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Survey of Protocols and Mechanisms for 
Enhanced Transport over LONG FAT PIPES 

 
Abstract 
 
Standard TCP (TCP Reno) is a reliable transport protocol that is well tuned to 
perform well in traditional networks.  However, several experiments and 
analysis have shown that this protocol is  not suitable for bulk data transfer in 
high bandwidth, large round trip time networks because of its slow start and 
conservative congestion control mechanism.  In this document, we review and 
compare different emerging alternatives that try to solve this problem in this 
particular context of very high speed networks.  We believe that these 
innovations are phasing into experimental networks and replacing the stock 
TCP in high performance networking applications. 
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1. Introduction 
 
Existing transport protocols have limitation when they are used in new 
application domain and for new network technologies.  For example, 
multimedia applications need congestion control but not necessarily ordered 
reliable delivery.   This combination is not offered by TCP [1] or UDP [2].  From 
another point of view, TCP has been highly tuned with  certain assumptions in 
mind. For example, when a data segment is lost, it assumes that this was 
most likely due to congestion (i.e. too many segments are contending for 
network resources) [3]. But, for example, in wireless it could be because of 
bad reception at the location of the user. So many efforts have been proposed 
for improving TCP performances in such lossy systems.  TCP performance 
depends upon the product of the transfer rate and the round-trip delay [4]. 
TCP survived the days of low bandwidth, high latency, and high error rates. 
But for several reason it is today not able to cope efficiently with the evolving 
new environment. 
 
In this document, we address the specific problem of transport of bulk data 
transfers in grid environment (more than 1Gbyte) over high latency, high 
bandwidth, low loss paths.  For a Standard TCP connection with 1500-byte 
packets and a 100 ms round-trip time, achieving a steady-state throughput of 
10 Gbps would require an average congestion window of 83,333 segments, 
and a packet drop rate of at most one congestion event every 5,000,000,000 
packets (or equivalently, at most one congestion event every 1 2/3 hours) [5] . 
This is primarily due to its congestion avoidance algorithm, based on the 
Additive Increase Multiplicative Decrease (AIMD) principle.  A TCP connection 
reduces its bandwidth use by half immediately when a loss is detected 
(multiplicative decrease), but takes 1 2/3 hours to use all the available 
bandwidth again in this case if no more loss is detected in the mean time.  
Apparently Standard TCP does not scale well in high bandwidth, large round-
trip time networks.  A lot of efforts are going on to improve performance for 
bulk data transfer in such networks.  To solve the aforementioned problems, 
two main approaches are proposed: One focuses on a modification of TCP 
and specifically the AIMD algorithm, the other proposes the introduction of 
totally new transport protocols.  This is a very active research area in 
networks.  
 
In very high speed context, performances or loss can also occur due to 
problems on the host (sender or receiver side).  We do not consider these 
problems in this document.  We consider the both cases of shared or not 
shared links (e.g. dedicated light path). 
 
This draft document attempts to integrate information drawn from sources 
written for a variety of purposes and which use differing terminology.  As a 
result, this document may be incomplete or contain inaccuracies.  Feedback 
and corrections are welcome.  Contributions describing other protocols are 
also welcome.  Direct comments to datatransport-rg@gridforum.org. 
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2. Methodology and Comparison Criterions 
 

2.1 What are the functions of a transport service and the 
features of a transport protocol? 
 
Transport layer protocols provide for end to end c ommunication between two 
or more host. [ 6 ] presents a tutorial on transport layer concepts and 
terminology and a survey of transport layer services and protocols.  It 
classifies the typical services provided by a transport layer. A transport 
service abstracts a set of functions that is provided to the high layer. A 
protocol, on the other hand refers to details of how a transport sender and a 
transport receiver cooperate to provide that service. The following table gives 
the transport service features: 
 
. CO_message / CO_byte / CL 
. No loss / Uncontrolled loss / Controlled loss 
. No duplicate / May be duplicate 
. Ordered / Unordered / Paritally_ordered 
. Data-integrity / No Data- integrity / Partial Data Integrity 
. Blocking / Non Blocking 
. Multicast / Unicast 
. Priority / Np-priority 
. Security / No security 
. Status reporting / no status reporting 
. Quality of service / No quality of service 
 
The following table gives the transport protocol features: 
 
. Connection oriented / Connection less  
. Transaction oriented (one request/one response) 
. Connection oriented features  
 - signaling in-band / out of band 
 - unidirectional / bidirectional 
 - connection establishment : implicit/  2 way / 3 way handshake 
 - connection termination : gracefully / ungracefully 
. Error control 
 - Error detection 
 - Error reporting 
 - Error recovery 
 - Piggybacking 
 - Cumulative / Selective acknowledgement 
 - Retransmission strategy 
 - Duplicate detection 
 - Forward Error Correction 
. Flow / Congestion control 
 - flow control techniques: sliding window / rate control 
 - flow control for congestion control: fairness , access control 
. Multiplexing / Demultiplexing 
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. Segementation / Reassembling 
 

2.2 Comparison Criterions 
 
Here we list the criterions we concentrate on when we review and compare 
these protocols. 
 

• Performance  
 
Standard TCP is not suitable in high bandwidth, large RTT networks 
because of its low performance in throughput.  Therefore, the performance 
of new protocols should be comparable to TCP in low bandwidth or small 
RTT networks and much better than TCP in high bandwidth, large RTT 
networks. 
 
• Congestion Control  
 
Existence of congestion control mechanisms is critical in avoiding 
congestion collapse.  It is important to include reasonable congestion 
control mechanism if the transport protocol will be used in Internet or other 
best effort public networks.  However, is congestion control still necessary 
in private networks or quality of service is guaranteed? 
 
• TCP friendly 
 
The term “TCP-friendly” or "TCP-compatible" means that a flow that 
behaves under congestion like a flow produced by a conformant TCP.  A 
TCP-compatible flow is responsive to congestion notification, and in 
steady-state uses no more bandwidth than a conformant TCP running 
under comparable conditions (drop rate, RTT, MTU, etc.).  If we strictly 
abide by this requirement all the time, we will be disappointed again in less 
congested, large RTT networks.  In this document, we only evaluate 
whether the protocol is TCP friendly in high-congested networks. All 
protocols in this document are not and should not be TCP friendly in LFP 
(Long Fat Pipe) networks. 
 
• Intra-Protocol Fairness 
 
There are two kinds of fairness: inter-protocol fairness and intra-protocol 
fairness.  The former is the fairness when the protocol competes with TCP 
connections.  The latter is the fairness among the connections using the 
protocol.  The inter-protocol fairness is the same issue as TCP-compatible.  
Intra-protocol fairness will be compared among protocols. 

