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The scientific community’s need to solve increasingly challenging computational problems cur-
rently demands a more diverse range of high-end resources then ever before. Despite continuous and
exponential improvements in clock rate, communication speed, chip density, and storage size, very
often multiple resources are necessary to provide solutions to state-of-the-art problems. Examples of
such high-end applications range from financial modeling and vehicle simulation to computational
genetics and weather forecasting. Therefore, high performance computing practitioners have been
using distributed and parallel systems for years. This professional community has become a major
customer segment for research and development of advanced communication frameworks because
such systems have to provide coordination and synchronization among participating resources.

Typically, the code that is responsible for the communication between multiple resources is im-
plemented in different programming languages. As good engineering practice, software layers are
used to implement communication paradigms that hide these differences. Traditionally, message-
passing libraries have been used for applications that can exploit symmetric multi-processing, while
remote procedure calls have been introduced in the early eighties for applications that need a
client/server structure (Figure 1). For most scientists, both approaches in general have been limited
by the computing facilities available within a single computer center. However, current high-end
applications require resources that are much more diverse not only in terms of locations and dis-
tances but also in terms of functionality. A large number of geographically distributed resources for
processing, communication, and storing of information across computing centers is required. The
integration of such resources to a working environment is referred to as the computational Grid [6].

The distribution of applications over the Grid requires an additional framework that hides dif-
ferences of the underlying distribution of resources—that is, that bridges between different operat-
ing systems, programming paradigms, and heterogeneous networks, but also is opaque and robust
for the programmer to use. Many Grid applications also would benefit from three additional fea-
tures: the use of message-passing libraries, fast remote method invocation (RMI), and component
frameworks (see Figure 2). For example, structural biology studies using x-rays from advanced
synchrotron radiation sources require enormous data rates and compute power, easily reaching the
Gbit/s and the Tflop/s ranges, respectively [11]. Since the computational demand is so large, and
since the community has significant experience with the message-passing paradigm and with remote
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Figure 1: Multiple communication frameworks are necessary to support programming the diverse
infrastructure that Grids comprise.
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procedure calls, a single, integrated environment that provides such communication features for the
emerging Grid applications is highly desirable. A component framework is also necessary to ease
the software engineering problem of integration.

Java seems ideal for this multi-paradigm communications environment. Java’s platform-inde-
pendent bytecode can be executed securely on many platforms, making Java (in principle) an excel-
lent basis for portable high-end applications that need the Grid. Inspired originally by coffee house
jargon, the buzzword Grande has become commonplace in order to distinguish this new type of
application when written in Java.1 In addition, Java’s performance on sequential codes, which is a
strong prerequisite for the development of Grande applications, has increased substantially over the
past years [3]. Furthermore, Java provides a sophisticated graphical user interface framework, as
well as a paradigm to access state variables through remote objects; these features are of particular
interest for remote steering of scientific instruments.

The rest of this article demonstrates the state-of-the-art in Java’s integrative support of communi-
cation paradigms and the use of component frameworks. We present ways to use of message-passing
libraries in a Java setting. We show, that Java’s RMI does allow for high-performance applications
on clusters, even if the standard implementation of RMI is slow. And we illustrate a Grid framework
that allows Java applications to be efficiently distributed over the computational Grid.

Message Passing

The Java language has several built-in mechanisms that allow the parallelism inherent in a given
program to be exploited. Threads and concurrency constructs are well suited for shared memory
computers, but not large-scale distributed memory machines. For distributed applications, Java
provides sockets and an RMI mechanism [12]. For the parallel computing world, often the former is
too low-level and the latter is oriented too much towards client/server type applications and does not
specifically support the symmetric model adopted by many parallel applications. Obviously, there is
a gap within the set of programming models provided by Java, especially for parallel programming
support on clusters of tightly coupled processing resources. A solution to this problem inevitably
builds around the message-passing communication framework, which has been one of the most
popular parallel programming paradigms since the 80s.

In general, the architecture of a message-passing system can follow two approaches – implicit
and explicit. Solutions that adopt the implicit approach usually provide the end user with a single
shared-memory system image, hiding the message-passing at a lower level of the system hierarchy.
Thus, a programmer works within an environment often referred to as the virtual shared-memory
programming model. Translating this approach to Java leads to the development of a cluster-aware
Java virtual machine (JVM) that provides fully transparent and truly parallel multithreading pro-
gramming environment [1]. This approach allows for substantial performance improvements using
Java on clusters within the multithreading programming model. It also preserves full compatibility
with the standard Java bytecode format. The price to be paid for these advantages, however, is a
nonstandard JVM that introduces extra complexity and overheads to the Java run-time system.

