
Cache Replacement Policies Revisited: The Case of P2P Traffic

Adam Wierzbicki
Polish-Japanese Institute

of Information Technology
adamw@icm.edu.pl

Nathaniel Leibowitz
Tangium Networks
natan@expand.com

Matei Ripeanu
University of Chicago

matei@cs.uchicago.edu

Rafał Wo
�
niak

Polish-Japanese
Institute of Information

Technology

Abstract

Peer-to-peer (P2P) file-sharing applications
generate a large part if not most of today's Internet
traffic. The large volume of this traffic (thus the high
potential benefits of caching) and the large cache sizes
required (thus nontrivial costs associated with
caching) only underline that efficient cache
replacement policies are important in this case. P2P
file-sharing traffic has several characteristics that
distinguish it from well studied Web traffic and that
require a focused study of efficient cache management
policies. This paper uses trace driven simulations to
compare traditional cache replacement policies with
new policies that try to exploit characteristics of the
P2P file-sharing traffic generated by applications
using FastTrack protocol.

1. Introduction

In recent years, the growth of the Web traffic
carried by protocols in the HTTP family has
encouraged development of caching. Research in this
field resulted in caching policies well suited for the
characteristics of Web traffic. However the relatively
small size of Web objects and the decreasing cost of
disk and memory make today’s Web caches able to
store most cacheable content and to rarely need
perform cache replacement operations. The hit rates,
and thus performance impact, of Web caches is limited
to values below 40% [5,6] by Web traffic patterns and
by the limited cacheability of Web objects. One current
trend observed for Web traffic, the increases popularity
of dynamically created, non-cacheable content
decreases the potential benefits of caching.

Today, the traffic volume of the most popular P2P
file sharing protocol, FastTrack (used by file sharing
applications like Kazaa, iMesh and Grockster which,
according to www.slyck.com, totaled more than 4.5M
users in January 2004) has increased to the extent that

it may dominate the Internet traffic [3,7,8]. This makes
caching efforts concentrating on Web objects less
effective since they target a small part of the overall
traffic volume, whose cacheability is further reduced
by the presence of dynamically generated content. As a
consequence, there is a growing interest in using
caching mechanisms for the large volume of FastTrack
traffic. An additional incentive lies in the fact that
objects transported by file sharing protocols are
generally immutable and are therefore always
cacheable.

This paper aims to answer the following question:
Does the experience on caching Web objects research
translate directly to P2P file-sharing traffic, in
particular FastTrack traffic? The salient features of this
traffic, mainly large file sizes, file size variability, and
ability to split a single file download into tens of
download sessions over extended durations, suggest
that a cache for this traffic may behave differently than
a pure ‘Web’ cache. Yet to date there has been only
limited work on cacheability of this traffic [9].

We use a trace-driven simulation approach and aim
to evaluate the cache replacement policies that were
successful for Web traffic, and to introduce new
policies specialized for FastTrack traffic. We focus on
the technical aspects without considering legal or
security issues that can be relevant causes of concern
for cache deployment. Note, however, that the same
issues have generated concerns for Web caching,
although the issue of intellectual property rights was
never as significant as in the case of file sharing.

The paper is organized as follows: the next section
presents the most relevant characteristics of the
FastTrack protocol. Section 3 discusses the traces used.
Section 4 presents the main questions about cache
operation that the paper attempts to answer, and
describes the replacement policies studied. Simulator
design and simulation results are described in Sections
5 and 6.

2. FastTrack Protocol

The Kazaa network, the most popular application

using the FastTrack protocol, consists of two entity
types: a Kazaa user agent which downloads and shares
files, and a Kazaa supernode which serves as a referral
service to where the requested files can be found. File
identification is based on content: each file is assigned
a unique identifier based on the actual content of the
file. This enables a universal file identification scheme
regardless of their advertised file name that may
change from user to user (however different versions of
the same content, e.g., music files with different quality
or with slightly different duration, might still be treated
as distinct). All Kazaa user agents establish a channel
with their local supernode over which they inform the
supernode of the files they share, and over which they
send their search requests for files. This channel may
be viewed as a control channel whose purpose is to
enable actual file transfers carried out over data
channels established directly between two Kazaa user
agents (a downloader and uploader) and is therefore a
pure peer-to-peer channel. Since the actual file
transfers take place solely over the data channels, the
control channel, while interesting in its own, has little
relevance to the topic of this paper, hence we omit its
details. As a summary, we outline the various steps of a
typical file transfer sequence:
��When Kazaa agent A is started, it establishes a

persistent control channel with its supernode.
��Assume user at agent A is interested in Mozart 40

symphony. Agent A will send a search request to its
supernode over the control channel.

