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Abstract

The Web Services Resource Framework defines
conventions for managing state in distributed systems
based on Web services, and WS-Notification defines
topic-based  publish/subscribe  mechanisms. We
analyze five independent and quite different
implementations of these specifications from the
perspectives of architecture, functionality, standards
compliance, performance, and interoperability. We
identify both commonalities among the different
systems (e.g., similar dispatching and SOAP
processing mechanisms) and differences (e.g.,
security, programming models, and performance).
Our  results provide insights into effective
implementation approaches. Our results may also
provide application developers, system architects, and
deployers with guidance in identifying the right
implementation for their requirements and in
determining how best to use that implementation and
what to expect with regard to performance and
interoperability.

1. Introduction

An airline reservation system, a CPU management
system, and a workflow system all have in common
that they provide their clients with access to some
(typically abstracted) view of their internal “state.” In
varying ways, each such system allows its clients to
refer to stateful entities (reservations, CPUs, jobs), to
access those entities’ properties, and (at least in the

case of the reservation and workflow systems) to
manage their lifetime. This commonality of purpose
has motivated the Open Grid Services Architecture
(OGSA [1]) to identify state modeling and
management as a fundamental requirement for
service-oriented architectures.

Such considerations have led to the development
of four specifications known collectively as the Web
Services Resource Framework (WSRF [2]), which
define conventional interfaces and behaviors for
representing, abstracting, and manipulating state in a
Web services framework. Three related WS-
Notification (WSN [3]) specifications define interfaces
and behaviors that allow clients to subscribe to
changes in state, thus providing for push-mode access
to state components.

While final WSRF and WSN specifications were
still being finalized at the time of writing within
OASIS, the importance of these specifications has
motivated multiple groups to develop
implementations.  The  availability of these
implementations offers the opportunity to gain insights
into the merits of these specifications and different
implementation approaches.

To this end, we report here on a study in which
we compared and contrasted the following five
implementations from the perspectives of architecture,
functionality, performance, and standards compliance:
e GT4-Java, the Java Web Services Core of the

Globus Toolkit v4 [4];
e GT4-C, the C Web Services Core of the Globus
Toolkit v4 [4];



* pyGridWare, a Python WSRF implementation
[5], which is also distributed with GT4 as its
Python Web services Core (“GT4-Python™);

e the Perl-based WSRF::Lite [6]; and

e WSRF.NET, an implementation of WSRF and
WS-Notification on the .NET Framework [7].
These systems are developed by different teams

and differ in terms of implementation language,
programming model, and, in several regards, overall
goals. Thus, we believe that they provide a good basis
for studying general WSRF/WSN implementation
approaches.

We find that, because WSRF/WSN is consistent
with the recommendations of the WS-Interoperability
Basic Profile, the five systems achieve a base level of
interoperability with regard to XML, HTTP, SOAP,
and WSDL. We also see significant commonalities
with regard to dispatching and SOAP processing
techniques. On the other hand, we see significant
differences in security, programming models, and
performance. We describe these differences and relate
them to design goals and performance measured in a
set of benchmark experiments.

We organize the rest of this paper as follows. In
Sections 2 and 3, we introduce the specifications and
describe  basic  WSRF/WSN  implementation
techniques, respectively. In Section 4, we compare and
contrast the five systems. In Section 5, we present and
discuss the results of our performance experiments and
in Section 6 we discuss interoperability. We conclude
in Section 7.

2. WSRF and WSN Background

The WSRF and WSN specifications were introduced
in January 2004, building on experience gained with
the Open Grid Services Infrastructure (OGSI [8]).

The WSREF specifications define the WS-Resource
construct, a “composition of a Web service and a
stateful resource” described by an XML document
(with known schema) that is associated with the Web
service’s port type and addressed by a WS-Addressing
Endpoint Reference (EPR) [9]. The four WSRF
specifications being standardized in OASIS [10]
define how to represent, access, manage, and group
WS-Resources:

*  WS-ResourceProperties [11] defines how WS-
Resources are described by XML “Resource
Property” documents that can be queried and
modified. A Resource Property document is a view
or projection of the state of the WS-Resource, but
is not equivalent to the state.

e WS-ResourceLifetime [12] defines mechanisms
for both explicit destruction and implicit (lease-

based) destruction of WS-Resources. (There is no
defined creation mechanism.)

e WS-ServiceGroup [13] describes how collections
of Web services and/or WS-Resources can be
represented and managed.