1“Grande” is the prevalent designation for the term “large” or “big” in several languages. In the US (and the South-
West in particular), the term “grande” has established itself as describing size within the coffee house scene.
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Figure 2: A simplistic comparison between message-passing and RMI shows that they are concep-
tually related. The component framework allows clients to reuse components that are stored in a
container and published through properties defined in an interface.
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By contrast with sockets and RMI, explicit message-passing directly supports symmetric com-
munications including both point-to-point and collective operations such as broadcast, gather, all-
to-all, and others, as defined by the Message Passing Interface (MPI) standard [5]. Programming
with MPI is easy because it supports the single program multiple data (SPMD) model of parallel
computing, wherein a group of processes cooperate by executing identical program images on local
data values.

With the evident success of Java as a programming language, and its inevitable use in connection
with parallel, distributed, and grid computing, the absence of a well-designed explicit message-
passing interface for Java would lead to divergent, non-portable practices. Indeed, the message-
passing working group of the Java Grande forum (see sidebar in [3]) was formed in the Fall of
1998 as a response to the appearance of various explicit message-passing interfaces for Java. Some
of these early “proof-of-concept” implementations have been available since 1997 with successful
ports on clusters of workstations running Linux, Solaris, Windows NT, Irix, AIX, HP-UX, and
MacOS, as well as, on parallel platforms such as the IBM SP-2 and SP-3, Sun E4000, SGI Origin-
2000, Fujitsu AP3000, Hitachi SR2201 and others. An immediate goal is to discuss and agree on a
common MPI-like application programming interface (API) for Message Passing in Java (MPJ) [4].
The purpose of the current phase of the effort is to provide an immediate, ad hoc standardization for
common message-passing programs in Java, as well as, to provide a basis for conversion between
C, C++, Fortran, and Java.

MPJ can be implemented in two different ways: as a wrapper to existing native MPI libraries
or as a pure Java implementation. The first approach provides a quick solution, usually with only
negligible time overhead introduced by the wrapper software. The use of native code, however,
breaks the Java security model and does not allow work with applets—clear advantages for the pure
Java approach. A direct MPJ implementation in Java is much slower, but the emplyment of more
sophisticated design such as the use of native marshalling and advanced compilation technologies
for Java can improve significantly the efficiency and make the two approaches comparable in terms
of performance. For example, we have used the statically optimizing IBM High-Performance Com-
piler for Java (HPCJ), which generates native codes for the RS6000 architecture [3], to evaluate the
performance of MPJ on an IBM SP-2 machine. The results show that when using such a compiler,
the MPJ communication component is as fast as the native message-passing library (see Figure 3).

Closely modeled as it is on the MPI standards, the existing MPJ specification should be regarded
as a first phase in a broader program to define a more Java-centric high performance message-
passing environment. In the future, a detachment from legacy implementations involving Java
on top of native methods will be emphasized. We should consider the possibility of layering the
message-passing middleware over other standard transports and Java-compliant middleware (like
CORBA). In a sense, the middleware developed at this level should offer a choice of emphasis
between performance or generality, while always supporting portability. One can also note the op-
portunity to study and implement aspects of real-time and fault-aware message-passing programs
in Java, which can be particularly useful in a Grid environment. Of course, a primary goal in the
above mentioned, both current and future work, should be the aim to offer MPI-like services to Java
programs in an upward compatible fashion. The purposes are twofold: performance and portability.
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Figure 3: Execution time for the Integer Sort kernel from the NAS Parallel Benchmarks on the IBM
SP-2. The use of JVM and MPJ in this particular case is approximately 2.5 times slower than
the same code written in C and using MPI. When using HPCJ and MPJ, however, this difference
disappears with Java and MPJ performing as good as C and MPI for this experiment. This confirms
that the extra overhead introduced by MPJ in comparison with MPI is negligible.
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Fast Remote Method Invocation

Remote invocations are a well-known concept. Remote procedure calls (RPC) have at least been
around since 1981[9]. Today, CORBA uses RPCs to glue together code that is written in different
languages. To implement a remote invocation, the method identifier and its arguments are encoded
(marshalled) in a wire format that is understood both by the caller and the callee. The callee uses a
proxy object to decode (unmarshall) that stream of bytes and to then perform the actual invocation.
The results travel the other way round.

Although RMI inherits this basic design in general, it has distinguishing features that reach
beyond the basic RPC. RMI is no longer defined by the common denominator of different program-
ming languages. It is not meant to bridge between object-oriented versus procedural languages or
to bridge between languages with different kinds of elementary types and structures. With RMI, a
program running in one Java virtual machine (JVM) can invoke methods of other objects residing in
different JVMs. The main advantages of RMI are that it is truly object-oriented, that it supports all
the data types of a Java program, and that it is garbage collected. This allows for a clear separation
between caller and callee. Development and maintenance of distributed systems becomes easier.