 
• Easy to deploy 
 
When we have plenty amount of bandwidth in underlying networks, what 
applications need immediately is to deploy transport protocols to utilize the 
huge bandwidth.  In the protocols we are comparing, some need to modify 
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or rebuild operating system kernel, others are just a user level library 
which applications can call immediately. 
 
• Predictable  
 
When we say a protocol is predictable, applications should be able to 
predict its performance based on current network conditions such as 
available bandwidth, round-trip time, etc.  The purpose is two-fold.  Firstly 
users can tell whether the transport protocol is running correctly by 
comparing the prediction and actual performance.  Secondly protocol 
developers can systematically identify the factors that influence the overall 
performance and predict how much benefit any potential enhancement in 
the protocol might provide.  Usually predictability is provided by creating a 
mathematical analytical model for the protocol. 
 
• Target Usage Scenario 
 
“One size fits all” is good but also difficult to accomplish.  Before the 
network speed grew beyond 10 Mbps several years ago, TCP is almost a 
“One Size fits all” transport protocol.  Now it’s time to find other solutions 
for bulk data transfer in LFP networks.  These solutions have different 
preconditions or assumption on underlying networks.  Some protocols 
don't implement congestion control and can only be used in private or 
QoS-enabled networks.  Other seems to be able to coexist with each other 
and with TCP traffic.   
 
 

3. Protocol Description 
 

3.1 Comparison between Two approaches 
 

Before going through the detail of each protocols and comparing all of them, 
we should elaborate the advantages and disadvantages of the two camps.  
 

• Deployable in Internet 
 
TCP variants want to take the place of the current standard TCP.  In order to 
be deployable in the Internet or public networks, they create mathematical 
analytical models and do a lot of simulations to prove the fairness and have 
not the tendency to cause congestion collapse and therefore adopt 
sophisticated congestion avoidance algorithms.  However, the main 
motivation of reliable UDP variants is easy to use and good throughput.  
Usually they are used by a ve ry small amount of users who own a lot of 
bandwidth.  Their applications run on such private networks  and seek to utilize 
the bandwidth as much as possible.  They don’t intend to substitute TCP in 
the Internet. 
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• Easy to deploy 
 
Usually reliable UDP variants provide a C or C++ user space library which 
high performance applications can call.  The users don’t need to modify or 
reconfigure the operating system.  Instead, TCP variants need patch and 
rebuild the kernel, which only system administrators can do. 
 

• Efficiency 
 
Generally TCP variants are implemented in kernel space whereas reliable 
UDP variants are implemented in user space.  Kernel mechanisms are more 
scalable and provide better efficiency.   
 

3.2 Reliable UDP Variants 

3.2.1 Reliable Blast UDP 
 
Contacts : Eric He (eric@evl.uic.edu), Jason Leigh (spiff@evl.uic.edu) 
 
URLs / RFCs / Papers 

• "Reliable Blast UDP : Predictable High Performance Bulk Data 
Transfer", Eric He, Jason Leigh, Oliver Yu and Thomas A. DeFanti, 
Proceedings of IEEE Cluster Computing, Chicago, Illinois, September, 
2002. 

• http://www.evl.uic.edu/cavern/quanta  
 
Principle / Description of Operation  
 
Reliable Blast [7][8] has two goals. The first is to keep the network pipe as full 
as possible during bulk data transfer. The second goal is to avoid TCP’s per-
packet interaction so that acknowledgments are not sent per window of 
transmitted data, but aggregated and delivered at the end of a transmission 
phase. Figure 1 below illustrates the RBUDP data delivery scheme. In the first 
data transmission phase (A to B in the figure), RBUDP sends the entire 
payload at a user-specified sending rate using UDP datagrams. Since UDP is 
an unreliable protocol, some datagrams may become lost due to congestion 
or an inability of the receiving host from reading the packets rapidly enough. 
The receiver therefore must keep a tally of the packets that are received in 
order to determine which packets must be retransmitted. At the end of the 
bulk data transmission phase, the sender sends a DONE signal via TCP (C in 
the figure) so that the receiver knows that no more UDP packets will arrive. 
The receiver responds by sending an Acknowledgment consisting of a bitmap 
tally of the received packets (D in the figure). The sender responds by 
resending the missing packets, and the process repeats itself until no more 
packets need to be retransmitted. 
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UDP data traffic 

TCP signaling traffic 

 
Figure 1. The time sequence diagram of RBUDP 
 
 
Supported operation mode:  
disk-to-disk (i.e. file transfer protocol, not general transport),  
memory to memory (general transport) 
 
Authentication: No 
 
Implementations / API:  Provides C++ API. 
 
Congestion Control Algorithms:  
The congestion control is optional.  The algorithm is 
 
if (lossRate > 0) { 
 Rnew = Rold * (0.95 – lossRate); 
} 
 
Rnew is updated sending rate after each round of blasting.  Rold is the sending 
rate of last round. 
 
Fairness: Not considered. 
 
TCP Friendly: No. 
 
Predictable Performance Model: 
The purpose of developing an analytical model for RBUDP is two-fold. Firstly 
we wanted to develop an equation similar to the “bandwidth * delay product” 
equation for TCP, to allow us to predict RBUDP performance over a given 
network. Secondly we wanted to systematically identify the factors that 
influenced the overall performance of RBUDP so that we can predict how 
much benefit any potential enhancement in the RBUDP algorithm might 
provide. 
 
We developed a comprehensive predictable performance model for RBUDP, 
please refer to our paper on Cluster 2002 for detail. 
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Results: 
We achieve 680Mbps bulk transfer throughput on a 1Gbps link between 
Chicago and Amsterdam.  We think the bottleneck is the memory bandwidth 
of compute rs in both sides, especially the receiving side.  Please read our 
paper for the detail result. 
 
Target Usage Scenario: 
Bulk data transfer.   
 
Very Aggressive.  Only good in private or dedicated networks.  The ideal 
scenario is that you reserve an end-to-end lightpath before running this 
protocol.  You should know how much bandwidth you roughly have.  
Otherwise you can use iperf or netperf to get the idea. 
 
 

3.2.2 TSUNAMI 
 
Contacts : Mark Meiss ( mmeiss@indiana.edu ) 
 
URLs / RFCs / Papers 

• Mark R. Meiss “TSUNAMI: A High-Speed Rate -Controlled Protocol for 
File Transfer 

• README file of tsunami-2002-12-02 release. 
http://www.indiana.edu/~anml/anmlresearch.html 

 
Principle / Description of Operation  
The goal of Tsunami [9] is to develop high performance file transfe r protocol 
(running as a user space application) to transfer files faster in high-speed 
networks than that appears possible with standard implementations of TCP. 
Tsunami uses UDP for data transfer and TCP for transferring control 
information. The UDP datagram size is negotiated during the connection 
setup. The length of the file that is to be transferred is also exchanged during 
the negotiation phase. Single thread handles both network and disk activity at 
the sender side whereas the receiver employs separa te threads for disk and 
network activities.  Receiver periodically makes retransmission request and 
retransmissions have higher priority than normal sends. Receiver periodically 
updates the error rate (calculated based on the number of retransmissions in 
an interval and previous error rate) to the sender and the sender adjusts its 
inter-packet delay based on this value. Receiver sends a complete signal after 
receiving all the datagrams. Tsunami allows the user to configure parameters 
such as  size of the datagram, the threshold error rate (used to adjust sending 
rate), size of retransmission queue and acknowledgement interval. 
 