*  WS-BaseFaults [14] defines a standard exception
reporting format.

The five WSRF specifications are compliant with
the WS-Interoperability (WS-I) Basic Profile [15],
meaning that any WS-I-compliant Web services client
can interact with any service that supports WSRF
specifications. From the client’s perspective, WSRF
simply defines conventions for the message exchanges
used to interact with state, thus making services that
follow these conventions easier to use and manage.

Notification is not part of WSRF, but several
WSRF specifications reference notification in a
generic manner. Thus, a WSRF implementation
typically also implements at least some functionality
defined in the three “WS-Notification” (WSN)
specifications: WS-BaseNotification [16], the simplest
form of notification possible; WS-
BrokeredNotification [17], which allows for
intermediaries and an extra level of abstraction
between producers and consumers; and WS-Topics
[18], a description of the types of topics that can be
considered part of notification. WSN is also being
standardized in OASIS [19].

We use a simple example to illustrate how the
interfaces and behaviors defined in WSRF and WSN
can be used to advantage when developing service-
oriented architectures.

In this example, a “job factory” that supports
requests to create computational tasks defines an
interface via which each job is modeled as a WS-
Resource. Creation of a job returns an EPR to a WS-
Resource corresponding to the job’s status; subsequent
requests to monitor job status can then be handled via
WS-ResourceProperties mechanisms, while job
lifetime can be managed via WS-ResourceLifetime
mechanisms.

In a different context, the same mechanisms might
be used to manage resource reservations or data
transfers. This uniform treatment of similar concepts
in different contexts can simplify implementation of
both clients and services.

3. Implementing WSRF and WSN

We present a canonical implementation architecture
that illustrates the basic structure adopted in all five
WSRF/WSN implementations. Figure 1 illustrates this
architecture. The large box represents the Service
Hosting Environment. This “WS-Resource-aware
container” consists of one or more WSRF-compliant



user-supplied services, typically based in part on code
that the WSRF/WSN implementation provides to
facilitate service development and deployment. We
introduce its various components by stepping through
the stages involved in processing a client request.
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Figure 1. Generic service hosting environment
architecture

A request from a WSRF-compliant Client
generally enters the service hosting environment (1),
where the Security Handler examines the request and
selects the protocol that will be used, authenticates the
client, and if necessary creates a security context.
(Some implementations perform dispatching before all
security processing is completed—e.g., to allow per-
service authorizations.)

For message-level security protocols, the Security
Handler verifies requests and signs responses. If
security requirements are satisfied, the message is
generally passed to a Dispatch mechanism (2) that
routes the message to the correct WS-Resource (3).
This WS-Resource is, again, a combination of “static”
service functionality and WS-Resource-specific state.
The associated state is typically retrieved from
“storage” for the invocation (4) and placed back into
storage once the request is satisfied (5). Once the
service functionality is complete (6), the message
generally passes back through the security handler (7),
for example to digitally sign the response.

Table 1: Summary of key features of the five WSRF/WSN implementations

GT4-Java GT4-C pyGridWare WSRF::Lite WSRF.NET
C#/C++/
Languages supported Java C Python Perl VBasic / etc.
;’\rfsf-i?eecurlty password Yes No In progress In progress Yes
WS-Security X.509 profile Yes In progress Yes In progress Yes
WS-SecureConversation Yes No Yes No Yes
TLS/SSL Yes Yes Yes Yes Yes
Authorization Multiple Multiple Callout None Callout
Persistence of WS-Resources Yes Yes Yes Yes Yes
Depends on
Memory Footprint JVM + 10MB 22 KB 12 MB 12 MB persistence
mechanism
Works  with  unmodified Yes N/A Yes Yes Yes
hosting environment (Apache) (Twisted) (Apache) (ASP.NET)
Supports WS-I Basic Profile Yes Yes Yes In progress Yes
Supports
Wg?l Basic Security Profile Yes Yes Yes No Yes
. Yes Yes (WSE
Logging (Log4)) Yes Yes Yes diagnostics)
WS-ResourceLifetime Yes Yes Yes Yes Yes
WS-ResourceProperties Yes Yes Yes Yes Yes
WS-ServiceGroup Yes Yes Yes Yes Yes
WS-BaseFaults Yes Yes Yes Yes Yes
WS-BaseNotification Yes Consumer Yes No Yes
WS-BrokeredNotification Partial No No No Yes
WS-Topics Partial Partial Partial No Partial
CVS access Yes Yes Yes Read only In progress
Bug tracking (e.g., bugzilla) Yes Yes Yes Yes Yes




The Lifetime Management component keeps
track of the WS-Resources created by the client
requests. It monitors each WS-Resource Property and
updates the Resource Property state following a set
Resource Property request. This component is also
responsible for cleaning up WS-Resources when their
termination time has expired.