��The supernode uses its local database and
collaborates with other supernodes to compile a list
of other agents that store the file, and sends this list
back to agent A.

��Agent A establishes a data channel to some of the
agents specified in the reply, and requests different
ranges of the file from each. The ranges might
overlap, and together span the whole file. It is
common for an agent to prematurely abort a
connection when it is able to receive an equivalent
range from a better source.

��Once user agent A obtains the complete file, it
updates its supernode of the new file it shares.
The splitting of a single file download into multiple

TCP sessions is a central feature of the FastTrack
protocol, and requires a few new terms. As in [2], we
use download session or simply session to describe a
single TCP session between two agents, over which a
range of a file (none, part, or all of the file) is
transferred. We use download cycle for the logical

transfer of a whole file, which might consist of tens of
sessions and might extend over hours or even days.

Figure 1. FastTrack cache installation used for trace
gathering.

3. Trace Collection and Traffic Statistics

The FastTrack traces we analyze have been

obtained from a P2P proxy cache installed at a large
Israeli ISP. This installation has been active for above a
year, and handles on average 2000 concurrent
download sessions with about 80 Mbs of generated
traffic. A server is installed at the border between the
local user base of the ISP and the Internet cloud (see
Figure 1). Based on destination port number for each
TCP connection a Layer 4 switch redirects all Kazaa
traffic to this server. Thus, the server is able to
intercept all downloads performed by local users from
the external Internet. We note that in the data we
analyze we focus on downloads performed by local
users and completely ignore downloads performed by
outside users from local file providers (in other words
we are only interested in incoming traffic). The cache
used in the installation had a size of 200GB and 1GB
of main memory.

The traces we analyze cover a 26-day period from
1/25/2003 to 2/20/2003. They consist of about 4.2
million sessions over which 12.2 TB of data were
transferred. The traces were divided into two parts: the
first part covers the first period of 11 days during
which 4,7 TB were transmitted, and the second part
covers the remaining days during which 7,5 TB were
transmitted. The first part was used to fill the cache,
while the second part was used to evaluate replacement
policies on a warmed-up cache.

The analysis of other traces from the same source
[2] has shown a high reference locality: the ideal byte

hit rate of a cache was estimated at 67%. [2] also
estimates that a cache size of about 200GB should be
sufficient to achieve a byte hit rate of about 60%.
Further characteristics of the traffic observed in this
specific installation are detailed in [3]. Subsequent
analysis of the behavior of similar P2P proxy caches
installed at two other ISPs revealed identical behavior,
indicating that the traffic we are analyzing is a
representative sample of FastTrack traffic.

0

20

40

60

80

100

0% 20% 40% 60% 80% 100%
% of file requested

%
 o

f
al

l r
eq

ue
st

s
 .

Figure 2. Cumulative distribution function (CDF) for the
percentage of the file requested in each request.
Observe that 80% of all requests ask for 10% of the file
or less.

0

20

40

60

80

100

0% 20% 40% 60% 80% 100%

Start of range request relative to file size

%
 o

f
al

l r
eq

ue
st

s

Figure 3. Cumulative distribution function (CDF) for the
start of range requested relative to file size

Sessions each trace are ordered by their termination

time. For each download session we use the following
information:
��The unique file ID for the file downloaded,
��The range requested in the session,
��The size of the entire file, and
��The actual number of bytes that were transferred

during the session

4. Peer-to-Peer Cache Operation and
Replacement Policies

This section presents the cache replacement policies

we investigate as well as the main aspects of P2P cache
operation that impact on performance. Apart from the
question: “What is the best replacement policy?” , this
study aims to study three different issues on P2P
caching that have not been relevant for Web caching.
We present these issues first then we look into
effectiveness of cache replacement policies.