Supported operation mode:  
disk-to-disk (i.e. file transfer protocol, not general transport)  
 
Authentication: A simple authentication mechanism is used. Upon 
connection establishment, the server sends a small block of random data to 
the client. The client xor’s this random data with a shared secret, calculates 



 9 

MD5 checksum, and transmit the result to server. The server performs the 
same operation and verifies that the results are identical. 
 
Implementations / API: 
Implementation available at http://www.indiana.edu/~anml/anmlresearch.html 
 
 
Congestion Control Algorithms:  
Limited. Sending rate is reduced when loss rate is more than the user 
configurable threshold. 
 
Fairness: Yet to be determined. 
 
TCP Friendly: No 
 
Predictable Performance Model: No 
 
Results: 
TSUNAMI recorded mean transmission rate of 850Mb/s for over 17 hours  on 
the Global Terabit research network between Seattle, Washington and 
Brussels, Belgium. Disk activity was omitted and  experiment used a virtual 
file consisting of short message repeated indefinitely many times. The test 
that involved actual disk activity was able to achieve 600 Mbps. 
 
 
Target Usage Scenario: 
Designed for faster transfer of large files over high-speed networks. 

 

3.2.3 SABUL (Simple Available Bandwidth Utilization Library) 
 
Contacts: 
Yunhong Gu [ygu@cs.uic.edu] 
Robert Grossman [grossman@uic.edu] 
 
URLs / RFCs / Papers 
http://sourceforge.net/projects/dataspace/ 
 
Principle / Description of Operation  
The primary goal of SABUL(Simple Available Bandwidth Utilization 
Library) /UDT (UDP-based Data Transfer Protocol) [ 10]  [11] is to utilize the 
abundant bandwidth over current long haul networks, such as computational 
grids. Fairness is important as well. Particularly, two of the major fairness 
objectives are to be independent of RTT and TCP friendly. 
 
SABUL uses UDP to transfer data and TCP to transfer control information. 
UDT uses UDP only for both data and control information. 
 
Below is a brief description of data transfer in one direction. 
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The sender sends out a data packet every inter-packet time, which is updated 
by the rate control. However, it cannot send out the packet if the number of 
unacknowledged packets exceeds a threshold, updated by the flow control. A 
retransmission packet has higher priority than first time packet. 
 

Bit 0: 
Flag 
= 1  

Bit 1-3:  
Type 

Bit 4-15:  
Reserved 

Bit 16-31:  
ACK ID or Loss 
Length 

Control Information: 
type 000 (handshake): maximum window size, 
MTU 
type 001 (keep-alive): None 
type 010 (ACK): acknowledged sequence 
number, RTT, packet arrival speed, estimated 
bandwidth  
type 011 (NAK): loss information 
type 100 (delay increase warning): None 
type 110 (ACK2): None 

 
Figure 2: Control Packets Structure 
 
The receiver receives and reorders data packet. If it detects packet loss, an 
NAK packet will be sent back reporting the loss. Selective acknowledgement 
is used in the protocol, which generates an ACK packet every constant time if 
there is any packet to acknowledge. 
 
The receiver also measures the packet arrival speed and the link capacity, 
which will be sent back together with the ACK packet. 
The sender sends back an ACK2 packet for each received ACK packet, which 
is used for the receiver to measure RTT, as well as to decide the next ACK 
value (i.e., it must be greater than the last received ACK2). 
 
The receiver also checks the RTT variance to check if there is a delay 
increasing trend. If so, it sends back a delay increasing warning packet to the 
sender. 
 
Supported operation mode:  
memory to memory (general transport) 
 
Authentication:  
None. 
 
Implementations / API:   
C++ library on Linux/BSD/Solaris. 
NS-2 simulation module. 
 
Congestion Control Algorithms:  
The SABUL/UDT congestion control algorithm combine rate based control 
and window based control.  
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The window based flow control limits the number of unacknowledged packets, 
and the window size is updated to the product of receiver side packet arrival 
speed * (RTT + SYN), where SYN is the constant increase interval. 
 
The rate control changes the inter-packet sending time according to packet 
delay and packet loss. It is using AIMD algorithm, where the decrease factor 
is 1/9, while the increase factor is related to the link capacity, which is probed 
using data packet pairs. Note that the increase is not based on any interval 
related to RTT, but is constant and fixed in SABUL/UDT.  
 
Packet delay increasing trend is detected through the variance of RTT. 
 
The slow start begins with 2-packet flow window and 0 inter-packet interval 
sending rate. Once an ACK is received, flow window is updated to the number 
of acknowledged packets until a loss report or a delay increase warning is 
received, when slow start ends. Sending rate keeps unchanged during slow 
start phase. 
 
Fairness: 
For single bottleneck scenario, the congestion control algorithm is basically 
AIMD, and it guarantees intra-protocol fairness. 
 
In addition, the fairness is approximately independent to network delay, i.e., 
connections sharing the same bottleneck but with different RTTs can share 
the bottleneck bandwidth fairly (equally, in this case). 
 
TCP Friendly:  
Yes. Since SABUL/UDT uses delay as sign of congestion, when coexisting 
with TCP, TCP will occupy most of the bandwidth unless it itself fails to utilize 
(e.g., because TCP’s inefficiency over high BDP network).  
 
Predictable Performance Model:   
No. we have not reached a theoretical model to measure the performance 
accurately. Simulation shows that SABUL/UDT can still reach more than 90% 
utilization of bandwidth at 1Gbps with 100ms RTT. 
 
Results: 
At SC ’02, 3 SABUL flows reach 2.8Gbps aggregate throughput between 
Chicago and Amsterdam. 
 
Target Usage Scenario: 
SABUL/UDT is general purpose transport protocol.  
 
 

3.2.4 Comparison 
  

 
 

 
RBUDP 
 

 
Tsunami 
 

 
SABUL 
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Principle  UDP data + TCP 
control. 

UDP data + TCP 
control. 

UDP data + TCP 
control. 