Similarly, the Notification Producer/Consumer
can be viewed as an independent activity within the
service  hosting  environment. The WS-
BaseNotification component handles subscription
requests to monitor a particular resource’s state.
When a resource changes to a state that matches a
subscription request, a Notification response is
returned to the client (8).

4. The Five Systems Described

We now describe the five systems, focusing in
particular on notable differences in functionality
provided and implementation approach. Table 1
summarizes the key features that we examine in this
discussion.

4.1. Transport and SOAP Processing

Each system requires machinery for processing the
HTTP protocol messages used to transport requests
(and responses) and for deserializing (and serializing)
the SOAP messages carried on that transport.

With the exception of GT4-C, each system uses
existing code for this purpose: Apache Axis in the
case of GT4-Java, Zolera SOAP Infrastructure (ZSI)
for pyGridware, SOAP::Lite for WSRF::Lite, and
Microsoft Internet Information Services (IIS) and the
Web Services Enhancements (WSE) for WSRF.NET.
GT4-C builds on libxml2 for XML parsing but
otherwise provides its own implementation of SOAP
and HTTP processing, via an HTTP driver that plugs
into the XIO transport stack [23].

These different transport and SOAP processing
systems differ in their performance and robustness,
but all offer similar capabilities.

4.2. Security Issues

The Security Handler of Figure 1 can provide for
client authentication and also for message integrity
and message privacy. (We discuss authorization in
Section 4.8 below.) These three functions can be
provided at either the message level or the connection
level, with different performance characteristics. (We
examine performance in detail in Section 4.)
Message-level security is mandated by the WS-I

Basic Security Profile [20] and has advantages when
routing individual messages; transport-level security
can provide higher performance when many
messages must be dispatched between a client and a
server.

We encounter three security protocols in the
systems studied here: two message-level protocols,
SecureConversation and SecureMessage, and the
TLS/SSL transport-level security protocol.

SecureConversation is based on the WS-Secure
Conversation specification [21] and creates a security
context using the X.509 proxy certificates of the
client and container. The security context is used to
sign and verify the body and necessary header
elements in each of the messages. Depending on the
implementation, creating a context requires an initial
cost of at least three request/response messages.

SecureMessage does not create a security context
and incur this cost; instead, necessary elements are
signed in each method in conformance with the
OASIS standard for SOAP Message Security [22] by
using either the X.509 Token Profile or the Username
Token Profile. SecureMessage is useful for single
request/response interactions, as the client does not
have the cost of creating the security context.

GT4-Java, GT4-C, pyGridWare, and
WSRFE.NET support all three security protocols.
However, WSRF.NET’s implementation of Secure
Conversation will not interoperate with the other
three systems’ SecureConversation implementations
because WSRF.NET inherits its SecureConversation
from WSE. While the SecureConversation spec
defines message formats for the exchange of
cryptographic data necessary to establish a secure
session, it does not define a single algorithm for
computing that data, and WSE and GT4/pyGridWare
implement different algorithms. WSRF::Lite only
supports transport-level security.

4.3. Web Service Dispatch and Container

Having received a SOAP request and performed
security processing, the relevant operation must be
identified and dispatched, with message contents
passed in an appropriate manner. Then, any reply is
constructed and returned for SOAP processing and
transport.

Each system’s WS-Resources exist inside a
container process within which these operations take
place. Each system has similar functionality in this
layer. WSRF.NET uses ASP.NET, GT4-Java can use
Tomcat/Axis, and pyGridWare uses Twisted. Some
systems provide their own containers: GT4-Java and
pyGridWare can run stand-alone, GT4-C has its own
container, and WSRF::Lite provides two “Container”



scripts to host WS-Resources: a standard Container
and a secure Container that uses SSL.

4.4. Persistence

Once created, a WS-Resource must persist between
service invocations until the end of its lifetime,
meaning that the “state” of a WS-Resource after one
invocation should be the same as its state before the
next. Persistence can be achieved by holding the
resource in memory, writing it to disk, or storing it in
a database. Each system provides an interface that
allows service authors to use custom (or pre-existing)
persistence mechanisms, but each system also
provides a different default configuration.