4.1. When Does a Hit Occur?

In the case of FastTrack traffic, the answer to the

simple question “When does a hit occur?” is no longer
as obvious as for caching of regular Web objects. The
request is made for a range of a file and the cache may
contain various ranges that might overlap with the
requested range.

To satisfy the request completely, the cache should
contain the entire requested range. We shall refer to
this scenario as ‘ full P2P caching’ . In this case the
cache is both transparent (there are no changes in the
download protocol) and passive (the cache does not
originate download requests). In this case however,
requests that are only partially cached will not be
served. To address this inefficiency two alternatives are
possible. Firstly, in a scenario we refer as ‘partial P2P
caching’ the cache can remain passive but give up
transparency: it would modify the current download
protocol to negotiate with the client the download of
sub-ranges of the requested range. Alternatively the
cache can become active and issue a download request
itself for the missing sub-ranges. In this case the cache
acts as a FastTrack client itself. In brief we use
“partial/full P2P caching” as shortcuts for “caching that
serves partial/full hits” .

4.2. Should the Cache Ignore User Aborts?

A second question is whether a cache should ignore

user aborts in the case of a cache miss. A user abort
generally is issued when the user agent has found a
better source for the requested information. Therefore,
in this case a cache that is serving a miss could stop
receiving the information, since it is clear that it will
not be needed. On the other hand, the cache could keep
downloading to anticipate future user requests. This
behavior would be a form of prefetching. Since range
requests of FastTrack user agents frequently overlap,
ignoring aborts could increase the byte hit rate.

If the main goal of caching is reducing generated
network traffic, then the a decision on how the cache
should handle user aborts can be made once it is known
how ignoring aborts affects the amount of data
downloaded by the cache. In other words, would the
increased byte hit rate that results from more caching
compensate for the increased download traffic to the
cache?

4.3. Should a Cache Replace File Ranges?

A cache replacement policy can be viewed as a

specialized instance of the well-known knapsack
problem. The set of files cached has to maximize a
certain utility function while satisfying a size
constraint. In the knapsack problem, it is often easier to
store many objects if the sizes of all objects are small
relative to the knapsack size. A P2P cache that stores
file ranges might therefore benefit from the
replacement of individual ranges instead of whole files,
because ranges are smaller and offer more flexibility to
the replacement policy.

This hypothesis would fail if the reference locality
of FastTrack requests would always focus on entire
files instead of a range of the file. If FastTrack user
would always (or very frequently) download entire
files or large portions of a file, then it would not make
sense for the cache to replace individual file ranges. To
verify this initial objection to the replacement of
ranges, we have calculated the distribution of request
sizes relative to the entire file size. To obtain this
statistic, each request size was divided by the size of
the entire file, and the resulting values were plotted as
a cumulative distribution function (Figure 2). The
statistic shows that the requested range size is not
uniform: although small ranges form the bulk of all
downloads, some requests might include as much as
half of the file. The statistic of range request size was
prepared in two variants. In one of the variants, user
aborts are ignored and the size of the entire requested
range is used; in the other variant, only the number of
transmitted bytes is used. Figure 2 presents the second
variant only, since the resulting difference is not
significant. User aborts lead to an increased number of
small range requests and an increased number of
requests to download the whole file.

We have also investigated the distribution for the
beginning of the requested range, relative to the file
size (Figure 3), which is much more evenly distributed.
It can be concluded that generally range requests are
short and ask for any portion of the file. Additionally,
user aborts tend to increase the number of small
requests.

When we refer to the granularity at which the cache
operates, we use the term file-based replacement policy
when the cache operates at a file granularity (as in
caching of Web objects) and range-based replacement
policy when the cache operates at a file-range
granularity. The initial assessment based on trace
statistics of range request size and position seem to
support the assumption that range-based policies could
be more effective. One of the goals of this paper is to
verify this hypothesis.

A range-based policy would require a larger
memory overhead for range metadata, but in this paper
we shall ignore this aspect since it is specific to an
implementation of the cache and of the range metadata.
Most cache replacement policies presented in the
following two subsections can be used both for files
and ranges.