Operation 
Mode 

Disk-to-disk, 
memory-to-memory. 

disk-to-disk (i.e. file 
transfer protocol, not 
general transport)  

Disk-to-disk, 
memory-to-memory. 

Authentication No. Yes but very simple. No. 

FTP syntax No. 

Partially.  Only a few 
commands like 
connect, get, close, 
etc. 

Partially.  Only supports 
one connection one 
time. 

Application 
Programming 
Interface 

Yes. No. Yes. 

3rd Party 
Transfer No. No. No. 

Congestion 
Control 

Optional. Limited 
congestion control 
can be turned on. 

Limited. Sending rate 
is reduced when loss 
rate is more than a 
threshold. 

Yes. 

Fairness N/A N/A Yes. 

TCP Friendly No. No. Yes. 

Predictable 
Performance 
Model 

Yes. No. No. 

Implementation Available. Available. Available. 

 
 

3.3 TCP Variants  
 

3.3.1 HighSpeed TCP 
 
Contacts: Sally Floyd (floyd@icir.org)  
 
URLs / RFCs / Papers:  

• “HighSpeed TCP for Large Congestion Windows,” Sally Floyd, Internet 
draft draft-floyd-tcp-highspeed-02.txt, Work in progress, February 2003.  

• http://www.icir.org/floyd/hstcp.html 
 
Principle / Description of Operation  
HighSpeed TCP [5] aims at improving the loss recovery time of standard TCP 
by changing standard TCP’s AIMD algorithm. This modified algorithm would 
only take effect with higher congestion windows. i.e, 
 
If congestion window <= threshold, use Standard AIMD algorithm 
Else use HighSpeed AIMD algorithm 
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Standard TCP HighSpeed TCP 

The standard AIMD algorithm is as 
follows: 
 
on the receipt of an acknowledgement,  
w = w + 1/w ; w -> congestion window 
and in response to a congestion event,  
w = 0.5 * w  
 
The increase and decrease parameters 
of the AIMD algorithm are fixed at 1 and 
0.5  
 
With a 1500-byte packets and a 100 ms 
RTT, achieving a steady state throughput 
of 10 Gbps would require a packet drop 
rate at most once every 1 2/3 hours 

The modified HighSpeed AIMD algorithm is as 
follows: 
 
on the receipt of an acknowledgement, 
w = w + a(w)/w; higher ‘w’ gives higher a(w) 
and in response to a congestion event, 
w = (1 -b(w))*w; higher ‘w’ gives lower b(w) 
 
The increase and decrease parameters vary 
based on the current value of the congestion 
window. 
 
For the same packet size and RTT, a steady 
state throughput of 10 Gbps can be achieved 
with a packet drop rate at most once every 
12 seconds 
 

 
 
Supported operation mode:  
Memory to memory (general transport) 
 
 
Authentication: No 
 
Implementations / API:   

• http://www-unix.mcs.anl.gov/~kettimut/hstcp/  HighSpeed TCP 
implementation for Linux 2.4.19 and initial experimental results  from 
Argonne National Lab. 

• http://www.web100.org   Tom Dunigan has added HighSpeed TCP to 
the Linux 2.4.16 Web100 kernel.  

• http://www-iepm.slac.stanford.edu/monitoring/bulk/fast/  Experiments of 
TCP Stack measurements , from SLAC comparing HighSpeed TCP, 
FAST TCP, Scalable TCP, and stock TCP.  

• http://www.hep.man.ac.uk/u/garethf/hstcp/ HighSpeed TCP 
implementation from Gareth Fairey at Manchester University, for Linux 
2.4.19, and initial experimental results with Yee-Ting Li (from UCL).  

 
Congestion Control Algorithms:  HighSpeed TCP retains the slow start 
phase of the standard TCP’s congestion control algorithm and the congestion 
avoidance phase is modified as explained above. 
 
Fairness: The issue of fairness is not explored thoroughly.  
 
TCP Friendly: Unfriendliness increases with decreasing packet drop rates 
 
Predictable Performance Model:  The increase and decrease parameters 
are based on a modified response function. More explanation on the rationale 
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behind the new response function and how it can achieve high throughput 
with realistic packet loss rates is available in the IETF draft. 
 
Results: Initial experimental results conducted over 100 Mbps link between 
Argonne National Lab, IL and Lawrence Berkeley National Lab, CA show that 
HighSpeed TCP performs much better than the standard TCP achieving an 
improvement of 150%. The round trip time of the connection is 60 ms. The 
results conducted over 1 Gbps link between Lawrence Berkeley National Lab, 
CA and Oak Ridge National Lab, TN (with an RTT of 80 ms) show an 
improvement of 120% for HighSpeed TCP over the standard TCP.  
 
Target Usage Scenario: Initial experimental shows that it performs much 
better than standard TCP in a dedicated environment. Deployment of this in 
the broader internet might affect the standard TCP flows.  
 
 

3.3.2 Scalable TCP 
 
Contacts : Tom Kelly (ctk21@cam.ac.uk) Cambridge University, UK   
 
URLs / RFCs / Papers:  
 

• Tom Kelly, “Scalable TCP: Improving Performance in HighSpeed Wide 
Area Networks,” First International Workshop on Protocols for Fast 
Long-Distance Networks, Geneva, February 2003 

• http://www-lce.eng.cam.ac.uk/~ctk21/scalable/ 
 
 
Principle / Description of Operation  
The main goal of Scalable TCP [12] is to improve the loss recovery time of the 
standard TCP. The idea is built on the idea of HighSpeed TCP.  
 
Packet loss recovery times for a traditional TCP connection (as well as 
HighSpeed TCP connection) are proportional to the connection’s window size 
and RTT whereas a Scalable TCP connection’s packet loss recovery times 
are proportional to connection’s RTT only. 
 
Slow start phase of the original TCP algorithm is unmodified. The congestion 
avoidance phase is modified as follows: 
 
For each acknowledgement received in a round trip time, 
 
  
Traditional TCP Scalable TCP 

cwnd = cwnd + 1/cwnd cwnd = cwnd + 0.01 

 
and on the first detection of congestion in a given round trip time 
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Traditional TCP Scalable TCP 

cwnd = cwnd – 0.5 * cwnd cwnd = cwnd – 0.125 * cwnd 

 
Like HighSpeed TCP this has a threshold window size and the modified 
algorithm is used only when the size of the congestion window is above the 
threshold window size. Though values of 0.01 and 0.125 are suggested for 
the increase and decrease parameters, they (as well as threshold window 
size) can be configured using the proc  file system (by a superuser). The 
default threshold window size is 16 segments. 
 
 
Supported operation mode:  
Memory to memory (general transport) 
 
Authentication: No 
 
Implementations / API:   
An implementation for linux kernel 2.4.19 is available at  
http://www-lce.eng.cam.ac.uk/~ctk21/scalable/ 
 
Congestion Control Algorithms: This work focuses on the congestion 
control algorithms and proposes a modification for the congestion control 
algorithm used in the standard TCP. 
 