GT4-Java, GT4-C, WSRF::Lite and pyGridware
all persist WS-Resources in memory by default. This
approach  provides the Dbest response-time
performance but is the least fault-tolerant. These
systems also come with modules that allow resources
to be saved to disk, providing the ability to survive
server failure at the cost of some performance.

WSRF.NET uses a database by default. This
approach is slower than in-memory storage (although
write-through caching makes it competitive), but
provides fault-tolerance and access to powerful
query/discover mechanisms that are not present in the
file system approach.

4.5. Finding / Discovering WS-Resources

Most requests to a WS-Resource require access to the
resource’s state. The five systems differ in how
resources are indexed and retrieved.

GT4-Java and pyGridWare implement a
ResourceHome interface, which allows pluggable
discovery mechanisms. This interface contains the
find() method, which discovers resources based on a
supplied key, such as the resource name.

WSRFE.NET uses a database query to find
requested resource(s). This query mechanism makes
it easy for services to provide functions that access
multiple resources, such as management functions. In
other words, queries can not only lookup resources
based on unique key values, but also based on the
data contained within the resource, for example “find
all WS-Resources owned by Bob.”

GT4-C defines interfaces for manipulating
resources and provides a default implementation of
those interfaces. Alternative implementations can be
provided that, for example, do not require that any
resource and state information be maintained within
the hosting environment.

WSREF::Lite provides a number of ways for a
WS-Resource to find its state. In some cases, the state

is implicitly in the services execution context, while
in other cases the Container provides a key to the
developer which he uses to find the state: for
example, the key could be a database index.

4.6. Lifetime Management

Lifetime management for WS-Resources includes
both resource creation and resource destruction.
Creation involves adding a new resource to the
resource storage system, while destruction involves
removing resources in response to immediate
destruction requests as well as lifetime expiration.

Several systems handle creation similarly,
providing a create() method that a service can call to
place a new WS-Resource in the service’s chosen
store. For example, GT4-C’s create() method adds a
new resource to whichever store is used by the
service’s ResourceHome, while WSRF.NET’s
create() adds the new resource state to a database.
GT4-Java does not define a specific create()
operation since creation behavior can be different
among various WS-Resources. For example, a
resource can be created by some out-of-band process
instead of through an explicit create() operation.

Different implementations remove expired
resources via different mechanisms. GT4-Java and
pyGridware leverage timing mechanisms in their
container environments to schedule periodic resource
deletion tasks. This approach exploits the container’s
ability to manage memory footprint and not inspect
resources that are not resident in memory. In GT4-
Java, a user can also provide its own method of
removing expired resources. WSRFE.NET uses a
separate Windows service (not Web service) to run
through the database periodically, because ASP.NET
does not easily handle this periodic scheduling. This
approach can be computationally efficient because it
can be performed with a database update, and so does
not require the loading of resources into memory to
check if they are expired.

WSREF::Lite deals with lifetime in different ways
depending on how the service developer has chosen
to implement the WS-Resource. In some cases, the
WS-Resources rely on the timing mechanism of the
underlying operating system. In other cases, for
example when the state is stored in a file or database,
the state is only garbage collected if someone tries to
access a stale WS-Resource. A disadvantage of this
approach is of course that resources that are never
accessed are never discarded.

GT4-C uses the event-handling architecture built
into the Globus Toolkit’s C common libraries, which
provide time-based event triggering and polling.
Callbacks are used to manage the lifetime of a given
resource.



4.7. Programming and Tooling

A WSRF/WSN implementation’s programming
model defines the interface seen by developers of
services that implement WSRF/WSN interfaces. The
primary issue here is how the corresponding Web
service implementation is constructed, which
involves both architecture and tooling. The five
implementations differ greatly in their approaches.

The GT4-Java programming model decouples
the Web service (business logic) from the resource
(state). The Web service implementation is usually a
plain, stateless Java object. A service can be
composed from several independent ‘“operation
providers,” thus enabling reuse of common Web
service operations among services. For example, a
single implementation of the WS-ResourceLifetime
explicit destruction operation can be reused in any
service. The resource implementation is a Java object
that implements a set of appropriate callback
interfaces. For example, a resource can choose to
implement a ResourceLifetime interface to enable its
destruction through soft state.

Resources are managed by a ResourceHome,
which is responsible for resource discovery,
destruction, and/or creation. The GT4-Java design
addresses flexibility and scalability as follows. The
core functionality is defined as interfaces or abstract
classes so that custom and more optimized
implementations of these interfaces can be plugged
in. For example, a custom ResourceHome
implementation could offload most or all of its
operations to a database, minimizing the overhead of
keeping the resource representation in memory.

