
Globus Automation Services:
Research process automation across the space-time continuum

Ryan Charda, Jim Pruynea,b, Kurt McKeeb, Josh Bryanb, Brigitte Raumanna,b, Rachana Ananthakrishnana,b, Kyle Charda,b,
Ian T. Fostera,b

aArgonne National Laboratory, 9700 S Cass Ave, Lemont, 60439, Illinois, USA
bUniversity of Chicago, 5730 S Ellis Ave, Chicago, 60615, Illinois, USA

Abstract

Research process automation—the reliable, efficient, and reproducible execution of linked sets of actions on scientific instruments,
computers, data stores, and other resources—has emerged as an essential element of modern science. We report here on new
services within the Globus research data management platform that enable the specification of diverse research processes as reusable
sets of actions, flows, and the execution of such flows in heterogeneous research environments. To support flows with broad
spatial extent (e.g., from scientific instrument to remote data center) and temporal extent (from seconds to weeks), these Globus
automation services feature: 1) cloud hosting for reliable execution of even long-lived flows despite sporadic failures; 2) a simple
specification and extensible asynchronous action provider API, for defining and executing a wide variety of actions and flows
involving heterogeneous resources; 3) an event-driven execution model for automating execution of flows in response to arbitrary
events; and 4) a rich security model enabling authorization delegation mechanisms for secure execution of long-running actions
across distributed resources. These services permit researchers to outsource and automate the management of a broad range of
research tasks to a reliable, scalable, and secure cloud platform. We present use cases for Globus automation services, describe
their design and implementation, present microbenchmark studies, and review experiences applying the services in a range of
applications.

Keywords

Research process automation; Globus; High-performance
computing; Distributed Computing; Scientific Computing; Cloud
computing

1. Introduction

Consider a materials design application that, over days or
weeks, is to perform experimental measurements, computational
simulations, and data archiving operations at multiple experi-
mental facilities, computers, and data repositories [1, 2]. Or, a
long-running synchrotron light source experiment that contin-
uously collects data while periodically retraining, on a remote
supercomputer, the AI model used to filter results [3], and re-
deploying retrained models to the experiment site. Such com-
plex, heterogeneous, long-running, and distributed applications
are becoming increasingly common as a result of advances in
instrumentation, simulation, and AI methods [4].

Analysis of such applications reveals a mix of structures
and requirements that do not map particularly well to any ex-
isting automation technology. Like business processes [5, 6],
they require a user friendly notation, human inputs, and the reli-
able and secure event-driven execution of sequences of actions,
repeatedly and autonomously over extended periods; however,
they also must manipulate large datasets and engage specialized
resources. Like scientific workflows, they often manipulate

large datasets and employ high-performance computing (HPC)
and concurrency for rapid execution; however, they must also
engage with the physical world. Like machine learning (ML)
workflows, they often must manage dynamically updating data
and models [7]; however, they must also engage specialized sci-
entific datasets and resources, and deal with long time scales.

We describe here an automation approach that integrates
and extends several existing technologies to meet what we see
as five key requirements of these applications: (1) Reliable exe-
cution of long-running flows without local workflow system de-
ployments. Leveraging public cloud capabilities and our expe-
riences building and operating Globus transfer services [8], we
employ cloud-hosted, replicated services to ensure that flows
and their constituent actions execute reliably without user in-
tervention. (2) Simple, reusable specification of the actions to
be performed to meet an application goal. We adapt the Ama-
zon States Language [9] as a declarative notation for specifying
what we call flows, sequences of diverse actions used to meet
application needs. (3) Event-driven, reactive execution model.
Leveraging the rich literature on pub-sub systems, we incorpo-
rate event capture, filtering, and processing methods to permit
data-driven flow triggering and execution. (4) Easy integration
of new action types. Inspired by the extensible Web services ar-
chitecture, we allow users to incorporate new action types sim-
ply by providing a service that implements a RESTful action
provider interface. (5) Secure execution of long-running ac-
tions on distributed resources. Leveraging recent developments

Preprint submitted for publication December 8, 2022

ar
X

iv
:2

20
8.

09
51

3v
2

 [
cs

.D
C

]
 6

 D
ec

 2
02

2

in authentication and authorization for distributed systems, we
adopt mechanisms provided by the OAuth-based Globus Auth
system [10] for delegation and token renewal.

To permit at-scale exploration and evaluation by a diverse
community of scientists, we have implemented this new ap-
proach as a set of Globus automation services (see Figure 1).
These services make it easy to define, for example, a trigger
such that the generation of new data at an instrument causes
a flow to run, that then engages, in turn, actions that transfer
data to a remote computer, analyze data, update registries, and
email results. The action providers that process these actions
implement a consistent, asynchronous REST API, facilitating
the integration of new activities.

These Globus automation services, like other aspects of the
Globus platform [11], are implemented as platform-as-a-service,
i.e., as persistent, cloud-hosted services that are accessible to
any authorized user and can be composed to realize different be-
haviors. This cloud-hosted approach enables broad delivery of
research process automation capabilities without requiring that
users download and install software, and provides economies
of scale that reduce the costs of distributing software.

A diverse community of scientists have been using Globus
automation services since 2020 to develop applications that span
a wide range of temporal and spatial extents, from the small and
local (100 s tasks on one computer) to the large and distributed
(106 s tasks on computers in distinct authorization domains),
and that encompass diverse numbers, frequencies, and types of
actions [3, 12, 13, 14, 15, 16, 17, 18].

In the remainder of this paper, we present motivating use
cases for research process automation, describe Globus automa-
tion services and their implementation, present microbench-
mark studies of implementation efficiency, and review experi-
ences and lessons learned from early adopters.

2. Research Process Automation

As research processes in science and engineering become
increasingly data-, compute-, and collaboration-intensive, and
span ever-larger organizational and geographic regions, there is
a likewise increasing need for scalable, reliable, and secure in-
frastructure to enable their automation. This infrastructure must
be able to capture multi-step research processes that may span
diverse resources (e.g., from instruments to computers; from
data centers to the edge) and institutions, and encompass low-
latency steering feedback, long-running experiments, and even
multi-month data embargoes.

2.1. Use Cases

We present four use cases in which we have found research
process automation to be highly useful. From these and other
related use cases we distill a set of requirements that motivate
the design of Globus automation services. We describe some of
these use cases in more detail elsewhere [12].

2.1.1. Real-time data analysis
Instruments such as scanning electron microscopes, syn-

chrotron light source beamlines, and robotic laboratories can
generate large amounts of data that must be analyzed, reviewed,
catalogued, and shared in a timely manner. When analysis re-
quirements exceed storage or processing capabilities co-located
with an apparatus, research process automation is needed to
move and process data on more powerful, available, or suitable
resources, while navigating security at those resources.

For example, in serial synchrotron crystallography (SSX)
experiments at Argonne National Laboratory’s Advanced Pho-
ton Source (APS), a bright synchrotron beam is used to col-
lect diffraction data from many crystals, at rates of 10 000s of
images per hour [19]. Experiments typically generate approxi-
mately 40 000 1475×1255 16-bit pixel images per sample, with
tens of samples processed during a beamtime. The experiment
is typically configured to generate data at 10Hz (37 MB/s), al-
though much higher rates are possible and will soon become
commonplace. Images are processed as they are produced, first
by the Diffraction Integration for Advanced Light Sources (DI-
ALS) package [20] to identify at most one hit per image and
then, after a number of hits have been identified, with the post-
refinement and merging (PRIME) package [21] to solve the
crystal structure.

The SSX processing can be represented as two flows. The
first uses seven steps to process each raw image: (1) Trans-
fer image data from the APS to a high-performance comput-
ing (HPC) facility; (2) Perform DIALS Stills processing on
each raw image; (3) Extract metadata from files regarding hits;
(4) Generate visualizations showing the sample and hit loca-
tion; (5) Transfer metadata and visualizations for publication;
(6) Ingest results, metadata, and visualizations to an SSX Search
catalog; and (7) Transfer the results back to the APS.

After a number of hits, a second flow is run to solve the crys-
tal structure: (1) Perform PRIME analysis to solve the structure;
and (2) Copy the structure back to the APS.

Similar needs for real-time analysis flows arise in other syn-
chrotron light source experimental modalities (e.g., tomogra-
phy [22, 23], x-ray photon correlation spectroscopy [24], pty-
chography [25, 13], high energy diffraction microscopy [26])
and in many other experimental sciences, from cryogenic elec-
tron microscopy [27] to multi-messenger astronomy [28].

2.1.2. Machine learning training and inference
ML methods are used increasingly in science for rapid anal-

ysis, often near a data source such as for real-time experiment
steering. ML models are often refined over time, with model
performance improved progressively by training with new and
more diverse data as an experiment proceeds.

Here we consider an application of ML methods in high
energy diffraction microscopy, a non-destructive technique that
combines imaging and crystallography algorithms to character-
ize polycrystalline materials microstructure in three dimensions
(3D) and under various in-situ conditions [29, 26]. The tech-
nique maps grains in a polycrystalline aggregate by consider-
ing diffraction patterns as a function of rotation angle from a
synchrotron beam.