Fairness: No 
 
TCP Friendly: Claims it does not affect the other standard TCP flows and 
shows some experimental results involving web traffic to substantiate the 
claim. More exploration is required before any conclusion can be arrived at 
this.  
 
Predictable Performance Model:  The values of ‘a’ and ‘b’ are selected by 
considering the convergence speed and instantaneous rate variation. The 
goal was to have faster convergence and smaller instantaneous rate variation. 
 
Results: 
The experiments were conducted using a testbed consisting of 12 high 
performance PCs (6 in Chicago and 6 in CERN, Geneva). The clusters are 
connected through 2 cisco routers with a 2.4 Gbps link. The PCs are 
connected to each router through gigabit ethernet ports. The roundtrip time of 
the connection is 120 ms.  
 
A modified kernel with device transmit queue and receive queue increased to 
2000 and 3000 respectively is called gigabit kernel. A significant throughput 
improvement of 60% to 180% was observed with gigabit kernel compared to 
standard kernel and a further improvement of 34% to 175% was observed 
with scalable TCP compared to gigabit kernel Using 16 scalable tcp flows 
81% of the maximal performance possible was achieved 
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Target Usage Scenario: 
This is intended to improve the performance of bulk data transport of large 
data sets with negligible impact on the network traffic. Detailed analysis of the 
impact on web traffic is yet to be done.  
 
 

3.3.3 FAST TCP 
 
Contacts : Steven Low (slow@caltech.edu) 
 
URLs / RFCs / Papers:  
 

• “FAST TCP: From Theory to Experiments”, C. Jin, D. Wei, S. H. Low, 
G. Buhrmaster, J. Bunn, D. H. Choe, R. L. A. Cottrell, J. C. Doyle, W. 
Feng, O. Martin, H. Newman, F. Paganini, S. Ravot, S. Singh; 
submitted to IEEE Communications Magazine, April 1, 2003 

•  http://netlab.caltech.edu/FAST/  
 
Principle / Description of Operation 
 
FAST TCP [13] aims to adjust source’s sending rate so that link resource is 
shared fairly by all TCP connections and congestion is avoided with maximum 
link utilization.  Fast TCP totally discards fundamental mechanisms in TCP 
such as slow start, AIMD and congestion avoidance.  Instead, its objective is 
achieved by implementing two control mechanisms.  One is implemented at 
the source to adjust the send rate dynamically based on an equation and 
another one is to obtain a congestion measure based on the aggregate flow 
rate on a link.  FAST TCP is similar to TCP in 1) FAST TCP uses same 
acknowledgement mechanism for reliable delivery; 2) and FAST TCP uses 
windowing mechanism to control the send rate at the source.   
 
FAST TCP is improved based on a prime-dual model where TCP protocol is 
modeled by a nonlinear closed-feedback and time-delay control system.  
Current TCP is not stable when used in a network with high product of 
capacity and delay.  Therefore, to stabilize the send rate at the source, FAST 
TCP applies an equation to adjust the send rate at the source rather than 
adopts TCP’s AIMD mechanism to control the send rate.  The equation for 
adjusting send rate is obtained by proper parameter assignment and pole -
zero placement using Nyquist stability analysis.  By properly choosing the 
equation, FAST TCP can achieve its objective for high performance, stability 
and fairness in general networks.  
 
FAST TCP is actually a modified version of TCP Vegas . TCP Vegas was 
introduced as an alternative to the standard TCP (TCP Reno). Vegas does 
not involve any changes to TCP specification. It is merely an alternative 
implementation of TCP and all the changes are confined to the sending side. 
In contrast to the standard TCP, which uses packet loss as the measure of 
congestion, Vegas source anticipates the onset of congestion by monitoring 
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the difference between the rate it is expecting to see and the rate it is actually 
realizing. Vegas’s strategy is to adjust the source’s sending rate in an attempt 
to keep a small number of packets buffered in the routers along the path.  
Although experimental results show that Vegas achieves better throughput 
and fewer losses than standard TCP, Vegas lacked a theoretical explanation 
of why it works. Here they develop a model of Vegas and show that Vegas 
can potentially scale to high bandwidth network in stark contrast to the 
standard TCP. Further, they show that Vegas can become unstable at large 
delay. Also error in RTT estimation can distort Vegas and can lead to 
persistent queues and unfair rate allocation. They show that by augmenting 
Vegas with appropriate Active Queue Management algorithm like Random 
Exponential Marking (which requires modification in the router), it is possible 
to avoid the above- mentioned problems. FAST TCP aims at solving those 
problems by modifying just the TCP kernel at the sending hosts. Detailed 
description of the algorithm and implementation of FAST TCP is yet to be 
published (as on 6/1/03, should be out in a couple of months)  
 
Supported operation mode:  
Memory to memory (general transport) 
 
Authentication: No 
 
Implementations / API:   
Not available yet (as on 6/1/03) 
 
Congestion Control Algorithms:  
The congestion control algorithm in FAST TCP is built on the algorithm used 
in TCP Vegas. 
 
Fairness: 
Fair bandwidth allocation is one of the main objectives of FAST TCP but the 
detail about the mechanism used is yet to be published. 
 
TCP Friendly:  
Still under study 
 
Predictable Performance Model:   
This work was motivated by their earlier work, which developed a TCP/AQM 
congestion control system to achieve high utilization, low delay and dynamic 
stability at the level of fluid-flow models. But the algorithm used in FAST TCP 
and the theoretical explanation of why it should work is not published yet. 
 