GT4-Java provides two basic ResourceHome
implementations. One, for persistent resources, relies
on the JVM garbage collector and a caching
algorithm (e.g., least-recently-used) to remove
unused resource objects from memory. The other
provides a basic persistence helper API for serializing
and deserializing resources to and from a file using
Java and XML serialization methods. A resource can
of course choose to provide its own way of storing
and retrieving its state.

GT4-C generates C-language stubs for a WSRF-
enabled service that implement functions for each
operation defined in the service schema, and that
support EPR encapsulation by allowing EPR handles
to be passed directly to each stub. Thus, for example,
the createCounter operation of the CounterService is
usually called with just the service endpoint: e.g.,
“http://.../CounterService” in Figure 2.

result = CounterPortType_createCounter (
client_handle,
"http://.../CounterService",
createCounterInput,
&createCounterResponse,
&fault_type, &fault_value);

Figure 2. Creating a GT4-C service endpoint

On the other hand, the preferred function call for
the add operation takes a handle to the
EndpointReference, thus using the EPR as an opaque
reference to the WS-Resource (Figure 3).

result = CounterPortType_add_epr (
client_handle,
createCounterResponse—>
EndpointReference,
add_value, &add_response,
&fault_type, &fault_value);

Figure 3. Client sall for GT4-C Add operation

The C bindings generated include both blocking
client stubs and also asynchronous event-driven
functions that allow client implementations to
perform many invocations at once, instead of waiting
for each response. This machinery allows the
underlying bindings to take advantage of
multithreading on SMP architectures, and also
provides a simple mechanism for performing many
operations asynchronously.

globus_result_t
CounterPortType_add_impl (
globus_service_engine_t engine,
globus_soap_message_handle_t message,
globus_service_descriptor_t *
service,
xsd_int * add,
xsd_int * addResponse,
const char ** fault_name,
void ** fault);

Figure 4. GT4-C service skeleton binding

The passed-in callback for the asynchronous stub
only gets called when the response has been received
and deserialized. The service skeleton bindings
(Figure 4) consist of a function per operation that
must be filled in by the service implementor. Once
these service implementation functions are filled in,
the service can be considered implemented. Instead
of carrying state via object encapsulation as many
other languages choose to do, any state information is
maintained by the parameters passed to the function.

pyGridWare seeks to provide as simple an
interface as possible while still exposing full
WSRF/WSN functionality. The combination of the
quick development time of Python and the ease of
use of pyGridWare make it an ideal platform for



rapid prototyping. Figure 5 shows the simplest
possible client. First the generated Counter Service
code is imported. A locator and a port are instantiated
and used to locate the service and create an instance.
From the create response we get the EPR, which is
used to access our newly created counter service
instance. Next an add request is instantiated using the
generated Counter Service code. We get a new port
object from the locator object using the EPR; the new
port corresponds to the counter service instance
previously created. Using the port object we send our
add request to the Counter Service.

import Counter_Service as COUNTER_SERVICE

locator =
COUNTER_SERVICE.CounterServiceLocator ()
port =
locator.getCounterPortType (
portAddress=url)
request =
COUNTER_SERVICE.CreateCounterRequest ()
response = port.createCounter (request)
epr = response._EndPointReference
request =
COUNTER_SERVICE.AddInputMessage (10)
port = locator.getCounterPortType (
portAddress=url,
endPointReference=epr)
response = port.add(request)

Figure 5. pyGridWare counter client

On the server side, the developer must edit two
automatically generated files to implement their
service. The server file contains the implementation
of the service logic, and the properties file contains
the associated Resource Properties. This division
allows for a clean separation between the service
state as represented by the Resource Properties and
the stateless service.

The goal of WSRF.NET is to make
programming a WSRF.NET service as easy as
programming any other Web service. WSRE.NET
provides an attribute-based programming model that
allows service authors easily to define both the
stateful resources and the Resource Properties used
by their services. This model also allows
programmers to easily “import” functionality defined
in the WSRF or WSN specifications.

For example, consider the code fragment shown
in Figure 6. The [Resource] attribute annotates class-
level data members whose values should be persisted
in the database as part of a WS-Resource. This means
that a unique value of “v” will be loaded, based on
the EPR in the request headers, for each method
invocation. The method may use/manipulate this
value as any other data member. When the invoked
method completes, v will be saved back to the
database. The [ResourceProperty] attribute annotates

a C# Property whose “get” method will be called
whenever a client uses one of the WS-
ResourceProperty functions for retrieving resource
property values (a similar “set” method can be
defined  for  client  invocations  of  the
SetResourceProperties method).