2

Resources

Action
providers

My AP
#1

My AP
#2

Globus
transfer

Globus
compute

User
Query

Globus
Search

………

Globus
automation
services

Queues
Timers

1 2 3 4

Triggers

Actions Transfer files
Run function

Catalog data
Run experiment

Query user

…
…

…

…

…

Invoke, monitor, and manage actions via simple REST API

Use action-specific mechanisms to initiate, monitor, and manage actions

Computers
Data repositories

Scientific instruments
Networks

Robots

…

…

…

Use resource-specific mechanisms to manipulate individual resources

M
an

ag
em

en
t a

nd
 d

el
eg

at
io

n
of

 a
ut

ho
riz

at
io

n
to

ke
ns

Cl
ou

d-
ho

st
ed

,
re

pl
ic

at
ed

M
ay

 b
e

cl
ou

d

Events

Flows

Figure 1: The architecture described in this paper for secure and reliable execution of long-lived, widely distributed research processes.
Automation services manage the execution of user-specified flows. In so doing, they make requests to action providers, which in turn initiate
and manage actions on resources.

To accelerate the process of identifying “spots” for each mi-
crostructure granule, researchers have developed a neural net-
work approximator to identify peak shapes in observed inten-
sities in area detector data. The model is trained with experi-
mental data analyzed with the MIDAS software package [30].
Training on a HPC system generates a model that is then de-
ployed on a lightweight device at the instrument for real-time
diffraction peak analysis—to enable, for example, experiment
steering and anomaly detection. This flow involves four steps:
(1) Transfer data from experiment to compute facility; (2) Pro-
cess data with MIDAS analysis software; (3) Use many raw/pro-
cessed data pairs to train a machine learning model using HPC
resources and accelerators; and (4) Transfer the trained model
to the edge for inference.

2.1.3. Data publication
Cataloging of data in a registry that can be searched both

programmatically and via a web interface is essential to making
data findable, accessible, interoperable, and reusable (FAIR).
The publication processes used to populate registries typically
require the orchestration of numerous steps over varying time-
scales including waiting for human input.

For example, data publication in to the Materials Data Fa-
cility (MDF) [31] encompasses initial data upload followed by
quality control, metadata extraction, curator approval, and meta-
data indexing in to a catalog. MDF relies on a cloud-hosted
search index to catalog dataset metadata, and a large storage
system for storing the datasets. As the publication flow pro-
ceeds, some steps must be performed with credentials for the
user publishing the data (e.g., moving data to which only the
user has access) while others require administrator or system
credentials (e.g., assigning an identifier owned by the system).
Similar sequences of actions arise when publishing machine

learning models in the Data and Learning Hub for science [32],
bioinformatics datasets in the Common Fund Data Ecosystem
[33], and other datasets at the Argonne Leadership Computing
Facility’s (ALCF) Community Data Co-op (ACDC) [34].

In the MDF case, the publication flow proceeds as follows.
Users start the flow via a web-based portal. The flow then
proceeds to: (1) Allocate storage for the user to upload data
(shared only with the submitter); (2) Transfer the data from
the user’s source location to the allocated storage; (3) Request
the submitter to input metadata via a web form; (4) Apply au-
tomated metadata extraction methods to derive metadata from
common formats; (5) Request that a curator either approve data
and metadata or return them to the submitter for modification;
(6) Assign a persistent identifier (a DOI from DataCite); (7) In-
dex metadata in a search index; and (8) Set final access permis-
sions on data based on system polices and user specification.

In each of these described cases, while the invocation and
management of the various steps could be performed manually,
or implemented in a custom script, a managed automation ser-
vice allows such process flows to be automated at scale and with
monitoring and guaranteed progress (i.e., resistance to failure at
the location running the script) over an extended time frame.

2.1.4. Analysis as a service
Modern scientific simulation, analysis, and learning meth-

ods are transforming entire science disciplines; however, they
are also broadening the gap between those with access to large-
scale and specialized computing resources and those without.
Thus, researchers and computing facilities are developing sys-
tems that democratize access to cutting-edge computational ca-
pabilities via accessible, scalable, and easy-to-use interfaces.
Implementing such services requires a number of steps includ-
ing data upload, model execution, and notification of results.

3

One example is AlphaFold [35], a deep learning system
that predicts protein structures. AlphaFold is computationally
expensive, requiring GPUs to process sequences in a timely
manner. Researchers at ALCF have developed a service that
enables execution of AlphaFold on demand. Its implementa-
tion requires the staged orchestration of several steps. First, a
user employs a web form to request inference on an uploaded
dataset. Subsequent steps then: (1) Create a writable path on a
shared storage system for the user to upload their data; (2) Stage
the data to an available compute cluster; (3) Execute AlphaFold
on the uploaded data; (4) Transfer results to a publicly accessi-
ble HTTPS server; and (5) Send an email to the user notifying
them that the computation is complete.

2.2. Requirements

Based on these use cases, we identified the following re-
quirements common to research automation scenarios.

• Diverse actions: Flows may include computational (e.g., anal-
ysis, data movement, metadata extraction, persistent identi-
fier minting, indexing, model training), physical (e.g., initi-
ating an experiment), and human (e.g., providing metadata,
data curation) actions.

• Secure delegation: Flows may span administrative domains
and institutions. Fine-grained and delegatable authorization
is required to ensure that actions are performed only when
and where authorized.

• Automated: It is often desirable that flows be started with-
out human intervention, for example when data are acquired
from an instrument.

• Programmable: Flows require control logic, such as condi-
tionals to modify behavior based on action results and errors.

• Reusable: It is important to permit specification, sharing,
and reuse of flow “recipes,” so that a flow can be invoked
many times, potentially by many people, including those not
involved in creating or authoring the flow.

• Interrogable: Users must be able to review execution of a
flow to understand what, where, and why actions were per-
formed, whether the flow completed successfully, and under
what conditions the flow was invoked.

• Intuitive: Flows may be defined and invoked by a range of
users (e.g., scientists, students) who require intuitive inter-
faces for defining, invoking, and managing flows.

• Span time scales: Research processes, and individual ac-
tions, may execute over varying time scales, from second to
months. There is also a need to manage both synchronous
and asynchronous actions.

• Robust and available: The platform must enable users to
outsource flow management without repeated interactions,
and to author flows that can compensate for failed actions.

3. Globus Automation Services

The Globus platform [11] comprises an integrated set of
services that together provide a consistent view (from an API
perspective) of diverse identity and access management (IAM)
methods and data and compute resources:

• IAM services (Auth [10], Groups [36]) for single sign-on,
management of identities and credentials, and delegation.

• Data services (Transfer [37], HTTPS, Share [8]) for access
to, and managed movement of, data.

• Metadata management (Search [38], Identifiers [39]) for
indexing and generating persistent references to data.

• Compute services (funcX [40, 41], OAuthSSH [42]) for in-
vocation and management of computational tasks.

Here we describe four new Globus automation services—
Flows, Triggers, Queues, and Timers—that extend the scope
of the Globus platform. Their purpose is to simplify the defi-
nition, deployment, invocation, and management of robust, se-
cure, long-lived, multi-functional research automation flows.

Figure 1 illustrates important elements of these services. A
flow is organized as a sequence of states that are processed
in sequence, with support for conditional execution. A state
can be implemented via an action provider, of which we show
several in the figure (Transfer, Compute, Search, Query, etc.)
or by built-in methods (e.g., Choice). Action providers often
interact with persistent services to perform a requested action:
in the figure, those services are data transfer, computation, user
query, and publication.

Flows may be invoked manually or automatically as the re-
sult of triggers or timers. Triggers process events, which may
be generated remotely and passed via reliable message queues.
Timers allow for periodic scheduling of flows.

Actions: Any activity with some notion of completion can
be made accessible as an action. For example, an action may
transfer data between two locations, request human review of a
sample, or actuate a robot to place a sample in a microscope.
Actions are typically asynchronous, in that a request to start an
action returns not a result but an identifier that can be subse-
quently used to check for success (or failure) and to access any
results (or error messages). An action may require input argu-
ments (e.g., source and destination for a data transfer; sample
to be reviewed and identity of reviewer; robot movement pa-
rameters) to complete its task, and may return purpose-specific
information (e.g., transfer progress; review result; robot status).

Globus automation services represent actions as web ser-
vices that implement the action provider API, which defines
methods for asynchronous invocation and status monitoring.
Globus provides several action providers implementing this API,
including data transfer, remote computation, human feedback
via a web form, notification via email, and minting of persistent
identifiers [43]. The action provider API is open and designed
to be implemented by external services; developers can eas-
ily create new action providers, either by extending an existing

4

service implementation or by wrapping existing functionality
behind the action provider API.

Flows: A flow defines a sequence of action invocations and
other processing steps (e.g., manipulation of flow run Context)
and control logic (e.g., Choice, Wait, Fail). Flows are defined in
a declarative manner by specifying individual actions, control
logic, and conditions upon which the flow should proceed or
halt. Once published, a flow may be invoked one or many times,
by the author or by others authorized to invoke the flow. Flows
themselves are also action providers and thus can be included
in other flows.

Flows maintain a run Context throughout their execution
which is accessible to and modifiable by actions. The Context
allows the flow and its actions to modify behavior based on the
results of previous actions. For example, a transfer action can
set a filename for subsequent use by an analysis action.

Events and queues: Globus automation services support
the automated invocation of flows in response to a variety of
events. As with actions, we take a broad view of potentially in-
teresting events that may encompass, for example, events gen-
erated by actions or flows, file systems or instruments, or hu-
mans (e.g., via email or web pages).