Results: 
FAST TCP was demonstrated in a series of experiments conducted during the 
SuperComputing conference (SC2002).  The demonstrations used an OC192 
(10Gbps) link between StarLight (Chicago) and Sunnyvale, the DataTAG 2.5 
Gbps link between Sta rlight and CERN (Geneva), an OC192 link connecting 
the SC2002 show floor in Baltimore and the TeraGrid router in StarLight 
Chicago and Abilene backbone of Internet2.  
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Using default device queue size (txqueuelen = 100 packets) at the network 
interface card and the standard MTU of 1500 bytes, the default Linux TCP 
(2.4.18), without any tuning on the AIMD parameters, achieved an average 
throughput of 185 Mbps, averaged over an hour, with a single TCP flow 
between Sunnyvale in California and CERN in Geneva via StarLight in 
Chicago with a minimum round trip delay of 180 ms. This is out of a possible 
maximum of 973 Mbps to the application, excluding TCP/IP overhead, limited 
by the gigabit Ethernet card, and represents a utilization of just 19%. Under 
the same experimental conditions, using the default device queue size 
(txqueuelen = 100 packets) and the standard MTU of 1500 bytes, FAST TCP 
achieved an average throughput of 925 Mbps (Utilization 95%), averaged 
over an hour. Even with a device queue size of 10,000 packets, the standard 
TCP was able to achieve a throughput of only 266 Mbps (Utilization 27%). 
With 2 TCP flows sharing the path, standard TCP was able to achieve 48% 
utilization (txqueuelen = 10,000 packets) whereas FAST TCP was able to 
achieve 92% utilization. With 10 flows, FAST TCP achieved a throughput of 
8,609 Mbps (utilization 88%), averaged over a 6-hour period, over a routed 
path between Sunnyvale and Baltimore, using the standard MTU. The results 
using the standard Linux TCP implementation for 10 flows are not shown.  
In all the experiments described above, the bottleneck was either the gigabit 
Ethernet card or the transatlantic OC48 link. The experiments conducted 
using Intel’s pre -release experimental 10-gigabit Ethernet card on a single 
flow from Sunnyvale to Chicago using standard MTU, FAST TCP sustained 
just 1.3 Gbps. They claim this was due to the limitation in the CPU power at 
the sending and receiving systems.  
 
Target Usage Scenario: Though it is intended to solve TCP’s limitation in 
high-bandwidth large-delay environments, it is expected to perform well in 
conventional environments too.  
 
 

3.3.4 XCP (eXplicit Congestion control Protocol) 
 
Contacts : Dina Katabi (dk@mit.edu)  
 
URLs / RFCs / Papers:  

• “Congestion Control for High Bandwidth -Delay Product Networks,” 
Dina Katabi, Mark Handley and Chalrie Rohrs, Proceedings on ACM 
Sigcomm 2002.  

• http://www.ana.lcs.mit.edu/dina/XCP/ 
 
Principle / Description of Operation  
XCP [ 14 ] generalizes the Explicit Congestion Notification (ECN) proposal. 
Instead of one bit congestion indication used by ECN, it proposes using 
precise congestion signaling, where the network explicitly tells the sender the 
state of congestion and how to react to it.  
 
Like TCP, XCP is a window based congestion control protocol intended for 
best effort traffic. Senders maintain their congestion window (cwnd) and RTT 
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and communicate this to routers via a congestion header (shown in figure 3) 
in every packet. Sender uses the feedback field in the congestion header to 
request its desired window increase. Routers monitor the input traffic rates to 
each of their output queues. Based on the difference between the link 
bandwidth and its input traffic, router tells the flows sharing that link to 
increase or decrease their congestion window. It does this by annotating the 
congestion headers of data packets. Feedback is divided between flows 
based on their congestion window and RTTs so that the system converges to 
fairness.  A more congested router later in the path can further reduce the 
feedback in the congestion header by overwriting it. Ultimately the packet will 
contain the feedback from the bottleneck along the path. When the feedback 
reaches the receiver, it is returned to the sender in an acknowledgment 
packet, and the sender updates its cwnd accordingly.  
 
 
 
 
 
 
 
 
 
 
 
 
  
Figure 3: Congestion header 
 
Whenever a new acknowledgment arrives, positive feedback increases the 
sender’s cwnd and negative feedback reduces it. An XCP receiver is similar to 
TCP receiver except when acknowledging a packet it copies the congestion 
header from the data packet to its acknowledgment.  
 
XCP also introduces the concept of decoupling utilization control from fairness 
control. A router has both an efficiency controller and fairness controller. The 
purpose of efficiency controller is to maximize link utilization while minimizing 
drop rate and persistent queues. It only looks at aggregate traffic and need 
not care about fairness issues. It computes aggregate feedback at every 
interval (average RTT of all the flows sharing the link). The aggregate 
feedback is proportional to both spare bandwidth and persistent queue size. 
How exactly this aggregate feedback is divided among the packets is the job 
of the fairness controller. The fairness controller uses the same principle TCP 
uses (AIMD) to converge to fairness.  If the aggregate feedback is positive, 
allocate it so that the increase in throughput of all flows is the same and if it is 
negative, allocate it so that the decrease in throughput of a flow is proportional 
to its current throughput.  
 
Supported operation mode:  
Memory to memory (general transport) 
 

Sender’s current cwnd (filled by 
sender and remains unmodified)  
 
Sender’s RTT estimate (filled by 
sender and remains unmodified) 
 
Feedback (initialized to sender’s 
demands; can be modified by the 
routers) 
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Authentication: No 
 
Implementations / API:   
XCP implementation in the NS simulator is available at  
http://www.ana.lcs.mit.edu/dina/XCP/ 
 
Congestion Control Algorithms:  
XCP is a congestion control algorithm. 
 
Fairness: 
Demonstrates a fairness mechanism and shows how to use it to implement 
both min-max fairness and the shadow prices model. 
 
TCP Friendly:  
Describes a mechanism that allows XCP to compete fairly with TCP but it 
involves additional work in the routers. Simulation results have been used to 
demonstrate TCP friendliness of the proposed mechanism.  
 
Predictable Performance Model:   
Theoretical analysis on the stability of the protocol and its convergence to 
fairness can be found in the paper. It is shown to be stable for any link 
capacity, feedback delay or number of sources.  
 
Results: 
The simulations were conducted using the packet level simulator ns -2. The 
simulations cover link capacities in the range 1.5 Mbps to 4 Gbps, RTTs 
between 10 ms to 3 sec and number of sources in the range between 1 and 
1000. Further, they simulate 2 way traffic and dynamic environments with 
arrivals and departures of short web like flows. Simulations also show that 
their results generalize to large and more complex topologies.  
 
They compare XCP with TCP Reno over various Active Queue Management 
schemes such as RED (Random Early Detection), REM (Random Exponential 
Marking), AVQ (Adaptive Virtual Queue) and CSFQ (Core Stateless Fair 
Queuing). The results show that XCP significantly outperforms TCP (with all 
queuing schemes) in high bandwidth environments as well as in high delay 
environments. They also show that XCP is efficient in environments with 
arrivals and departures of short web-like flows. In an environment where the 
RTTs of the flows that share the bottleneck link vary widely from one another, 
XCP provides a significantly fairer bandwidth allocation than TCP. They also 
show how XCP can be used to provide differentiated services to the users 
based on the price they pay and how XCP can be deployed and how it can 
gracefully co-exist with TCP.  
 
