Ma, J. Farrara, J. Spahr, and R. Moore. Parallelization and distribution of a coupled
atmosphere-ocean general circulation model. Mon. Wea. Rev., 121:2062, 1993.

[46] L. E. Moser, P. M. Melliar-Smith, D. A. Agarwal, R. K. Budhia, and C. A. Lingley-Papadopoulos. Totem:
A fault-tolerant multicast group communication system. Communications of the ACM, 39(4):54{63, April
1996.

[47] M. Mutka and M. Livny. The available capacity of a privately owned workstation environment. Performance
Evaluation, 12(4):269{84, 1991.

[48] National Research Council. National Collaboratories: Applying Information Technology for Scienti�c Re-
search. National Academy Press, 1993.

[49] National Research Council. Evolving the High Performance Computing and Communications Initiative to
Support the Nation's Information Infrastructure. National Academy Press, 1995.

[50] National Research Council. More Than Screen Deep: Toward Every-Citizen Interfaces to the Nation's
Information Infrastructure. National Academy Press, 1997.

[51] B. Cli�ord Neuman and Theodore Ts'o. Kerberos: An authentication service for computer networks. IEEE
Communications, 32(9), September 1994.

[52] J. Nieplocha and R. Harrison. Shared memory NUMA programming on the I-WAY. In Proc. 5th IEEE
Symp. on High Performance Distributed Computing, pages 432{441. IEEE Computer Society Press, 1996.

[53] J. Nieplocha, R.J. Harrison, and R.J. Little�eld. Global Arrays: A portable \shared-memory" programming
model for distributed memory computers. In Proceedings of Supercomputing '94, pages 340{349. IEEE
Computer Society Press, 1994.

[54] M. Norman, P. Beckman, G. Bryan, J. Dubinski, D. Gannon, L. Hernquist, K. Keahey, J. Ostriker,
J. Shalf, J. Welling, and S. Yang. Galaxies collide on the I-WAY: An example of heterogeneous wide-area
collaborative supercomputing. International Journal of Supercomputer Applications, 10(2):131{140, 1996.

[55] Object Management Group, Inc., Framingham,MA. The Common Object Request Broker Architecture and
Speci�cations, version 2.0 edition, July 1996.

[56] Scott Pakin, Vijay Karamcheti, and Andrew A. Chien. Fast Messages: E�cient, portable communication
for workstation clusters and mpps. IEEE Concurrency, 5(2):60{73, April-June 1997.

[57] C. Potter, R. Brady, P. Moran, C. Gregory, B. Carragher, N. Kisseberth, J. Lyding, and J. Lindquist.
EVAC: A virtual environment for control of remote imaging instrumentation. IEEE Computer Graphics
and Applications, pages 62{66, 1996.

[58] C. Potter, Z-P. Liang, C. Gregory, H. Morris, and P. Lauterbur. Toward a neuroscope: A real-time system
for the evaluation of brain function. In Proc. First IEEE Int'l Conf. on Image Processing, volume 3, pages
25{29. IEEE Computer Society Press, 1994.

[59] I Richer and B Fuller. The MAGIC project: From vision to reality. IEEE Network, May/June 1996.

[60] Maria Roussos, Andrew Johnson, Jason Leigh, Christina Valsilakis, Craig Barnes, and Thomas Moher.
NICE: Combining constructionism, narrative, and collaboration in a virtual learning environment. Com-
puter Graphics, 31(3):62{63, August 1997.

[61] A. Silberschatz, J. Peterson, and P. Galvin. Operating Systems Concepts. Addison-Wesley, 1991.

[62] Larry Smarr. Computational infrastructure: Toward the 21st century. Communications of the ACM,
40(11), November 1997.

[63] Patrick G. Sobalvarro and William E. Weihl. Demand-based coscheduling of parallel jobs on multipro-
grammed multiprocessors. In Proceedings of the Parallel Job Scheduling Workshop at IPPS '95, 1995.

[64] W. Sullivan, D. Werthimer, S. Bowyer, J. Cobb, D. Gedye, and D. Anderson. A new major SETI project
based on project SERENDIP data and 100,000 personal computers. In Astronomical and Biochemical
Origins and the Search for the Life in the Universe, 1997. IAU Colloquium No. 161.

28

[65] R. Unrau, O. Krieger, B. Gamsa, and M. Stumm. Hierarchical clustering: A structure for scalable multi-
processor operating system design. The Journal of Supercomputing, 9(1/2):105{134, 1995.

[66] A. Vahdat, P. Eastham, and T. Anderson. WebFS: A global cache coherent �lesystem. Technical report,
Department of Computer Science, UC Berkeley, 1996.

[67] A. Vahdat, P. Eastham, C. Yoshikawa, E. Belani, T. Anderson, D. Culler, and M. Dahlin. WebOS:
Operating system services for wide area applications. Technical Report UCB CSD-97-938, U.C. Berkeley,
1997.

[68] R. van Renesse, K. P. Birman, and S. Ma�eis. Horus: A exible group communication system. Commu-
nications of the ACM, 39(4):76{83, April 1996.

[69] M. van Steen, P. Homburg, L. van Doorn, A. Tanenbaum, and W. de Jonge. Towards object-based wide
area distributed systems. In Proc. International Workshop on Object Orientation in Operating Systems,
pages 224{227, 1995.

[70] T. von Eicken, D. Culler, S. Goldstein, and K. Schauser. Active messages: A mechanism for integrated
communication and computation. In Proceedings of the 19th International Symposium on Computer Ar-
chitecture, pages 256{266. ACM Press, May 1992.

[71] R. Wahbe, S. Lucco, T. Anderson, and S. Graham. E�cient software-based fault isolation. In Proc. 14th
Symposium on Operating System Principles. 1993.

[72] D. Wallach, D. Balfanz, D. Dean, and E. Felten. Extensible security in Java. Technical Report 546-97,
Dept of Computer Science, Princeton University, 1997.

[73] R. Watson and R. Coyne. The parallel I/O architecture of the high performance storage system (HPSS).
In 14th IEEE Symposium Mass Storage Systems, Monterey, CA, September 1995. Comp. Soc. Press.

[74] Glen H. Wheless, Cathy M. Lascara, Arnoldo Valle-Levinson, Donald P. Brutzman, William Sherman,
William L. Hibbard, and Brian E. Paul. Virtual chesapeake bay: Interacting with a coupled physi-
cal/biological model. IEEE Computer Graphics and Applications, 16(4):42{43, July 1996.

[75] S. Zhou. LSF: Load sharing in large-scale heterogeneous distributed systems. In Proc. Workshop on Cluster
Computing, 1992.

[76] S. Zhou, M. Stumm, K. Li, and D. Wortmann. Heterogeneous distributed shared memory (Mermaid).
IEEE Transactions on Parallel and Distributed Systems, 3(5):540{554, September 1992.

29