To understand the advantages, let us consider a remote invocation of a method foo(Bar
bar). In contrast to earlier RPCs, RMI is truly object-oriented and allows the caller to pass objects
of any subclass of Bar to the callee. The object is encoded and shipped in a way so that the callee
gets hold of the object (instead of a reference to an object). This encoding – Java uses the term
“object serialization” – includes information on the class implementation, i.e., if the callee does not
know the concrete class implementation of bar it can dynamically load it. Thus, not only the values
of an object are shipped, but also the whole implementation is shipped. When the caller invokes an
instance method on bar, say bar.foobar, the foobar code of the particular subclass of Bar
will be executed at the side of the callee. One of the main advantages of object-oriented program-
ming, the re-use of existing code with refined subclasses can thus be exploited for distributed code
as well. Caller and callee can be developed separately as long as they agree on interfaces. From the
software engineer’s point of view, another advantage of RMI is the distributed garbage collection.
Most practitioners agree that for sequential code, garbage collection helps save programmer time.
The same is true for distributed code as well.

The novel features of RMI come at a cost. With a regular implementation of RMI on top of
Ethernet, a remote method invocation takes milliseconds – concrete times depend on the number
and the types of arguments. About a third of that time is needed for the RMI itself, a third for
the serialization of the arguments (their transformation into a machine-independent byte represen-
tation), and a third for the data transfer (TCP/IP-Ethernet). While this kind of latency might be
acceptable for coarse grained applications with little communication needs, it is too slow for high
performance applications that run on low-latency networks, for example on a closely connected
cluster of workstations.

Several projects are underway to improve the performance of RMI, for example the Manta
project [7] and the JavaParty project (http://wwwipd.ira.uka.de/JavaParty/) [10]. In
addition to simply improve the implementation for better speed, the main optimization ideas are first,
to use pre-compiled marshalling routines instead of the ones that are generated at run-time by means
of dynamic type introspection. A second idea is, to use only as little bandwidth for type encoding
as necessary for the application. Only if objects are stored into persistent storage it is necessary to

7



save detailed type description. For communication purposes alone, a short type identifiers might
be sufficient. Third, objects can be cashed to avoid re-transmission if their instance variables did
not change between calls. Fourth, several layers have been removed in the RMI implementation to
reduce loss at the interfaces between layers.

The JavaParty group reports that their optimized implementation of the RMI (called KaRMI)
and of the underlying object serialization (called UKA serialization) achieves remote invocations
within 80 �s on a cluster of DEC-Alpha computers connected by Myrinet. Figure 4 shows, that for
benchmark programs 96% of the time can be saved, if the UKA serialization, the high-speed RMI
(KaRMI), and the faster communication hardware is used. The Manta group reports even faster
remote invocations, however their environment is no longer in pure Java but a native code compiled
through C.

A Framework for Adaptive Grid Computing

So far we have discussed how well known communication paradigms can be made available and ef-
ficient in Java. Nevertheless, additional advances are needed to realize the full potential of emerging
computational Grids [6]. The programming of such Grids raises a significant software engineering
problem. We must deal with heterogeneous systems, diverse programming paradigms, and the needs
of multiple users. Adaptive services must be developed that provide security, resource management,
data access, instrumentation, policy, and accounting for applications, users, and resource providers.

Java provides some significant help to ease this software engineering problem. Due to its object-
oriented nature, the ability to develop reusable software components, and the integrated packaging
mechanism Java offers support for all phases of the lifecycle of a software engineering project from
problem analysis and design, program development, program deployment, program instantiation,
and maintenance.

Java’s reusable software component architecture known as JavaBeans allows users to write self-
contained, reusable software units. With commercially available visual application builder tools,
software components can be composed into applets, applications, servlets, and composite compo-
nents. Components can be moved, queried, or visually integrated with other components, enabling
a new level of convenient Computer Aided Software Engineering (CASE) based programming in
the Grid.

Component repositories or containers[8] (Figure 2) provide the chance to collectively work on
similar tasks and to share the results with the community. Additionally, the Java framework includes
a rich set of predefined Java APIs, libraries, and components including the access to databases and
directories, network programming, and sophisticated interfaces to XML to list only a few.