Target Usage Scenario: 
Though XCP is intended to solve TCP’s limitation in high-bandwidth large-
delay environments, simulation results show that it performs well in 
conventional environments too.  
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3.3.5 CADPC / PTP 
 
Contacts  
Michael Welzl, University of Innsbruck 
email: michael.welzl@uibk.ac.at web: http://come.to/michael.welzl or 
http://informatik.uibk.ac.at/users/c70370/ 
 
URLs / RFCs / Papers 
The PTP website is at http://fullspeed.to/ptp or 
http://informatik.uibk.ac.at/users/c70370/research/projects/ptp/ 
CADPC / PTP is mainly the result of a Ph.D. thesis, which is finished and 
currently in print; a .pdf file is available upon request. A published paper 
containing some details about CADPC is: 
 
Welzl, M.: "Traceable Congestion Control", ICQT 2002 (International 
Workshop on Internet Charging and QoS Technologies), Zürich, Switzerland, 
16-18 October 2002. Springer LNCS 2511, available from the PTP website. 
 
Principle / Description of Operation  
PTP [15], the “Performance Transparency Protocol”, is a lightweight signaling 
protocol that queries routers along a path for performance related information; 
when used for congestion control purposes , this information consists of: 

• the router address  
• the MIB2-ifSpeed object (nominal link bandwidth) 
• the MIB2-ifOutOctets object (traffic counters) 
• a timestamp 

 
At the receiver, it is possible to calculate the bandwidth that was available at 
the bottleneck during a certain period from two consecutive packets carrying 
this information for all routers along the path. This operation resembles ATM 
ABR Explicit Rate Feedback, but work in routers is minimized, all calculations 
are moved need to network endpoints. 
 
CADPC, “Congestion Avoidance with Distributed Proportional Control”, is a 
congestion control scheme that is solely based on PTP feedback. Since it 
does not rely on packet loss, it works seamlessly over wireless links. It is 
slowly responsive in that it utilizes a small amount of feedback, but it shows 
quick convergence. 
 
Among its outstanding features / properties are: 

• good scalability 
• fully distributed convergence to max-min-fairness irrespective of RTTs 
• designed for heterogeneous links and links with a large bandwidth X 

delay product 
• since it only relies on PTP, it is easily traceable 
• simple underlying control law (logistic growth) which is known to be 

stable 
• very smooth rate 
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Supported operation mode:  
memory to memory (general transport) 
 
Authentication: no 
 
Implementations / API:  Code is available from the website; future releases 
will be available from this site, too. Currently, there is: 

• A PTP end system and router implementation for Linux 
• PTP code for the ns-2 simulator 

 
CADPC was only implemented for the ns -2 simulator so far and will be made 
available via the PTP website soon. 
 
Congestion Control Algorithms:  CADPC is the congestion control 
algorithm. 
 
Fairness: max-min fairness, could probably be extended to support other 
forms of fairness (such as proportional fairness) too. 
 
TCP Friendly: No. 
 
Predictable Performance Model:  In a network with n users, CADPC 
converges to 1/(n+1) for each user; thus, the total traffic converges to n/(n+1), 
which quickly converges to 1 with a growing number of users (these 
calculations are normalized with the bottleneck capacity). With a VERY small 
number of users (say, 2 or 3), CADPC is inefficient. 
 
Results: 
In simulations, CADPC outperformed several TCP variants and TCP-friendly 
mechanisms in a large variety of scenarios and in several aspects; in 
particular, it showed greater throughput than its competitors with close to zero 
loss. Please see the “traceable congestion control” paper for more details. 
 
Target Usage Scenario: 
This protocol is intended for bulk data transport of large data sets. It will work 
well in scenarios with highly asymmetric links, noisy links and links with a 
large bandwidth X delay product. It will have trouble if this product is very 
small. In its present form, it must be isolated from other traffic and will not 
work well in the presence of short web-like flows or long-term TCP flows. A 
closer look at CADPC in isolation (usage to control traffic management, or 
isolated via QoS mechanisms – e.g., by using it within a DiffServ class) is 
currently under research. 
 

3.3.6 GridFTP 
 
Contact: Bill Allcock (allcock@mcs.anl.gov)  
 
URLs / RFCs / Papers 
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• “GridFTP: Protocol Extensions to FTP for the Grid”, W. Allcock, J. 

Bester, J. Bresnahan, S. Meder, S. Tuecke, Global Grid Forum Draft 
• “Data Management and Transfer in High Performance Computational 

Grid Environments”. B. Allcock, J. Bester, J. Bresnahan, A. L. 
Chervenak, I. Foster, C. Kesselman, S. Meder, V. Nefedova, D. 
Quesnal, S. Tuecke. Parallel Computing Journal, Vol. 28 (5), May 2002, 
pp. 749-771. 

• http://www-fp.globus.org/datagrid/gridftp.html 
 
 
Principle / Description of Operation  
GridFTP [16 ] is a high-performance, secure, reliable data transfer protocol 
optimized for high -bandwidth wide-area networks. It provides a superset of 
the features offered by various Grid storage systems currently in use by 
extending the standard FTP protocol.  GridFTP builds on RFC 959 (File 
Transfer Protocol (FTP)), RFC 2228 (FTP Security Extensions), RFC 2389 
(Feature negotiation mechanism for FTP), IEFT draft on FTP Extensions.  
As defined in the FTP protocol standard it uses two types of channels 
between the source and the destination namely control channel and data 
channel. The control channel is used to exchange commands and replies 
whereas the data channel is used to transfer data. It provides support for 
parallel data transfer using multiple TCP streams between the source and the 
destination.  
GridFTP also provides support to transfer data that is striped across multiple 
hosts by using 1 or more TCP streams between m hosts on the sending side 
and n hosts on the receiving side. GridFTP allows an authenticated third-party 
to initiate, monitor and control a data transfer between storage servers. 
Checkpointing is used to provide fault tolerance. A failed transfer is restarted 
from the last checkpoint. It extends the partial transfer mechanism defined in 
the standard FTP to support transfers of arbitrary subsets of a file. GridFTP 
also allows manual or automatic control of TCP buffer size.   
 
Supported operation mode:  
File transfer protocol 
 
Authentication:  
It implements the authentication mechanisms defined by RFC 2228 (FTP 
Security Extensions). It supports GSI (Grid Security Infrastructure) and 
Kerberos authentication with user controlled setting of various levels of data 
integrity and/or confidentiality.  
 
Implementations / API:   
GridFTP is the data management component of the Globus toolkit. It is 
available at http://www.globus.org/ 
 
Congestion Control Algorithms:  
As GridFTP uses TCP as the underlying transport mechanism, the congestion 
control algorithm is same as that of TCP. 
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Fairness: Same as TCP 
 
TCP Friendly: Yes  
 
Results: 
In the experiments demonstrated during SC 2000 between 8 workstations on 
SC exhibition floor in Dallas, Texas and 8 workstations at Lawrence Berkeley 
National Lab in California, peak transfer rates of 1.5 Gbps over an interval of 
0.1 seconds and 1.03 Gbps over an interval of 5 seconds and a sustained 
transfer rate of 513 Mbps over 1 hour were achieved. The bottleneck link was 
a 1.5 Gbps link. The experiments used striped data transfer with 8 striped 
servers at source and 8 striped servers at destination with a maximum of 4 
TCP streams per server. Also, the experimental results show that GridFTP 
can achieve 78% of the throughput achieved by iperf. The performance 
difference is attributed to overheads such as authentication, checkpointing etc. 
 