[WSRFPortType (typeof (GetResourcePropertyPo

rtType)) ]
public class MyService : ServiceSkeleton

{
[Resource]
int v;

[ResourceProperty]
public int DoubleValue
{

get { return v * 2; }

}
public MyService() { // constructor }

[WebMethod]
public int MyMethod ()
{ // service's methods }

Figure 6. WSRF.NET service code

Note that the ResourceProperty value can be
computed dynamically, using a portion of the WS-
Resource  state if required. Finally, the
[WSRFPortType] attribute makes it straightforward
for the service author to allow the service to support
the WS-ResourceProperty method
GetResourceProperty. All port types defined in all
the WSRF and WSN specifications can be similarly
imported, causing the importing service to export
both their methods and their ResourceProperties. A
tool called the PortTypeAggregator takes the user-
defined service and creates the deployable service
based on these attributes.

Finally, Perl’s type-less nature, strong support
for text manipulation, and dynamic nature make
WSREF::Lite useful for rapid prototyping of Web
services. On the minus side, there is little support for
automatic WSDL generation, and Perl
implementations of certain important Web service
specifications such as WS-Security [22] are lacking
as of May 2005. Figure 7 shows a sample Perl
module that provides a counter WS-Resource.



package Counter;
use strict;

use vars gw (@ISA);
use WSRF::Lite;

@ISA = gw (WSRF::WSRL); #inherit WS-RF ops

# Declare our ResourceProperty count
SWSRF: :WSRP: :ResourceProperties{count} =
0;

#add operation
sub add {
my (Sclass, $val, Senvelope ) = @_;

#increment counter
SWSRF: :WSRP: :ResourceProperties{count} =
SWSRF: :WSRP: :ResourceProperties{count}
+ Sval;

#return a SOAP Header and the new value

#for count

return WSRF::Header: :header ($Senvelope),
SWSRF : :WSRP: : ResourceProperties{count};

}

1; #end of module

Figure 7. WSRF::Lite counter service code
4.8. WS-Notification

A system that supports WS-BaseNotification must
provide for the registration and processing of
subscriptions. =~ The  implementations  support
notification to varying degrees. WSRF.NET
implements all three WS-Notification specifications.
GT4-Java and pyGridWare do not implement WS-
BrokeredNotification and only support flat topic
spaces and basic subscriptions: the precondition,
selector, and the subscription policy elements of the
subscription are ignored. GT4-C does not implement
producer-side notification (NotificationProducer,
SubscriptionManager). WSRF::Lite does not support
any Notification specifications.

4.9. Authorization

The systems differ significantly in the sophistication
of the authorization mechanisms provided. In brief,
GT4-Java, pyGridWare, and WSRF.NET define an
authorization callout that allows the service
developer to provide custom authorization behavior.;
GT4-Java  also  provides  several  build-in
implementations for this callout. GT4-C implements
three built-in mechanisms, while WSRF::Lite client
security information to the WS-Resource through
environment variables in a similar manner to CGI
scripts in Apache, leaving the WS-Resource
implementation to implement its own authorization if
desired.

pyGridWare’s callout interface provides the user
function with the security context and requested
operation name; the user function returns true or false
depending on whether the requester is authorized to
call the operation. This interface can be used to
implement a simple ACL list or to interact with a
policy decision point (PDP). No default
implementation is provided, but an authorization
module that can parse SAML tokens is planned.
WSRF.NET is similar to pyGridWare with regard to
its authorization support.

GT4-Java provides a flexible infrastructure level
framework for making authorization decisions. This
framework defines a PDP interface, which PDPs
implement to provide the framework with
authorization decisions. PDPs may be chained to
arrive at a final authorization decision. The
evaluation is performed in a “permit overrides”
fashion, i.e., if any PDP in the chain returns denied
the whole chain evaluates to denied. GT4-Java also
provides four different PDP implementations: (a) self
authorization, which evaluates to permit if the client
identity and the identity of the target match; (b)
identity authorization, which evaluates to permit if
the client identity matches the identity specified when
the PDP was created; (c) gridmap authorization,
which evaluates to permit if the client identity is
found in a ACL (and also returns a local identity for
the client, such as a local UNIX user name), and (d)
OGSA SAML-based authorization callout, which
evaluates to permit if the authorization service that
this PDP interacts with authorizes the client.