4.4. Basic Replacement Policies

This section presents some of the cache replacement

policies that have been studied for Web caching [5,6].
A replacement policy can be generally defined by a
comparison rule that compares two cached items (two
files for a file-based policy or two ranges for a range-
based policy). Once such a rule is known, all objects in
the cache can be sorted in an increasing order, and this
is sufficient to apply a replacement policy: the cache
will remove the object of lowest value with respect to
the given comparison rule.

Each cached item (a file or a range) has several
attributes, such as access time (the last time when the
object was accessed), or size. These attributes are used
by the replacement policies we present below.

The simplest replacement policies are easily
expressed using comparison rules. Least Recently Used
(LRU) and Minimum Size (MINS) are two such
policies; their binary negations, Most Recently Used
(MRU) and Maximum Size (MAXS) will also be
included in the evaluation. Greedy-Dual Size (GDS) is
a replacement policy (described in detail in [1]) that
has been used with success for Web caching. GDS
incorporates in a simple way the most important
characteristics of an object in the cache: its access
history, file size, and recentness of the last access.

4.5. Specialized Replacement Policies

The basic policies described in the previous section

do not exploit all the information available to a
FastTrack cache. For example, a file stored in a cache
may consist of several ranges with gaps in between. An
important piece of information is how much of the total

file is stored in the cache. The objects stored in a
FastTrack cache can have the following specialized
attributes:
��maximum size: the maximum size of the object - for

files, it can be larger than the size of the object in the
cache,

��transmitted bytes: the amount of information that has
been sent to users from this object. This can take into
account user aborts: when an object is used to serve a
hit, the number of bytes downloaded before the user
sent an abort is added to the transmitted bytes of the
object.

��scaled access time: a number that takes into account
the updated part of the object. When the object is
accessed, the difference between the present time and
the object's previous access time is weighted by the
portion of the object that has been requested and this
number is added to the scaled access time. If requests
are always made for entire objects, such as in Web
caching, this policy is equivalent to LRU.
The first specialized policy we present is a

file-based policy that tries to take into account the
proportion of the file that is stored in the cache. If the
cache stores almost the whole file, then it has the best
chance of serving a range request for that file. The
policy will be called Minimum Relative Size
(MINRS): it removes from the cache the files that have
the smallest cached content relative to the entire file
size. For range-based policies, we have evaluated only
one specialized policy, that of MINRS.

Another possibility is to take into account how
much data was served from a cached object. For Web
caching, this is the equivalent of a frequency-based
policy (such as LFU). However, objects in a FastTrack
cache have to take into account user aborts and can
change their sizes when new ranges are added. The
policies of Least Sent Bytes (LSB) and Least Relative
Sent Bytes (LRSB) use the transmitted bytes of an
object. This attribute is increased whenever the object
is used to serve a hit, by the amount of downloaded
bytes before the user sent an abort. LRSB divides that
amount by the maximum file size.

5. Simulator Design

We use a trace driven simulation to compare various

cache replacement strategies. We use CacheSim a
Java-based simulation and traffic statistics package that
has been used to study HTTP traffic and cache filtering
[4]. We extended CacheSim with the capability to
process FastTrack traces and to simulate file- and
range-based policies

CacheSim implements replacement policies as
priority queues. The ordering in the priority queue is
determined by a comparison rule. This implementation
allows easily adapting CacheSim to range-based
caching for the FastTrack protocol.

Cache replacement is executed after objects are
inserted. In other words, it is possible that a new object
causes a temporary cache overflow that is followed by
a reduction of cache size. No high/low watermarks are
used, therefore the cache starts to replace objects when
it reaches maximum capacity and stops removing
objects when it has sufficient space to store the new
object. The main reason for executing cache
replacement after insertion is that before insertion it is
difficult to tell how much space will be needed. When
a new file range is inserted, it could overlap with
ranges already in the cache, and then the cache requires
less space than the entire range size.

CacheSim code is released under the GNU public
license and is available from the authors on request.

6. Comparison of Replacement Policies

The results of the comparison of replacement

policies are presented in Figures 4-6. Figures 4 and 5
present byte hit rates of various policies for full and
partial caching, respectively. Results for both file-
(suffix ‘ -F’ in the plots) and range-granularity (suffix ‘ -
R’) for replacement policies are presented. Figure 6
presents together the performance of the best policies
for partial and full P2P caching. All figures show the
ideal hit rates achievable for an infinite cache for the
trace used. As mentioned in Section 3, the first part of
the trace is used to warm-up the cache, so the presented
results are byte hit rates for a warmed-up cache.