Target Usage Scenario: 
Though it is intended for high bandwidth networks, it can be used in 
conventional environments too. 
 

3.3.8 SCTP (Stream Control Transport Protocol) 
 
Contacts : Pascale Vicat-Blanc Primet (Pascale.Primet@ens-lyon.fr) 
 
URLs / RFCs / Papers 

 
• Ivan Arias Rodriguez: Stream Control Transmission Protocol - The 

Design of a New Reliable Transport Protocol for IP Networks (this 
documentation is very detailed and very clear, but long to read...) 

• http://tdrwww.exp-math.uni-
essen.de/inhalt/forschung/sctp_fb/index.html 

• A. Jungmaier, E.P Rathgeb, M. Schopp, M. Tüxen : SCTP - A multi-link 
end-to-end protocol for IP -based networks, AEÜ - International Journal 
of Electronics and Communications, 55 (2001) No.1, pp. 46-54 
(interesting to have an overview of multi-homing applications) 

• RFC 2960: SCTP -- The Stream Control Transmission Protocol, R. 
Stewart, Q. Xie and al. (the reference for the SCTP protocol) 

• http://www.sctp.org/sctpoverview.html (good for beginners...) 
 
 
Principle / Description of Operation   
The Stream Control Transmission Protocol (SCTP) is a new IP transport 
protocol, existing at an equivalent level as UDP (User Datagram Protocol) and 
TCP (Transmission Control Protocol), which currently provide transport layer 
functions to all of the main Internet applications.  SCTP has been approved by 
the IETF as a Proposed Standard, and is currently awaiting allocation of an 
RFC number. 
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Originally, SCTP was designed to provide a general-purpose transport 
protocol for message-oriented applications, as is needed for the transportation 
of signaling data. It has been designed by the IETF SIGTRAN working group , 
which has released the SCTP standard draft document (RFC2960) in October 
2000. 
 
Unlike TCP, SCTP provides a number of functions that are considered critical 
for signaling transport, and which at the same time can provide transport 
benefits to other applications requiring additional performance and reliability.  
SCTP can be used as the transport protocol for applications where monitoring 
and detection of loss of session is required. For such applications, some 
SCTP failure detection mechanisms have been implemented. 
 
The core original features of SCTP are multi-streaming and multi-homing. 
 
Protocol Features: 
 
SCTP is a unicast protocol, and supports data exchange between exactly 2 
endpoints, although these may be represented by multiple IP addresses. 
SCTP provides reliable transmission, detecting when data is discarded, 
reordered, duplicated or corrupted, and retransmitting damaged data as 
necessary.   
SCTP transmission is full duplex. 
SCTP is message oriented and supports framing of individual message 
boundaries.  In comparison, TCP is stream oriented and does not preserve 
any implicit structure within a transmitted byte stream. 
SCTP is rate adaptive similar to TCP, and will scale back data transfer to the 
prevailing load conditions in the network.  It is designed to behave 
cooperatively with TCP sessions attempting to use the same bandwidth. 
 
 
In TCP a stream is referred to as a sequence of bytes, but an SCTP stream 
represents a sequence of messages (which may be very short or long). The 
multi-streaming feature allows data to be partitioned into multiple streams that 
have the property of being delivered  independently, so that message loss in 
any of the streams will only affect delivery within that stream, and not in other 
streams.  In contrast, TCP provides a single stream of data and ensures that 
delivery of that stream takes place with perfect sequence preservation but 
causes additional  delay when message loss or sequence error occurs within 
the network.  It has been shown that this feature lead too very poor 
performances on bulk transfer on lossy long bandwidth delay-product links. 
 
The multi-homing is the ability for a single SCTP endpoint to support multiple 
IP addresses. Using multi-homed SCTP, redundant LANs can be used to 
reinforce the local access, while various options are possible in the core 
network to reduce the dependency of failures for different addresses.  In its 
current form, SCTP does not do load-sharing, that is, multi-homing is used for 
redundancy purposes only.   
 
Supported operation mode:  Transport protocol 
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Authentication: none 
 
Implementations / API:  SCTP API 
 
Congestion Control Algorithms: TCP AIMD 
 
Fairness: yes 
 
TCP Friendly: yes. 
 
Predictable Performance Model: yes  
 
Results: The actual SCTP implantation in LINUX seems to offer lower 
performance than the TCP ones that are generally well optimised (around 
10%).  SCTP Performance and usage evaluation and algorithm enhancement 
is actually performed within the INRIA project RESO (http://www.ens -
lyon.fr/LIP/RESO/SCTP) 
 
 

3.3.9 Comparison 
 

 
 

 
HS TCP  
 

 
Scalable 
TCP 
 

 
FAST TCP  
 

 
XCP 
 

CADPC/PTP GridFTP 

Principle 

Modify TCP 
response 
function 
when 
congestion 
window is 
larger than a 
threshold. 

More 
aggressive in 
congestion 
control. 

Based on 
TCP vegas. 

Decouple 
efficiency 
control and 
fairness 
control.  
Former uses 
MIMD and 
latter uses 
AIMD. 

Conges tion 
control based 
on feedback 
from routers. 

Multiple 
parallel TCP 
streams 

Operation 
Mode 

Memory-to-
memory. 
Kernel space. 

Memory-to-
memory. 
Kernel 
space. 

Memory-to-
memory. 

Memory-to-
memory. 

Memory-to-
memory. 

File transfer 
protocol 

Authenticati
on No. No.  No. No. No.  GSI and 

Kerberos 

FTP syntax No. No.  No. No. No. Yes. 

Congestion 
Control Yes. Yes. Yes. Yes. CADPC Yes. 

Need to 
modify 
router 
software 

No.  No. 
Better if using 
AQM routers Yes. Yes. No. 

Fairness 
Need more 
investigation. No. 

Need more 
investigation. Yes. 

Max-min 
fairness Yes. 

TCP 
Friendly 

No when new 
TCP 

Need more 
investigation. 

Need more 
investigation. Yes. No. Yes. 
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response 
function is 
triggered. 

Predictable 
Performance 
Model 

Yes. Yes. 
Need more 
investigation. Yes. Yes. No. 

Simulation 
and 
Implementat
ion 

Both Implementati
on 

Not 
published. 

Both. Both. Implementati
on. 
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