Given the wide range of events that we may wish to have
spur actions, and the fact that these events may occur in differ-
ent places at different times, we require an extensible, yet com-
mon abstraction that decouples event generation from action ex-
ecution. This decoupling includes both time and location, but
also identity: the source of the event and the consumer of the
event may have different Globus identities. For this purpose, we
adopt a queue-based model as an intermediary between events
and actions on those events. Users define specific Globus au-
tomation service queues and may deploy remote event genera-
tors (e.g., on local filesystem) to send events to these queues.

Triggers: As event generation and consumption are loosely
coupled, we want to be able to filter event streams to focus on
events of interest. Globus automation services use triggers as
an event-independent way of responding to events with speci-
fied characteristics. A trigger defines an event source, a predi-
cate on the content of events, and the action(s) to perform when
the predicate is satisfied. (At the time of writing, the Triggers
service is a prototype.)

Timers are provided by Globus automation services to en-
able actions to be invoked periodically, at specified intervals.

4. Using Globus Automation Services

We describe here how users interact with Globus automa-
tion services, to provide context for the implementation descrip-
tions that follow.

4.1. Interfaces and tools

Globus automation services support three client interfaces
for interacting with the services: a Python SDK, which imple-
ments a client class for programmatic invocations; a command
line interface (CLI), for interactive or scripting use; and, for
general use, a web application to run and manage flows. The

web application facilitates not only running flows but also de-
tecting, diagnosing, and correcting errors that may occur when
a flow is executing, as shown in Figure 2.

4.2. Working with Flows

Globus automation services allow users to author, publish,
discover, invoke, and manage flows.

Authorized users can author a flow by creating 1) a defi-
nition, which specifies the set of states comprising the flow; 2)
an input schema, specifying constraints on input data to a flow
run; 3) permissions governing visibility, use (i.e., ability to run)
and management of a flow and; 4) metadata, including a title,
description, and searchable keywords.

Having authored a flow, the user can publish it to the Flows
service. The service validates the flow definition and input
schema, and deploys the flow (i.e., makes it available for ex-
ecution) and returns a unique flow id. Flows serves as an action
provider factory, creating a new API path (flows/<flow id>)
supporting the action provider API for operations on the flow.
Thus, any authorized person (or program) can then employ the
action provider API (see Section 5.2), with the constructed API
path, to introspect or invoke the flow. One such use of the API
may be the Flows service itself allowing a “parent“ flow to spec-
ify a different, “child,” flow as an action state.

Any authorized user can then search or browse to discover
flow(s) with desired characteristics. Having identified a suitable
flow, a user may invoke it to create what we call a run, supply-
ing values to be populated into the run’s Context and which
must satisfy the input schema. Once a run is created, a user
can manage it: monitor its status, terminate it prior to comple-
tion, and/or retrieve either results upon successful completion
or error reports upon failure.

Each step after authoring can be performed via the CLI or
the SDK. The web application can be used for all operations
except authoring and publishing.

4.2.1. Flow definition
We use a declarative language to author flow definitions.

This language extends the Amazon States Language (ASL) [9]
used to define Amazon Step Functions [44] state machines in
the AWS cloud. The flow definition’s JSON format is rather
verbose, so we focus here on describing its primary features
rather than detailed syntax.

A flow definition specifies, first of all, a set of state def-
initions plus the start state. For example, the following code
fragment describes a flow with five states (Transfer, Validate,
Check, Publish, Failure) that is to start in the Transfer state.

{ "StartAt": "Transfer",

"States" : {

{ "Transfer" :

{ "Type":"Action", ...,

"Next":"Validate" } } ,

{ "Validate" :

{ "Type":"Action", ...,

"Next":"Check" } } ,

{ "Check" :

{ "Type":"Choice", ...,

<"Failure" or "Publish"> } } ,

5

(a) The Runs tab in the Flows interface lists runs that I can view or manage. (The Library tab lists flows that I can run.)

(b) Selecting a run in Figure 2a gives information on the run (above) and the flow that was run (below).

(c) The Event Log tab in Figure 2b shows a (here truncated) log of flow processing events during the run. All actions
completed successfully.

Figure 2: We use a simple publication flow to illustrate how the Globus web interface enables tracking of flow progress and diagnosing of
errors by (a) listing recent runs, (b) inspecting a summary of a run, and (c) listing actions involved in that run (shown with most recent
first). Other displays, not shown here, allow for examination of flow definitions, input schema, and actions in failed runs.

6

{ "Publish" :

{ "Type":"Action", ...,

"End": true } } ,

{ "Failure":

{ "Type": "Fail" } , ... } }

}

Flows supports five distinct types of state: four taken essen-
tially unchanged from ASL (Choice, Pass, Fail, Wait), plus an
Action state, used to invoke an action provider. The Transfer,
Validate, and Publish states used in the example to perform data
transfer, data validation, and data publication actions have type
Action, while Check, which is used to check the result of Vali-
date to see whether the input data should be published, has type
Choice. Finally, the Failure state is of type Fail, which causes
the run to terminate and to register as an abnormal exit.

Each state type requires additional information. For exam-
ple, an Action will always specify a URL for the associated ac-
tion provider and will typically also provide information about
input and output values and a timeout value. These are seen
in the following skeleton for the Validate action, which uses
the funcX [40, 41] action provider to run a function validate.
The skeleton specifies parameters (including the input data: the
payload) passed as a tasks parameter and the output result re-
turned at Valid. The prefix $. on these values signals that they
should be treated as JSONPath references into the run Context.
The WaitTime indicates that the instance should wait no longer
than 7200 seconds (two hours) for the action to complete, after
which it should treat the action as a failed state.

"Validate": {

"Type": "Action",

"ActionUrl": "https :// automate.funcx.org/",

"Parameters": {

"tasks": [

{

"endpoint.$": "$.endpoint_compute",

"function.$": "$.validate_function_id",

"payload.$": "$.payload"

}

]

} ,

"ResultPath": "$.Valid",

"WaitTime": 7200,

"Next": "Check"

}

The ability to catch and respond appropriately to failures
is essential to any process automation system. Flows, like the
ASL that it extends, allows the author to specify alternate con-
trol flow upon failure, such as in the following which, if added
to the Validate state definition above would cause the flow to
transition to the Failure state upon failure with error information
returned into the run Context under the key ValidFailureInfo.

"ExceptionOnActionFailure": true ,

"Catch": [{

"ErrorEquals":

["ActionFailedException"],

"ResultPath": "$.ValidFailureInfo",

"Next": "Failure"

}]

As we discuss in more detail in Section 5.1, Globus automa-
tion services permit fine-grain control over the identity used to

perform different actions. By default, actions are run as the run
creator (the user who invoked the flow), but flow authors can
also specify alternatives. For example, adding the following to
the Validate state definition specifies that the action should run
as ComputeProvider:

"RunAs": "ComputeProvider"

When the flow is invoked, this role is mapped to the identity
under which the validation computation should occur, and cre-
dentials (in the form of Globus Auth generated OAuth tokens)
for that identity are provided when invoking the flow. This pat-
tern is useful for end-user facing services that use Globus au-
tomation services behind a portal or other interface (such as
the use case described in Section 2.1.3) in which some flow
states need to access resources, like datasets, for which an end
user needs to grant permission, while other action states re-
quire other credentials (e.g., system credentials to provision re-
sources). It is also useful in the case of service-owned resources
such as an HPC system, for which a distinct identity (e.g., that
of a group account) is required.

4.2.2. Flow execution model
Each run of a flow has associated with it a Context, which

takes the form of a JSON document. This Context is initialized
with the input values provided when the flow is invoked. Each
state in a flow may read or write values to/from this Context,
with the location within the Context specified using JSONPath
syntax. Upon completion of a flow, whether successful or not,
the final Context is returned to the user (or to other flows, trig-
gers or timers which may have invoked the flow).

4.2.3. Flow Input Schema
Each flow must include a schema, defined in JSON Schema

[45] syntax, for validating input when running the flow. Vali-
dation via the schema prior to running a flow makes run-time
failure due to improper input less likely. The input schema is
also useful for building user interfaces and clients for starting
runs. For example, the web application uses the input schema
to dynamically render a form (see Figure 3) to guide a user in
providing required flow input.

4.3. Access control

All use of Globus automation services is subject to autho-
rization, which requires authentication and may also be subject
to group membership or other access control requirements.

Role-based access control is used to mediate who can per-
form various actions on flows and runs. Permissions may be
granted to an individual user identity, a group, or an applica-
tion identity in the Globus ecosystem. The following roles are
supported on a flow:

• Visible To: May discover and display, but not run, the flow.
The special value public can be used to indicate that a flow
is visible without authentication and thus may be viewed by
any user.

7

Figure 3: Browser-based input form generated from a flow’s input
schema. This example reflects the required input of a simple flow
that uses the Validate action shown above, requiring the user to
specify a payload, funcX endpoint id, function id, optional tags,
and an optional label for the run.

• Runnable By: May invoke the flow. The special value all
authenticated users indicates that any user who presents valid
credentials may run the flow.

• Administered By: May update the flow, including changes
to the definition, schema, and descriptive metadata.

• Owner: The identity of the user who initially published the
flow. Only the Owner may remove the flow. This value may
be re-assigned by an administrator, for example, to account
for an owner leaving the organization that maintains a flow.