We have evaluated the feasibility of using these advanced features of Java for Grid program-
ming, as part of our development of several application-specific Grid portals. A portal defines a
commonly known access point to the application that can be reached via a Web browser. All of
these portal projects use a common toolkit, called the “Java Commodity Grid Toolkit” (Java CoG).
This toolkit allows one to access many services of the Globus toolkit (http://www.globus.org) in
a way familiar to Java programmers. Thus, Java CoG is not a simple one-to-one mapping of the
Globus API into Java; it makes use of features of the Java language that are not available in the
original C implementation. These features, for example, include the use of the object-oriented pro-
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(64 points represent measurements on PCs connected by Ethernet, 64 stand for Dec-Alphas con-
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that KaRMI achieves when used with Java’s regular serialization. The third box plot shows the
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gramming model and the event model. Another important advantage of Java is the availability of
a graphical user interface for integrating graphical components into Grid-based applications. Our
extensive experience with collaborators from various scientific disciplines showed that the develop-
ment of graphical components, hiding the complexity of the Grid, lets the scientist concentrate on
the science, instead of dealing with the complex environment of a Grid.

Besides the advantages of Java during the program development, using Java eases the develop-
ment and installation of client software that accesses the Grid. While it is trivial to install client
libraries of the Java CoG Kit on a computer, the installation of client software written in other
programming languages or frameworks such as C and C++ is much more involved, because of
differences in compilers and operating systems. One of the biggest advantages in using the byte-
code compiled archives is that they can also be installed on any operating system that supports
Java, including the Windows operating system. Using the Java framework allows development of
Drag&Drop components that enable information exchange between the desktop and the running
Grid application during a program instantiation. Thus, it is possible to integrate Grid services seam-
lessly into the Windows or the Unix desktop.

With a commodity technology such as Java as the basis for future Grid-based program develop-
ment offers yet another advantage. The strong and committed support of Java by major vendors in
e-commerce allows scientists to exploit a wider range of computer technology—from supercomput-
ers to state-of-the-art commodity devices such as cell phones, PDAs, and Bluetooth or Java-enabled
sensors—all within a Grid-based problem-solving environment.

Conclusion

A variety of communication frameworks, such as message-passing and RMI are necessary to cover
the range of communication needs for state-of-the-art applications. Abstractions provided as part of
component frameworks are essential to build integrated grid applications. Adding the advantageous
properties of the already existing Java framework leads us to the conclusion that Java can be helpful
for the development of many Grid applications.

In addition, a natural framework for dynamically discovering new compute resources and estab-
lishing connections between running programs already exists in the Jini project [2], and one promis-
ing line for future research and development is into an integrated communication frameworks for
grid computing based on message-passing, RMI, components, and Jini.
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Sidebar: Ten Reasons to Use Java in Grid Computing

Often the question arises, Why use Java for Grid computing? We summarize here the principal
answers to this question.

1. The Language: Java as a programming language offers some features that are beneficial for
large scale software engineering projects such as packages, object-oriented, single inheri-
tance, garbage collection, and unified data formats. Since threads and concurrency control
mechanisms are part of the language a possibility exists to directly express parallelism on the
lowest user level in Java.

2. The Class Library: Java provides a wide variety of additional class libraries including essen-
tial functions, such as the availability to perform socket communication and access SSL, as
needed for grid computation.

3. The Components: A component architecture is provided through JavaBeans and Enterprise Jav-
aBeans to enable component based program development.
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4. The Deployment: Java’s bytecode allows for easy deployment of the software through web
browsers and automatic installation facilities.

5. The Portability: Besides the unified data format Java’s bytecode guaranties portability known
under the flashy term ”write-once-run-anywhere.”

6. The Maintenance: Java contains an integrated documentation facility. Components that are
written as JavaBeans can be integrated within commercially available IDEs (Interface Devel-
opment Environments).

7. The Performance: It has been proven by well respected vendors that the performance of many
Java applications can currently come close to that of C or FORTRAN.

8. The Gadgets: Java-based smart cards, PDAs and, smart devices will expand the working envi-
ronment for scientists.

9. The Industry: Scientific projects are sometimes required to evaluate the longevity of a technol-
ogy before it can be used. Strong vendor support for Java helps making Java a technology of
current and future consideration.

10. The Education: Universities all over the World are teaching Java to their students.

Sidebar: Java as an Integration Tool for Building Grid Applications

In Figure 5 we show that Java provides many desired features for building Grid portals. This in-
cludes the access to distributed frameworks such as message passing or remote objects through
RMI and CORBA. Java is supported within the infrastructure necessary to build portals. Web-,
directory-, and database-servers can be accessed through Java class libraries. The development of
portals is supported by the availability of Interface Development Tools that may already use XML
for representing components. Java can be run on a variety of operating systems.
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