Results for range-based full P2P caching show a
good performance for LRU. On the other hand, the
performance of Minimum Size (MINS) is surprisingly
good, while Maximum Size (MAXS) performs poorly.
A possible explanation is to consider how the cache
determines that a hit occurred and the distribution of
beginnings of range requests: a cache needs to have the
entire requested range in order to serve the request.
However, range requests are evenly distributed across
the entire file. Therefore, cache entries that are large
have a better chance of serving a request. The policy
that removes large cache entries performs poorly, while
a policy that removes small cache entries performs
well.

The poor performance of the Greedy-Dual Size
(GDS) policy can be explained similarly. GDS prefers
to remove larger cache entries, and pays the same
performance penalty as Maximum Size. Minimum

Relative Size (MINRS) does not perform as well as
MINS; the reason could be that this policy may
discriminate against the full inclusion of large objects
that generate a lot of byte hits in the cache. For large
objects, new ranges are very small relative to entire file
size and will be first removed by MINRS.

For full caching, the best performance in terms of
byte-hit rate was obtained for Least Sent Bytes. This
policy has the advantage that it considers available
information about user aborts. Its good performance
may indicate that there exists a locality in the user

aborts - perhaps some large files on slow links are
aborted more frequently than other files. This issue
requires more detailed investigation. The results
indicating the superiority of LSB are in contrast with
the results obtained in [9], where LRU, a frequency-
based policy similar to LFU, and MINS were
compared on a live P2P cache. In that study, LRU
performed slightly better than the frequency-based
policy on the outbound portion of the traffic, while the
two policies performed similarly on the inbound traffic.
The author describes several variants of the frequency-

Figure 4: Comparison of replacement strategies for full caching

Figure 5: Comparison of replacement strategies for partial caching.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

0 40 80 120 160 200 240 280 320 360 400

Cache size [GB]

B
yt

e
hi

t r
at

e
[%

]

MRU-F LRU-F MINS-F LSB-F MRU-R LRU-R
MINS-R MAX GDS-F GDS-R MAXS-F MAXS-R

0%

10%

20%

30%

40%

50%

60%

70%

80%

0 40 80 120 160 200 240 280 320 360 400

Cache size [GB]

B
yt

e
hi

t r
at

e
[%

]

MRU-F LRU-F MINS-F MRU-R LRU-R MINS-R
LSB-F MAX GDS-F GDR-R MAXS-F MAXS-R

based policy used, and states that the best results were
obtained by a policy that used the number of requests
from unique clients as a measure of frequency. Thus,
results obtained in [9] are not directly comparable with
our results, since LSB uses the amount of sent bytes
taking into account user aborts.

Range-based policies did not perform significantly
better than file-based policies overall. However, for
full caching some of the range-based policies (notably
LRU) significantly outperform their file-based
equivalents. Also, for partial caching the best policy
(for large caches) was range-based LRU which slightly
outperformed LSB.

Results for full P2P caching indicate a maximum
byte hit rate of 67% (this is similar to the estimate in
[2]). However, when compared to [2], the cache size
necessary for a byte hit rate that is close to maximum is
different. In our simulations, the size of 200GB (as
proposed in [2]) leads to a lower byte hit rate. Only a
cache that is twice larger (400GB) could obtain a byte
hit rate about 15% smaller than the theoretical
maximum. This difference is explained by an increase
in sizes of transmitted files since the observations
reported in [2]. When the cache sizes we study are
compared to the disk and memory sizes of the cache
used in the experimental setup (200GB and 1GB,
respectively) it becomes evident that effective cache
replacement policies are can bring significant savings.

 A FastTrack cache able to serve partial hits
(requests for ranges that overlap with the ranges
available in the cache) can achieve a higher byte hit
rate. This result indicates that the performance penalty
for maintaining transparency is significant. The best

policy for full caching was the file-based policy of
LSB. For partial caching the difference between LSB
and LRU was small. The LRU and MINS range-based
policies performed slightly better than their file-based
variants for larger cache sizes.