The permissions associated with these roles are cumulative:
for example, an identity in Runnable By is inherently also in
Visible To.

To facilitate management of runs, two additional roles are
supported: Monitor with permissions to view a run including
its initial input, its progress and its final result, and Manager to
view (cumulative with the Monitor role) and cancel a run.

4.4. Defining Triggers and Timers

Triggers and timers provide two mechanisms for event-driven
flow execution. Users may define and deploy a trigger or timer
to automatically invoke a flow when an event condition is met
or on a schedule.

A trigger definition specifies: (1) a queue identifier for the
persistent queue from which events are to be received; (2) a
predicate, expressed as a filter on event parameters with Boolean
result, under which a flow should be invoked; (3) the flow (or
action) to be invoked if the predicate is satisfied; and (4) a JSON
template of the body that will be passed to the flow (or action)
when run.

A timer definition specifies: (1) a schedule (i.e., start time,
interval) for invoking a flow (or action); (2) the flow (or action)

to be invoked; (3) a JSON template of the body that will be
passed to the flow (or action) when run. (A timer may be viewed
as a specialized form of trigger.)

4.5. Defining queues

Queues is a managed service that allows users to provision
queues on demand. Queues may be created via the SDK and
CLI. Users can specify configuration options, such as message
timeout duration and access roles. Once provisioned, autho-
rized users may publish arbitrary events (as a JSON payload)
to the queue using the SDK and CLI. Events can therefore be
generated from external services, scripts, and file system mon-
itoring software, for example. Events can be consumed from a
queue using the SDK or CLI, or with a Trigger.

4.6. Example Actions

We evaluate the following seven action providers in Sec-
tion 6. A complete list of available action providers is provided
in the documentation [43].

• Echo: Returns its input string, and is primarily used for test-
ing and demonstration.

• Transfer: List directories, manage permissions, delete data,
transfer data between remote systems.

• Search: Add/delete entries to/from a search index.

• Email: Send a templated email with specified sender, re-
ceiver(s), subject, and body. Templates allow values from
the flow run Context to be included in the body of the email.

• User Selection: An interactive action that enables users to
provide feedback via a list of options or customized interface;
user selection(s) are returned to the flow.

• GenerateDOI: Obtain a DataCite DOI to assign to a web-
accessible object. The action provider uses the DataCite JSON
API and allows users to preconfigure it with the appropriate
namespace and DataCite basic auth credentials. Invocation
of the action passes through JSON metadata to be associated
with the DOI.

• funcX: Request execution of a registered Python function on
a remote computer. Users specify the funcX endpoint ID
and function ID as well as any input arguments. The ac-
tion provider wraps calls to the funcX [40, 41] function as a
service (FaaS) platform.

5. Implementation

Based on the model presented above we implement four dis-
tinct automation services: Flows to create, share, run, monitor,
and manage flows; Queues to reliably store and deliver events;
Triggers to consume events from queues, apply predicates, and
invoke flows; and Timers to register periodic events. We define
the action provider API and implement a set of action providers.
Figure 4 shows the main components of the platform.

8

Globus
automation
services

Flows

Analysis
Computer

Queues Triggers

Step

Step

Step

Step

Event
Type: creation
Match: *tiff

Timers
1 2 3

Flow
run

Action
Type: transfer
From: microscope
To: analysis computer

31
Action

Type: compute
What: metadata extract
On: analysis computer

Create
flow

2

4

Select

Compute

Transfer

Action
Type: user selection
Data: <feature extraction>
Options: approve/reject

5

Action Queue

Figure 4: Globus automation services architecture (above) and a simple flow (below). (1) A file creation event at a microscope is sent to
Queues. (2) A registered trigger identifies the event and invokes a flow via Flows. The flow invokes three actions, in sequence, each added
to the action queue in turn: (3) transfer data from the microscope to an analysis computer, (4) run analysis program to extract features,
and (5) prompt the user to approve or reject extracted features. The Timers service (upper right) can also trigger flow invocation.

5.1. Authentication and Authorization

Globus automation services allow users, and agents acting
on their behalf, to launch flows that then perform actions on
remote services, potentially over extended time periods. End-
to-end authentication and authorization of flows and actions are
thus fundamental requirements. Each request made by a flow
to a remote service must provide the credential(s) [in the form
of OAuth tokens] that the remote service requires to permit the
request. As the user who launches the flow will not necessarily
be available (or have the patience) to provide each such token
at that time that it is needed, methods are needed for caching
tokens. These methods must also protect tokens against illicit
access and use; circumscribe the purpose(s) for which they can
be used; and support their renewal, if needed, in the case of
long-lived activities.

We rely on the OpenID and OAuth 2 [46]-compliant Globus
Auth platform [10] to meet these requirements. Each Globus
automation service, action provider, and flow (collectively, “ser-
vice”) is registered with Globus Auth as a resource server and
assigned a universally unique identifier (UUID). Each such ser-
vice can, in turn, register OAuth 2 scopes representing its op-
erations, each named by a uniform resource locator (URL) that
users can employ when granting applications and services con-
sent to invoke the associated operation on their behalf. A scope
URL has the form <PREFIX>/<UUID>/<OP>, where:

• <PREFIX> is https://auth.globus.org/scopes/, in-
dicating that the scope was generated by Globus Auth (as
opposed to other OAuth-2 services);

• <UUID> is the registering service’s UUID in Globus Auth
(e.g., eec9b274-0c81-4334-bdc2-54e90e689b9a for the
Flows service); and

• <OP> names an operation on the service (e.g., publish and
manage in the case of the Flows service; run, update, and
delete in the case of a flow).

Note that each flow created by the Flows service is itself a ser-
vice, registered with Globus Auth and having its own UUID,

and with its own unique scopes named via the same concatena-
tion of <PREFIX>, its flow UUID, and operation.

The scope mechanism is central to Globus automation ser-
vices. It is used to encode fine-grained user consents to autho-
rize clients to invoke specific flows, and to ensure that flows
invoke only defined actions. The Triggers and Timers services
use the same model to invoke other services, such as Flows, on
behalf of their users. These fine-grained consents and Globus
Auth authorization capabilities together allow Globus automa-
tion services to implement a least privilege security model.

The integration of Globus Auth mechanisms with Globus
automation services proceeds as follows. Each Globus automa-
tion service API request must contain an access token in the
HTTP request “Authorization” header. Upon receipt of a re-
quest, the service uses the standard OAuth introspect opera-
tion to communicate with Globus Auth to validate the token
and retrieve authentication information, including the caller’s
identity. The information can then be used to authorize op-
erations against policy associated with a flow, as described in
Section 4.3. As shown in Figure 5, the services may also in-
teract with Globus Auth to retrieve access tokens required to
invoke other downstream services (e.g., actions defined in a
flow). Following the standard OAuth-2 protocols, when invok-
ing a service’s operation as represented by a scope, a client first
requests an access token from Globus Auth. If the client is act-
ing on behalf of a user, the user must grant consent to allow
the client to access a specific set of scopes on the service, and
any downstream services that the service may need to access.
The downstream services perform the same token introspection
to retrieve authentication information, and enforce applicable
authorization policy.

5.2. Action Providers

Action providers are the foundation for all work performed
by Globus automation services, whether by flows, triggers, or
timers. Each implements a common interface for introspect-
ing an action provider’s capabilities, requesting execution of an
action, and monitoring and managing action progress:

9

F()
@A

node A

F()

Auth

(3) “Run F()
on node A”

Flows (2) “Retrieve access
token for funcX”

(4) “Retrieve
dependent token

for F() on node A” (6) F() runs

Consent

Dependent
token

Token hierarchy

(1) “Run flow”
request,
with consent funcX

Access
token

Cloud-hosted
services (5) “Run F()”

Figure 5: Distributed authorization as implemented in Globus automation services. The shaded region in the center encompasses the
cloud-hosted Globus services: here, Flows, Auth, and funcX services. (1) A user, having previously authenticated, requests Flows to run
a flow comprising the action “run F() at node A,” providing the necessary token. (2) Flows obtains an access token from Auth to make a
request to funcX. (3) Flows requests funcX to run F() on A. (3) FuncX obtains a dependent token to run F() on A. (5) funcX requests the
funcX agent associated with node A to run F(). (6) F() runs. The key on the right illustrates the different tokens used.

• GET <action url>/: Introspect the action provider for de-
scriptive and administrative information, the required Globus
Auth scope for invocation, and schema for the action’s input.
This operation may be permitted without any authentication
allowing, for example, the scope to be discovered without
otherwise authenticating or possessing access tokens.

• POST <action url>/run: Invoke an action described by a
supplied input document that matches the schema returned
from introspecting the action. The request contains a client-
generated request id which is used by the action provider to
de-duplicate repeated requests. This operation returns a doc-
ument containing an identifier for the new run (the action id

used in subsequent requests), the state of the action (ACTIVE,
indicating still running; SUCCEEDED; or FAILED), and action-
specific details on the state or result of the run.

• GET <action url>/<action id>/status: Retrieve, for the run
with the provided action id value, a document with the same
form as that returned from the run operation.

• POST <action url>/<action id>/cancel: Request cancel-
lation of a run in the ACTIVE state. Cancellation is considered
advisory only: it may stop the run immediately, cause the
run to end sooner than normal, or have no effect. In all cases,
a document is returned with the same form as that returned
from the run operation structure, to report the (potentially
updated) status of the run.