GT4-C supports basic host, identity, and self
authorization. The integration of an authorization
callout interface is planned.

5. Performance Evaluation

To compare the performance of the five systems, we
defined WSDL for a “counter service” and created
five service/client implementations based on this
WSDL. Using this service we then compared round-
trip times for common WSRF/WSN operations.

The example counter service has a single
resource property which expresses the value of the
counter. The property can be set and retrieved using
standard WSRF functions (GetResourceProperty and
SetResourceProperty). Once created, counters can be
destroyed by using WS-ResourceLifetime functions.
Interested parties can also be notified of changes in
the counter’s value using WS-Notification.

We defined five performance tests: four that
evaluate key primitive operations, and one that
evaluates WS-Notification.

1. GetRP: The average duration over 10000
invocations for client to invoke



GetResourceProperty (getting the value of the
counter).

2. SetRP: The average duration over 10000
invocations for client to invoke
SetResourceProperty (setting the value of the
counter).

3. CreateR: The average duration over 1000
invocations for client to create a counter as a
WS-Resource. We use 1000 invocations in this
test and the next to achieve a manageable
duration.

4. DestroyR: The average duration over 1000
invocations for client to destroy a WS-Resource
counter.

5. Notify: A client first subscribes to the
“ResourcePropertyValueChanged” event for a
particular counter. Then, we measure the average
over 100 times of first setting the counter to a
new value (via SetResourceProperty) and then
waiting for the notification to arrive.

We ran each of these five tests in six scenarios:

1. No security; client and service on same machine
X.509-based signing of request and response;
client and service on same machine

3. https; client and service on same machine

4. No security; client and service on different
machines

5. X.509-based signing of request and response;
client and service on different machines

6. https; client and service on different machines

We used four identically configured machines:
Dual (2x) AMD Opteron 240 - 1.4GHz w/IMB L2
Cache, 2GB (4x512MB) PC2700 DDR333 Reg.
ECC, Ix Seagate 120GB EIDE 7200 RPM, S8MB
cache. Two machines ran Windows Server 2003 and
were used only for the WSRF.NET tests. The other
two machines ran redhat 8.0 (Linux kernel 2.6.9-
1.667smp) and were used by every other project. For
the GT-4 Java tests, Sun JVM 1.4.2_04-b05 was
used. The JVM was started with "-Xms64m -
Xmx256M” options. (Scenarios 3 and 6 were tested
with GT 4.0.1, with connection persistence;
Scenarios 1, 2, 4, and 5 were tested with GT 4.0,
without connection persistence). In the C tests, the
gce compiler was used with —O3 optimizations.

Tables 2-4 present the results in pairs, with each
“pair” comprising a particular non-distributed
scenario along with its distributed counterpart. All
numbers are in milliseconds for a single request.

Table 2: No security (co-located/distributed). See text for details.

GT4 Java GT4 C pyGridWare WSREF::Lite WSRF.NET
GetRP 10.05/ 10.05 ms 2.24/2.34 ms 25.65/2557ms | 17.6/17.1 ms 8.87/8.23 ms
SetRP 10.06/10.12 2.26/2.34 26.17/25.83 20.4/19.5 8.91/8.95
CreateR 16.34/15.82 2.22/2.29 28.50/27.86 15.0/15.0 17.68 /17.91
DestroyR 14.04 /13.97 2.15/2.21 24.65/24.24 18.0/17.0 13.22/13.13
Notify 27.83/26.25 8.78/9.03 46.52/47.38 N/A 33.85/43.12
Table 3: X.509 signing of request and response (co-located/distributed). See text for details.

GT4 Java GT4 C pyGridWare WSREF::Lite WSRF.NET
GetRP 182.66 / 181.96 ms 15.77/14.77 ms 139.65/140.50 ms N/A 82.4/81.39 ms
SetRP 182.47 / 182.04 15.88/14.99 140.74/142.21 N/A 81.84/82.48
CreateR 188.21 / 188.46 15.95/14.98 133.41/132.26 N/A 96.88 /96.22
DestroyR 182.47 / 182.03 17.10/15.76 137.12136.12 N/A 86.42 / 86.89
Notify 221.28 /219.51 N/A 152.10/244.93 N/A 100.01 / 101.57

Table 4: HTTPS (co-located/distributed). See text for details.