We also simulated a cache operation that ignores
user aborts. This approach however leads to a sharp
increase in the number bytes downloaded by the cache.
When the cache does not ignore user aborts, an infinite
cache downloaded about 1.5 TB (for the first log).
When the cache ignores user aborts, byte hit rate grows
to as much as 90% however the generated traffic grew
to 30TB. We infer that this form of prefetching is not
desirable when the main goal is traffic reduction.

7. Summary and Future Work

The results presented here are only a first step in

exploring cache replacement policies for FastTrack
traffic. The large volume of this traffic (thus high
potential caching benefits) and the large cache sizes
(thus nontrivial costs associated with caching) only
underline that efficient cache replacement policies are
relevant for this type of traffic. Additionally, file-
sharing traffic does not encounter the consistency
problems that are now prevalent for Web traffic.

Comparing the ideal byte-hit rate for full hits with
the ideal byte-hit for partial hits shows that the latter
approach could improve the byte-hit rate by about
13%. However, a cache can serve partial hits only at
the expense of losing transparency. This motivates an
extension of the FastTrack protocol with a control
message that notifies the requesting user agents that

Figure 6: Best policies for partial and and full P2P caching

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

0 40 80 120 160 200 240 280 320 360 400

Cache size [GB]

B
yt

e
hi

t r
at

e
[%

]

LSB-F-FULL LSB-F-PARTIAL LRU-R-FULL
LRU-R-PARTIAL MAX-PARTIAL MAX-FULL

only parts of the requested range are served. The user
agent could then initiate requests for the missing parts
of the range and the cache would still operate
transparently.

Range-based replacement policies did not perform
better than the best file replacement policies .
However, range-based variants of basic policies
performed better when associated with full P2P
caching.

The best replacement policies for FastTrack traffic
are yet to be discovered. The possibility of
specialization is large, and the potential of range-based
policies that offer more flexibility is not yet fully
exploited. The best policy proposed in this paper,
which is a variant of a frequency-based policy that uses
information about the number of downloaded bytes
before a user abort, performs better than traditional
policies used for Web caching, which shows the
validity of the specialization approach. An important
target of our future work is the development of other
specialized policies. We also hope to validate our
results on other traces and by comparing predicted hit
rates with live cache performance.

8. References

[1] L. Cherkasova. Improving WWW Proxies Performance

with Greedy-DualSize Frequency Caching Policy, HP
Laboratories Report No. HPL-98-69R1, April, 1998.

[2] N. Leibowitz, A. Bergman, R. Ben-Shaul, and A. Shavit,
Are File Swapping Networks Cacheable? Characterizing
P2P Traffic, presented at 7th International Workshop on
Web Content Caching and Distribution (WCW'03),
Boulder, CO, 2002.

[3] N. Leibowitz, M. Ripeanu, A. Wierzbicki,
Deconstructing the Kazaa network, in proceedings of 3rd
IEEE Workshop on Internet Applications, (WIAPP'03),
San Jose, California, June 2003.

[4] M. Kurcewicz, A. Wierzbicki, W. Sylwestrzak, Filtering
algorithms for proxy caches, Elsevier, Computer
Networks and ISDN Systems, vol. 30, no. 22-23, 1998,

[5] G. Barish, K. Obraczka, World Wide Web Caching:
Trends and Techniques, IEEE Communications
Magazine Internet Technology Series, May 2000.

[6] J. Wang, A Survey of Web Caching Schemes for the
Internet, ACM Computer Communication Review, vol.
25, no. 9, pp. 36-46, 1999

[7] K. P. Gummadi, R. J. Dunn, S. Saroiu, S. D. Gribble, H.
M. Levy, J. Zahorjan, Measurement, Modeling, and
Analysis of a Peer-to-Peer File-Sharing Workload,
Proceedings of the 19th ACM Symposium on Operating
Systems Principles (SOSP-19), October 2003.

[8] S. Saroiu, K. P. Gummadi, R. J. Dunn, S. D. Gribble, and
H. M. Levy, An Analysis of Internet Content Delivery
Systems, Proceedings of the 5th Symposium on Operating

Systems Design and Implementation (OSDI), December
2002

[9] R. J. Dunn, The Effectiveness of Caching on a Peer-to-
Peer Workload, Masters Thesis, University of
Washington, December 2002