• POST <action url>/<action id>/release: If run has com-
pleted (i.e., state is SUCCEEDED or FAILED), remove its context
from the action provider. (Action providers typically other-
wise retain state for 30 days.) The same action status in-
formation is returned as for the other operations, but upon
completion, any subsequent references to the action id will
be unrecognized by the action provider.

The Flows service implements this API for each flow at the
URL https://flows.globus.org/flows/<flow uuid>.
Thus, anywhere that a Globus automation service may invoke
an action provider, as an action within a flow or via the Triggers
or Timers services, it can also invoke a flow.

To enable users to create and operate new action providers,
either for their own use or to share with others, we provide a
Python library that defines classes for the common Globus Auth
and action provider data types and operations [47]. This li-
brary further provides helpers for setting up the required REST
API entry points for common Python web development envi-
ronments. We use this development kit in developing the action
providers enumerated in Section 4.6.

5.3. The Flows Service

Our Flows service implementation has two main compo-
nents: (1) A horizontally scalable front-end service that imple-
ments the REST API for publication, invocation, monitoring,
and other lifecycle operations of a flow; and (2) a back-end
polling process that initiates and monitors the progress of ac-
tions by using the Action Provider interface described above.
In addition, we make extensive use of AWS services to provide
the scale, reliability, and availability required by a large user
community with critical use cases.

The structure of the service, including its front end and
back end, and its use of AWS services, is shown in Figure 6.
The front end implements all client facing REST APIs for life-
cycle management of flows and runs. We deploy the front end
in Docker containers using the AWS Elastic Container Service
(ECS) for automatic scale-up and scale-down based on demand.
The front end stores state in a replicated Postgres AWS Rela-
tional Data Service (RDS) database cluster, and shares authen-
tication state with the back end via an AWS DynamoDB table.
The other Globus automation services described here, Queues,
Triggers and Timers, make similar use of AWS for hosting a
scalable API front end, database services for persistence, and in
the case of Triggers and Timers additional back-end processes
for monitoring actions they initiate.

Flow runs are passed to another AWS service, AWS Step
Functions (ASF), which in turn invokes the Flows back end via
an AWS Simple Queuing Service (SQS) message paired with
an AWS Lambda function that implements the Flows back end.
By performing all execution and monitoring of flow runs and
their action steps outside the front end, we ensure that flows
will continue to make progress even if the front end is down and

10

that this execution environment will scale should many runs be
in flight simultaneously.

5.3.1. Flow deployment
The most complex elements of the Flows service are those

concerned with the deployment and execution of flow runs. De-
ployment of a flow requires interaction with two platform ser-
vices, Globus Auth and AWS Step Functions (ASF).

As described in Section 5.1, the Flows service registers each
newly deployed flow with Globus Auth as a separate service,
and further registers new scopes for the operations used to run
or manage the flow. Prior to registering each scope, the service
examines the flow definition to identify all action providers that
it may use, and makes each of the action provider’s scopes de-
pendent on the scopes for this flow. Thus, when a user runs
the flow, they will be informed of the action providers they are
allowing to be invoked on their behalf and with their identity
during the flow’s run.

The interactions with ASF involve deploying a new “state
machine” (the ASF equivalent of a flow) for each flow. This
state machine is a transformed version of the input flow re-
ceived by the service. The transformation involves two com-
ponents: (1) generating ASF “Task” states for each Action in
the flow and; (2) altering references to the flow’s run-time state
to protect service-specific data stored at run-time.

ASF Task states are used to perform activities, and they may
be used to invoke a wide variety of AWS resource types. The
Flows service creates Task states which pass the information
related to an Action step onto an AWS SQS queue for which
a Lambda function is configured as a receiver. The queued
messages include the URL for the desired Action Provider, the
name of the scope used to invoke the action, parameters to the
action invocation, timeout and error-handling options.

The Flows service stores additional information for its own
use, such as identifiers for the flow, run, and invoking user in
the state of the ASF state machine execution context. To protect
this internal information from the user, all initial user input and
references to run-time state are stored in the context under a key
$.UserState. Thus, all references within all states of the flow
definition are updated with this prefix so they will be read and
written to this sub-key of the flow’s run-time state.

5.3.2. Processing Flow runs
When a user invokes a flow, the user’s identity is confirmed

via Globus Auth, and authorization is granted if that identity
satisfies the “Runnable By” policy configured for the flow. To-
kens identifying the invoking user for all dependent scopes es-
tablished when the flow was deployed are retrieved from Globus
Auth. This process is repeated for any additional roles used in
the flow. Once retrieved, tokens are placed into the DynamoDB
database for use when interacting with action providers on the
user’s behalf during the run. ASF is then invoked to start the
run with the user’s input, as well as additional information de-
scribed above are placed into the into state of the run Context.
From this point on, the flow run proceeds without interaction
with the Flows service front end. Thus, should the front end be
off-line, all runs can nevertheless proceed correctly.

The transformed flow that is deployed to ASF causes each
action step in the flow run to invoke the back-end Lambda func-
tion used to interact with the appropriate Action Provider. The
Lambda function uses the action provider URL and access to-
kens from the token database to invoke the action provider. It
passes the action’s message body as arguments to the action
provider and receives an action id in response. Subsequent in-
vocations of the Lambda function use the action id to retrieve
the status of the invocation, determine its completion or failure
(including enforcing a timeout), call action provider release to
free resources, and return the invocation’s result to ASF. When
a poll of the action returns an incomplete state, the polling pe-
riod is updated and the message is returned to the queue with an
updated polling period. Specifically, an initial period is set in
the invocation message body. That period is then doubled each
time the status is checked up to a maximum of 600 s. Thus
single action queue is used to process both initial and polling
requests for an action invocation, with the queue itself provid-
ing the delay between polls.

5.4. The Queues Service
The Queues service supports the creation and use of queues,

which Globus automation services use for reliable and secure
delivery of messages from senders to receivers—specifically,
from event generators to triggers. It allows for asynchronous
communication: events can be added to a queue, and will be
stored, even if no active receiver is currently associated with the
queue, or if the receiver is temporarily incapable of receiving
and processing messages at a rate matching that of the queue’s
sender(s). It also ensures in-order message delivery.

The Queues service is implemented as a thin layer over
Amazon SQS, with each user-created queue realized as an SQS
queue. The Queues service augments SQS by integrating it
with the Globus Auth identity and access model. The Queues
REST API defines methods for creating, modifying, and delet-
ing queues—and, once a queue is created, for adding, receiv-
ing, and acknowledging receipt of messages to/from that queue.
Three roles associated with each queue control who can modify
policies or delete the queue (Administrator role), send a mes-
sage onto the queue (Sender), and retrieve a message from the
queue (Receiver).

The Queues service implementation uses message receipts
to provide at-least-once message delivery semantics: Each mes-
sage received from a queue includes a unique message identi-
fier, and only after that identifier is returned to the queue in a
subsequent acknowledgement API call can the message be re-
moved from queue storage. If no acknowledgement is received
after a certain period, the message may be re-delivered. In ad-
dition, message identifiers are used to ensure exactly once in-
vocation semantics: Each time that the trigger service invokes
an action, it uses the queues service message identity as the re-
quest identifier, and as described in Section 4.6 action providers
will discard requests with duplicate request ids.

5.5. The Triggers Service
The Triggers service enables configuration and execution of

triggers, which are used for event-based invocation of a flow or

11

Requests

AWS Lambda

Amazon RDS

Elastic
Load Balancing

AWS Step Functions Amazon SQS

Poll; schedule action

Flows database

Elastic
back end

Amazon DynamoDB

Token database

Retrieve tokensStore tokens

Translated flows Pending flows...

Elastic
front end

Action providers

Invoke via
REST API

Key to AWS abbreviations
ECS: Elastic Container Service
SQS: Simple Queue Service
RDS: Relational Data Service

Schedule
action

Enqueue
actions

Store
flows

Amazon ECS

Transfer

Identifier

User Form

Search funcX

Xtract

Figure 6: The Flows service front end is deployed in Docker containers, managed by AWS ECS. A variety of other AWS services, shown
as grey-scale icons with the service name underneath, are employed for persistence, flow execution, and reliable scaling of interactions
with remote Action Providers. The text above each AWS service indicates its function.

action. The creation of a trigger is a two-step process. First, the
user interacts with the Triggers service to configure a new trig-
ger. In doing so, the user provides the identifier for a previously
created queue, the URL for the action provider (which may be a
flow) to be invoked by the trigger when an event occurs, a pred-
icate used to identify events that should cause the action to be
invoked, and a transformation to be applied to each triggering
event’s properties to create the input for the resulting action.

Second, the user then requests that the Triggers service en-
able the newly created trigger. In so doing, the user provides
an access token with dependent scopes for the Queues receive
message and for running the action, so as to grant the Triggers
service authority to read from the queue and to invoke the ac-
tion. A user may also disable a trigger, which places it in an
idle state in which no events from the queue will be processed.

While a trigger is enabled, the Triggers service periodically
polls the queue. Polling is performed in the service’s back-
end by a pool of workers that select enabled triggers from a
priority queue that encodes the time until the next poll should
occur. A trigger is placed back onto the queue after polling,
increasing the polling interval when no messages are available
and decreasing the interval when messages are received.