GT4 Java GT4 C pyGridWare WSRF::Lite WSRF.NET
getRP 11.81/11.46 ms 2.75/2.85 ms 151.35/149.67 ms 80.7 /55.6 ms 9.37/12.91 ms
setRP 11.80/11.47 2.77/2.86 152.27/150.79 81.7/96.9 9.76/12.3
createR 18.35/18.00 2.74/2.82 158.33/132.60 78.0/53.0 18.17/20.84
destroyR 15.48/14.92 2.63/2.71 151.33/149.21 81.0/56.0 14.55/16.05
Notify 31.22/29.26 9.26/9.67 172.60/169.07 N/A 35.84/45.0




As might be expected, GT4-C was the fastest in
every test. WSRFENET and GT4-Java were
comparable with “no security.” WSRF.NET is faster
with https because the Microsoft IIS used by
WSRE.NET implements TLS session caching,
allowing a new connection to re-use a previously-
established TLS session key for the client/server—
thus avoiding the expensive session set-up via the
TLS handshake protocol. GT4-Java and GT4-C also
implements HTTP connection caching, but
pyGridWare did not at the time of this writing
(although they are currently implementing it). One
interesting effect, particularly observable with
pyGridWare, is that a client and a service sometimes
run faster when on different machines than when co-
located, because of the CPU-intensive nature of some
of the tests. The data collectively provide a nice
assessment of the state of the art with regard to WS-
Security and TLS implementations -- message-level
security with X.509 signing is an order of magnitude
slower than transport-level security via TLS.

6. Interoperability

One important aspect of the WSRF/WSN
specifications is that they provide interoperable
formats for common message exchanges between
clients and services. In assessing the interoperability
of the five systems, we used each project’s
performance test client against the other projects’
performance test services in the “no security”
scenario. Given the significant progress and effort
that each project continues to make with regard to
interoperability, there are relatively minor issues
involving all of the WSRF/WSN implementations.
Most importantly, our observations to date reinforce
that interoperability is not necessarily a trivial
concern for today as well as for the future (as is the
case for all Web services specifications).

While the state of interoperability is not what
was naively hoped for (if everyone implements the
same specifications, they will interoperate by
default), it is interesting to examine the reasons for
failure. In some cases, HTTP headers (i.e. transport-
specific ~ details outside the WSRF/WSN
specifications) were at issue. In other cases,
application-specific portions of messages (again,
outside the scope of WSRF/WSN) caused problems.
Namespace incompatibilities were the key
interoperability concern that does fall within the
scope of the specs. However, some of these
incompatibilities arise from different versions of the
evolving WSRF/WSN specs having different
namespaces (OASIS uses release dates in the
namespaces for example). While more work is
needed in order to have end-to-end interoperability

between the five systems, it is encouraging that many
of the interoperability issues are not due to the
specifications themselves, but rather idiosyncrasies of
the projects’ toolkits.

7. Summary and Future Directions

We have presented a detailed analysis of five
different implementations of WSRF and WSN,
noting numerous areas of commonality and also
significant differences of approach in some key areas.
We have noted, in particular, differences in
programming model and in overall performance.

The five teams also all plan further development,
as we now review. In addition to these specific tasks,
each team intends to update their implementations to
meet the final WSRF and WSN specifications.

The GT4-Java team will introduce advanced
service management functions such as service
isolation and hot deployment, continue to increase
performance, and improve handling of low memory
conditions. The bulk of Java WS Core’s functionality
was submitted to the Apache Software Foundation’s
new Apollo and Hermes projects, which are now
undergoing the incubation process. Future Java WS
Core development will occur within these projects.

The pyGridWare team will implement SSL
session caching and HTTP connection caching in
pyGridWare to increase performance, and provide
tools to automate wrapping command line
applications and legacy codes as WSRF-compliant
Web services.

The GT4-C team will fill out WSRF/WSN
support by adding producer-side Notification support
for ConcreteTopicPath and FullTopicPath
expressions (only SimpleTopics are currently
supported) and complete support for WS-
ResourceProperties: specifically, "Query Resource
Properties". They are also working to improve the
performance of their marshalling infrastructure and
on infrastructure and usability improvements,
including more robust authorization mechanisms and
better runtime deployment.

The WSREF::Lite team is focused on WS-
Security, after which they will address issues of
usability, interoperability =~ with other ~WSRF
implementations, and notification.

The WSRF.NET team will further develop the
programming model for Web and Grid services, and
focus on the use of WSRF.NET for building higher-
level services such as security services.
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