For each message received, the trigger’s predicate is evalu-
ated to determine if a match occurs. The predicate is a Boolean
expression written in a Python-like syntax that may evaluate
any properties of the incoming message. For example, if the
message represents a file creation event, the predicate may check
that the filename ends with a particular suffix, such as “.tiff”.
Messages that do not satisfy the predicate are discarded.

Those messages that satisfy the predicate will cause the trig-
ger’s configured action to be invoked. The input to the action is
formed from the properties of the incoming message. The vari-
ous parameters are specified using the same Python-like syntax
as the predicate and can evaluate properties of the incoming
message. For example, if a filesystem update event message
contains a list of new files called simply files, but an action
needs an input parameter number of files the transformation
could be written as number of files = len(files). Once
the input is formed, the action is invoked using the access to-

ken acquired when the trigger was enabled. The run’s identi-
fier (action id) is added to a queue so that the same polling
process can be performed to monitor the progress of each run.
When the run completes, its results are cached in the trigger’s
configuration so that recent results and statistics related to the
trigger’s usage may be retrieved by the user.

5.6. The Timers Service

The Timers service has a similar purpose and a similar inter-
nal structure to the Triggers service. Whereas Triggers invokes
actions in response to events, Timers invokes actions at regu-
lar time intervals. The configuration of a timer includes: 1) the
identifier for an action (which may be a flow) to be invoked; 2)
start time for action invocation; 3) a time interval in seconds;
4) either a count of the number of times to invoke the action or
an end time; and 5) input arguments for the action. The Globus
Auth scope for creating a timer is dependent on the action or
flow scopes; thus, the Timers service retrieves an access token
when the timer is configured, and uses it to invoke the action.

Internally, the Timers service is implemented similarly to
the Triggers service: when a timer is established, its start time
is inserted into a priority queue sorted by timestamps for next
execution time. A single back-end dispatcher process wakes pe-
riodically and pops any element(s) from the queue whose next
time is less than the current time. For each timer thus identi-
fied, it posts an invocation request onto a separate work queue,
computes the timer’s next execution time using the defined in-
terval, and places it back onto the work queue as long as it will
not have expired based on the count or stop time parameter.
A set of worker processes listen on the work queue, and for
each timer received, use the action parameters and the access
token required to invoke the action. As queues are maintained
with persistent storage, timers are not lost if the Timers service
is down: once the service restarts, it will recover any missed
timers and schedule the required actions. Timers are currently
only available in the Globus platform and web application to
perform periodic data transfers; however, the architecture and
implementation support the invocation of any action.

12

6. Evaluation

We first investigate the performance of Flows and the la-
tency and overhead involved in executing individual flows. Then,
we consider the performance of the action providers. Finally
we review use and adoption of Globus automation services in
production settings.

6.1. Flow Throughput and Latency

To examine the throughput of the Flows service and its abil-
ity to serve many users concurrently, we performed load tests
in which an isolated instance of the service, deployed on a sin-
gle ECS container with a CPU value of 2048 (equivalent to two
vCPUs), 4 GB of memory, and eight worker threads, served
requests from varying numbers of clients. The clients were de-
ployed on a login node of Argonne’s Theta computer with an
Intel Haswell E5-2698 v3 CPU with 256 GB of DDR4 memory.
We then performed experiments in which each of N concurrent
clients, for N = 1, 2, . . . , 128, repeatedly invoked a simple flow
comprising a single Pass state (essentially a no-op) and waited
for the response. We measured both the time from invocation
to response for each request (latency), and the average number
of requests processed per second (throughput).

We see in Figure 7 that the Flows service in the measured
configuration can serve roughly 25 flow invocations per sec-
ond when under load, with failures appearing with more than
64 concurrent requests. The number of requests per second
plateaus once eight concurrent clients are used, as the many
clients begin to saturate the eight available worker threads. Fail-
ures occur under high load because each of the service’s worker
threads is busy communicating with the ASF service, meaning
the load balancer is unable to pass the request to the service.
Such failures can be avoided by dynamically scaling the num-
ber of instances deployed by Flows. We note that the production
Flows deployment employs a minimum of four containers and
can scale further horizontally, based on load.

1 2 4 8 16 32 64 128
Concurrent clients

10
1

10
0

10
1

S
ec

on
ds

5

10

15

20

25

R
eq

ue
st

s
pe

r s
ec

on
d

Figure 7: Flows service performance when processing requests to
run a simple flow. X-axis: Number of concurrent clients making
requests. Left y-axis: Request response time, plotted both for in-
dividual requests (green cross for success, red for failure) and as
box plots for lower and upper quartiles, with whiskers to 1.5× the
interquartile range. Right y-axis: Requests per second.

In a second set of experiments, we ran a flow consisting of
a single action that sleeps for a specified period of time and
measure the overheads associated with flow execution, which
we define as flow completion time minus the action sleep time.
Figure 8 shows that no-op flows (sleep time of 0 s) incur, on av-
erage, 2.88 s overhead. This cost is due primarily to the expo-
nential backoff policy used by the Flows service when polling
for task completion: Each task is first polled after 2 s and, each
time that the task is found still to be active, the polling interval is
doubled, up to a maximum of 600 s. The remainder of the over-
head is due to the polling request being queued for processing
by a Lambda function and the cost of communicating with the
remote action provider. The figure also shows that flow over-
heads as a fraction of total flow time decline as flow runtimes
increase, to an average of 1.2% for 1024 s flows.

0 1 2 4 8 16 32 64 128 256 512
1024

Sleep time (s)

0

10

20

30

40

S
ec

on
ds

0

20

40

60

80

100

%
 o

ve
rh

ea
d

Figure 8: Overhead incurred by a single-step flow with a sleep ac-
tion of a specified duration (x-axis). The left y-axis and red box
plots show the overhead in seconds, with upper and lower quar-
tiles. The right y-axis and blue markers show mean % overhead.

6.2. Action Providers
Understanding action provider performance is crucial to de-

veloping efficient flows and choosing timeout values. Thus, we
performed experiments to measure round trip latencies for vari-
ous actions. In each case, the requested action involves a simple
task: e.g., transfer a four-byte file, run a no-op function, and in-
dex a trivial record into a search catalog. Thus, the measured
costs, shown in Figure 9, are largely overhead associated with
negotiating access to the corresponding service. We do not eval-
uate here costs that scale with, for example, the size of the data
being transferred or published.

We see in Figure 9 that simple tasks, such as Echo, are com-
pleted relatively rapidly, albeit with a ∼1 s floor on response
time. More demanding actions, such as funcX and data trans-
fer, take longer. Analysis suggests that these higher costs are
due to administrative overheads. Authentication accounts for
around 200–400 ms of a typical request. In the case of funcX, a
majority of the time is spent instantiating a secure client to inter-
act with the funcX service—a cost that is amortized if multiple
functions are bundled in one request.

The relatively high action execution times seen in these ex-
periments preclude certain applications of Globus automation

13

services. However, we have been pleasantly surprised by how
many research automation applications can function effectively
under these parameters. The reduction of various overheads,
for example by caching credentials and proxy clients, will be a
focus of future work.

Echo

Transfer_Collection

Transfer_ACL

Transfer_LS

Transfer_MKDIR

GenerateDOI
Email

Search_Delete

Search_Publish

Transfer_Delete
Transfer

funcX

Action Provider

0

2

4

6

8

S
ec

on
ds

Figure 9: Round-trip latencies observed for various action
providers, each executed at least 100 times. For Transfer and
Search, we separate out results for different action options.

6.3. Production Flows

Globus automation services are increasingly being used to
run production workloads and are indeed becoming an integral
part of many research data lifecycles. One facility that lever-
ages the platform is Argonne’s Advanced Photon Source (APS),
a synchrotron light source facility that houses 68 beamlines in
32 sectors used by more than 5000 scientists a year. Since pro-
totype Globus automation services were first made available in
2020Q1, adoption has grown from a few experiments to thou-
sands of flows that are used routinely to analyze and catalog
experimental data. This adoption is shown in Figure 10, which
summarizes usage of the services across five APS beamlines.

20
20

Q1

20
20

Q2

20
20

Q3

20
20

Q4

20
21

Q1

20
21

Q2

20
21

Q3

20
21

Q4

20
22

Q1

20
22

Q2

20
22

Q3

Date

0

5000

10000

15000

20000

Fl
ow

 R
un

s

Experiment
HEDM
Ptychography
SLAC
SSX
XPCS

Figure 10: Number of flow invocations over time from five differ-
ent APS experiments. The numbers vary due to facility and exper-
imental schedules. The decline in the latest quarter is due to APS
preparing for an extended shutdown for upgrade.

We review a set of 415 production flow runs performed be-
tween December 9th and 15th, 2021, in support of the experi-
mental science use case of Section 2.1. All runs involved the

same flow, which comprise a total of six steps (see Table 1)
used to retrieve and analyze an experimental dataset, generate
images, and publish results to a search catalog. Each individ-
ual run was triggered by the creation of a new dataset at the
experimental facility.

In total, the 415 runs processed over 500 GB of X-ray im-
agery and consumed over 1500 supercomputer node hours. The
dataset generation rate at the instrument, and therefore the rate
at which the flow was invoked, ranged from 0.1 to 0.0001 Hz,
depending on the collection technique in use and beamline op-
erational procedures. Table 1 characterizes the times taken by
the six states over the 415 runs. The large variations are due to:
1) changes in data collection technique over the course of the
experiment, which resulted in data sizes that varied by two or-
ders of magnitude, and thus varied transfer and analysis times;
and 2) resource contention at times of peak collection rate, which
led to both transfer and execution tasks being queued by either
the transfer service or the HPC scheduler. Nevertheless, every
dataset collected during this period was successfully processed
and published to the search catalog.

7. Experiences and Lessons learned

From when Globus automation services were first released
in beta in 2021, to August 2022, 84 unique users have defined
4737 flows and 167 users ran 247 643 flows, of which 225 162
either ran to completion successfully or are active at time of
writing, 20 189 failed (typically due to timeouts, as noted ear-
lier), and 1971 were cancelled. A further 321 flows are “inac-
tive”, meaning that they have stalled for various reasons (e.g.,
expiry of credentials required to transfer data). There are now
14 separate action providers. The Timers service has been used
by 813 users to create 3642 timers that have cumulatively fired
1 777 271 times; 338 timers from 188 users were active at the
time of writing. The Triggers and Queues services are proto-
types and are not yet widely accessible.

As Globus automation services have evolved from proto-
type to production, we have worked with various groups to de-
fine and deploy flows. Early adopters were primarily from the
four main use cases outlined in Section 2. We have seen signif-
icant adoption, in particular, in instrument science, where most
flows authored to date follow a pattern in which preliminary
data processing is performed near the instrument, data are then
moved to a compute cluster, further analysis is performed on

Table 1: Times, in seconds, to process the steps of 415 flow runs
used to analyze and publish datasets from an APS experiment.

Action Min Max Mean Std

Transfer 4.11 522.66 47.61 95.95
Pre-publish 3.50 44.19 7.01 5.71
Analyze 7.54 2881.93 326.17 487.01
Visualize 20.03 549.50 116.71 98.30
Extract 6.65 52.51 10.94 5.53
Publish 3.64 34.54 7.44 4.88

14

that cluster, and results are returned to scientists, either directly
or via a web-based catalog. We note the following characteris-
tics of these early uses:

• Flow diversity: Even in situations in which the high-level
process appears similar, implemented flows must be adapted
to specific use cases. For example, the instrument use cases
have similar processes, yet each flow has different actions
and configurations.

• User diversity: Globus automation service users range from
software developers to scientists with limited programming
experience. The various Globus automation services inter-
faces satisfy the requirement for different ways of working
with the platform, but further abstractions are needed to re-
duce barriers for non-expert users. As such, we are actively
working on both a Python toolkit [12] and graphical interface
to compose flows.

• Throughput over latency: Our current applications have not
needed sub-second responses; rather, users are concerned with
high throughput, and thus with being able to process many
flows in parallel, as well as with reliability.

• Authorization bottlenecks: The authorization steps required
for flows to access resources in different administrative do-
mains can be a source of complexity. Our approach pro-
vides a structured way of managing authorizations, but does
not overcome the need for periodic refresh of consents and
credentials—a task that can become tiresome, particularly
when different user identities must be employed on differ-
ent resources. In some settings, group-based access controls
can be a solution.

• Provenance: Researchers often want to review flow execu-
tions, understand under what conditions a flow was run, ex-
plore why a flow failed, and review performance and other
metadata regarding individual actions.

• Flows are logically grouped: Many use cases execute multi-
ple flows as part of a single unit of work, such as a particu-
lar experiment or data publication task. Users want to think
about and manage such a collection of flows as a unit, with
the ability to drill down into the details of individual flows
where necessary. To this end we have implemented tags to
filter collections of runs and simplify discovery. Providing
additional grouping, discovery and filtering capabilities is an
area for future work.

• Action provider API implementation is a significant under-
taking: Our approach of implementing action providers as
standalone services and as wrappers around existing services
using Lambda functions has required custom optimizations
in terms of token caching, horizontal scaling, and resource
configurations. Higher-level abstractions are needed to make
it easier and faster to develop new action providers.

The Globus automation services approach to automation is
not intended for: 1) computational workflows involving many
tasks, for which specialized workflow tools (Section 8) exist;

2) high-volume flows, such as responding to every change in
a file system (Globus automation services are designed to pro-
cess millions, not billions, of flows per day, and rate limiting is
used to prevent denial of service attacks on the services); and
3) workflows where high performance or millisecond-scale la-
tency matters: for example, for complex event processing on
data streams from real-time monitors.

8. Related Work

Hundreds of workflow systems have been created to orches-
trate sequences of steps [48], with goals of automating com-
putational campaigns, making efficient use of parallel or dis-
tributed systems, and representing complex processes [49, 50,
51, 52, 53, 54]. Several authors have attempted to organize and
categorize the many workflow systems [55, 56, 57]. We consid-
ered various of these existing systems before deciding to build
upon ASF. We briefly review different workflow approaches.

Workflow task models: Workflow systems are used broadly
to coordinate different types of activity, such as local programs,
jobs submitted to parallel computers or clouds, calls to web
services, and human activities. Task-based systems, such as
Parsl [53], Pegasus [51], and Swift [58] execute computational
tasks, either by invoking program functions or by making calls
to locally executable programs and scripts. Service-based sys-
tems, such as Taverna [59], Netflix Conductor [6], and ASF, are
designed to invoke web services, for example via Web service
protocols [60]: what is sometimes referred to as microservice
orchestration [61]. Some systems, such as HyWare [62], track
automated and human-based tasks.

Workflow representations: Workflows may be represented
either declaratively or imperatively. In declarative systems, a
structured notation (e.g., a simple textual notation in DAGman
[63], a JSON- or YAML-based notation in the Common Work-
flow Language [64], and an XML-based notation in Pegasus) is
used to specify the actions to be performed and their relation-
ships; an interpreter or compiler then translates this specifica-
tion into runtime operations. In imperative systems, a workflow
is implemented by an executable program coded with exten-
sions to an existing language (e.g., Parsl extends Python) or an
independent domain-specific language (e.g., Swift). We adopt
a declarative representation in this work (specifically, an ex-
tended version of ASL) due to the convenience of a textual rep-
resentation that can be generated variously by libraries, graphi-
cal user interfaces, or compilers.

Workflow deployment models: Most workflow systems
are designed to be run by a single user in order to execute that
user’s workflows. Some systems (e.g., Galaxy [50], Taverna)
can be deployed in a multi-user model via which groups of
users may define, share, and manage workflows . However,
in most cases these workflow systems are deployed on a single
computer by those who use them. Hosted workflow systems,
such as those offered by cloud providers and the public Galaxy
instance, allow users to define and execute workflows without
installing and managing workflow systems locally. However,
these systems are typically bound to the cloud platform or clus-
ter on which they are deployed. We build upon this model to

15

provide a hosted service via which users can outsource the exe-
cution of workflows to a trusted and reliable third party.

Business process automation: Business process automa-
tion systems seek to represent enterprise information processes
in executable forms, for example via the Business Process Ex-
ecution Language (BPEL) [5], which allows for the linking of
web services and human processes. These systems were not de-
signed for research process automation and there is only limited
experience with their use in science [65, 66, 67].

Cloud services: Cloud providers are delivering many in-
novations in automation, for example, for development opera-
tions (DevOps), combining different cloud services, and data-
oriented workflows. These services often focus on higher-level
automation goals by chaining existing cloud services; increas-
ingly, they aim to lower barriers to use. Thus, for example,
AWS provides both a full-featured Simple Workflow Service
(SWF) [68] and a simpler Step Functions (SFN) service [44].
Software development services, such as GitHub Actions [69]
and Amazon’s CodePipeline [70], provide automation tools forx
continuous integration and continuous deployment processes.
These tools enable users to combine actions into pipelines that
perform DevOps tasks in response to code events.

Event-based models: The use of queues in Globus automa-
tion services to link event producers and consumers reprises
the pub/sub model often used in distributed systems [71] and
sometimes in scientific workflows [72, 73, 74]. EPICS [75] and
ROS [76] use this model to control experimental and robotic
systems, respectively. The integrated Rule-Oriented Data Sys-
tem (iRODS) [77] enables specification of data-related processes.
Trigger-action programming [78] seeks to create user-friendly
interfaces for creating automations. If-This-Then-That (IFTTT)
[79] allows users to select events and actions via a graphical in-
terface, for example to turn on lights at specific times or control
a thermostat based on proximity. These concepts have also been
applied to scientific data [80].

Remote computing interfaces: Many customized solutions
have been developing for linking scientific instruments with
HPC, for example in biomedicine [81], environmental science
[82, 83], and disaster response [84, 85]; using HPC to analyze
large data [86]; and providing on-demand access to HPC [87,
88]. Such applications have motivated the development of spe-
cialized interfaces for remote job submission [89, 90] and for
managing workloads across systems [91, 92, 93, 94]. The LBNL
superfacility project has studied requirements for linking instru-
ments with HPC [95] and proposed an OAuth-based API [96]
that is similar to our action provider interface. DataFed [97]
federates various scientific data stores.

Researchers investigating methods for autonomous scien-
tific discovery [98, 99, 100, 101, 1, 102] have developed inno-
vative approaches describing discovery protocols, but have not
yet addressed the systems issues encompassed by Globus au-
tomation services.

9. Conclusions

The work reported here has been motivated by ongoing in-
vestigations of how best to automate currently manual research

processes. We developed Globus automation services to ad-
dress these unique requirements, enabling users to define, pub-
lish, share, and invoke flows composed of various external ac-
tions. We developed a declarative flow representation building
upon ASL; an asynchronous action provider API to enable inte-
gration of various actions; and a robust and scalable set of ser-
vices to manage the secure invocation and execution of flows.
We integrate a flexible authorization model via which flows,
Globus automation services, and actions are registered as inde-
pendent OAuth 2 resources, such that users may delegate autho-
rization to these components to manage the secure invocation
of flows that span a wide range of temporal and spatial extents.
Further, having identified reliability and scalability as critical
requirements for research process automation, we architected
Globus automation services to be cloud-hosted, exploiting re-
liable and scalable cloud services wherever possible. We find
that these services can scale to support many concurrent clients.
Experiments show that our 14 initial action providers exhibit
moderate latencies that have proven satisfactory for initial use
cases. Our experiences applying Globus automation services in
several domains has shown that they indeed satisfy diverse re-
quirements of varied research automation use cases. Usage has
grown rapidly in a short period of time.

In future work we aim to expand Globus automation ser-
vices capabilities by integrating a broader set of actions. To
this end, we are exploring methods for transforming various in-
vocation request patterns dynamically and automatically so as
to support existing APIs without requiring modification. We are
also exploring methods to decrease action invocation overheads
in order to enable lower-latency response times to events and
support real-time flow execution. To improve the flow devel-
opment process we are actively working on both Pythonic and
graphical user interfaces to compose flows. Continued evalua-
tion of both the platform and user experiences will surely sug-
gest other directions for both research and development.

Acknowledgments

We acknowledge the many contributions of the late Steve
Tuecke to the design of Globus automation services. We thank
Joe Bottigliero, Jacob Lewis, Uriel Mandujano, Ada Nikolaidis,
Rudyard Richter, Stephen Rosen, Seren Thompson, Lei Wang,
and others on the Globus product team, and also Nick Saint,
Rafael Vescovi, Suresh Narayanan, and Nicholas Schwarz for
their support. This work was supported in part by NSF grant
OAC-1835890 and by the U.S. Department of Energy under
contract DE-AC02-06CH11357.

References

[1] E. Stach, et al., Autonomous experimentation systems for materials de-
velopment: A community perspective, Matter 4 (9) (2021) 2702–2726.

[2] C. J. Leong, et al., An object-oriented framework to enable workflow
evolution across materials acceleration platforms, Matter 5 (10) (2022)
3124–3134. doi:https://doi.org/10.1016/j.matt.2022.08.

017.
URL https://www.sciencedirect.com/science/article/

pii/S259023852200474X

16

https://www.sciencedirect.com/science/article/pii/S259023852200474X
https://www.sciencedirect.com/science/article/pii/S259023852200474X
https://doi.org/https://doi.org/10.1016/j.matt.2022.08.017
https://doi.org/https://doi.org/10.1016/j.matt.2022.08.017
https://www.sciencedirect.com/science/article/pii/S259023852200474X
https://www.sciencedirect.com/science/article/pii/S259023852200474X

[3] Z. Liu, et al., Bridging data center AI systems with edge computing for
actionable information retrieval, in: 3rd Annual Workshop on Extreme-
scale Experiment-in-the-Loop Computing, IEEE, 2021, pp. 15–23.

[4] A. Trifan, et al., Intelligent resolution: Integrating Cryo-EM with AI-
driven multi-resolution simulations to observe the severe acute respira-
tory syndrome coronavirus-2 replication-transcription machinery in ac-
tion, The International Journal of High Performance Computing Appli-
cations (2022) 10943420221113513.

[5] C. Barreto, et al., Web Services Business Process Execution Language
Version 2.0 primer, oASIS Specification (2007).

[6] Conductor scalable workflow orchestration, https://conductor.

netflix.com. Accessed November 2022.
[7] D. Xin, et al., How developers iterate on machine learning workflows,

in: IDEA Workshop at KDD, 2018.
[8] K. Chard, et al., Efficient and secure transfer, synchronization, and shar-

ing of big data, IEEE Cloud Computing 1 (3) (2014) 46–55.
[9] Amazon States Language, https://states-language.net/. Ac-

cessed January 2022.
[10] S. Tuecke, et al., Globus Auth: A research identity and access manage-

ment platform, in: 12th IEEE International Conference on e-Science,
2016, pp. 203–212.

[11] R. Ananthakrishnan, et al., Globus platform-as-a-service for collabora-
tive science applications, Concurrency and Computation: Practice and
Experience 27 (2) (2015) 290–305.

[12] R. Vescovi, et al., Linking scientific instruments and computation: Pat-
terns, technologies, and experiences, Patterns 3 (10) (2022) 100606.

[13] T. Bicer, et al., High-performance ptychographic reconstruction with
federated facilities, in: Smoky Mountains Computational Sciences
and Engineering Conference, Springer, 2021, pp. 173–189, https:

//arxiv.org/abs/2111.11330.
[14] B. Blaiszik, et al., A data ecosystem to support machine learning in ma-

terials science, MRS Communications 9 (4) (2019) 1125–1133.
[15] A. L. Charbonneau, et al., Making Common Fund data more findable:

Catalyzing a data ecosystem, bioRxiv (2021). doi:10.1101/2021.

11.05.467504.
[16] D. A. Sherrell, et al., Fixed-target serial crystallography at Structural Bi-

ology Center, bioRxiv (2022). doi:10.1101/2022.04.06.487333.
[17] M. Levental, et al., Ultrafast focus detection for automated microscopy,

in: International Conference on Computational Science, Springer, 2022,
pp. 403–416.

[18] A. Ali, et al., fairDMS: Rapid model training by data and model reuse,
https://arxiv.org/abs/2204.09805 (2022).

[19] K. Diederichs, et al., Serial synchrotron X-ray crystallography (SSX),
in: Protein Crystallography, Springer, 2017, pp. 239–272.

[20] G. Winter, et al., DIALS: Implementation and evaluation of a new inte-
gration package, Acta Crystallographica Section D 74 (2) (2018) 85–97.
doi:10.1107/S2059798317017235.

[21] M. Uervirojnangkoorn, et al., Enabling x-ray free electron laser crystal-
lography for challenging biological systems from a limited number of
crystals, Elife 4 (2015) e05421.

[22] M. Hidayetoglu, et al., MemXCT: Design, optimization, scaling, and re-
producibility of x-ray tomography imaging, IEEE Transactions on Par-
allel and Distributed Systems 33 (9) (2021) 2014–2031.

[23] Z. Liu, et al., TomoGAN: Low-dose synchrotron x-ray tomography with
generative adversarial networks, JOSA A 37 (3) (2020) 422–434.

[24] F. Lehmkühler, et al., From femtoseconds to hours–measuring dynam-
ics over 18 orders of magnitude with coherent x-rays, Applied Sciences
11 (13) (2021) 6179.

[25] A. M. Maiden, et al., Superresolution imaging via ptychography, JOSA
A 28 (4) (2011) 604–612.

[26] R. Pokharel, Overview of high-energy x-ray diffraction microscopy
(HEDM) for mesoscale material characterization in three-dimensions,
in: Materials Discovery and Design, Springer International Publishing,
2018, pp. 167–201. doi:10.1007/978-3-319-99465-9_7.

[27] J. Dubochet, Cryo-EM—the first thirty years, Journal of Microscopy
245 (3) (2012) 221–224.

[28] E. A. Huerta, et al., Enabling real-time multi-messenger astrophysics
discoveries with deep learning, Nature Reviews Physics 1 (10) (2019)
600–608.

[29] J. V. Bernier, et al., Far-field high-energy diffraction microscopy: A tool
for intergranular orientation and strain analysis, The Journal of Strain
Analysis for Engineering Design 46 (7) (2011) 527–547.

[30] MIDAS, Microstructural Imaging using Diffraction Analysis Software,
https://www.aps.anl.gov/Science/Scientific-Software/

MIDAS. Accessed March 2022.
[31] B. Blaiszik, et al., The Materials Data Facility: Data services to advance

materials science research, JOM 68 (8) (2016) 2045–2052. doi:10.

1007/s11837-016-2001-3.
[32] R. Chard, et al., DLHub: Model and data serving for science, in:

33rd IEEE International Parallel and Distributed Processing Sympo-
sium, 2019, pp. 283–292.

[33] Common Fund Data Ecosystem (CFDE), https://commonfund.nih.
gov/dataecosystem.

[34] W. E. Allcock, et al., Petrel: A programmatically accessible research
data service, in: Practice and Experience in Advanced Research Com-
puting, ACM, 2019, pp. 1–7.

[35] A. W. Senior, et al., Improved protein structure prediction using po-
tentials from deep learning, Nature 577 (7792) (2020) 706–710. doi:

10.1038/s41586-019-1923-7.
[36] K. Chard, et al., Globus Nexus: A platform-as-a-service provider of re-

search identity, profile, and group management, Future Generation Com-
puter Systems 56 (2016) 571–583. doi:10.1016/j.future.2015.

09.006.
[37] B. Allen, et al., Software as a service for data scientists, Communi-

cations of the ACM 55 (2) (2012) 81–88. doi:10.1145/2076450.

2076468.
[38] R. Ananthakrishnan, et al., Globus platform services for data publica-

tion, in: Practice and Experience on Advanced Research Computing,
PEARC ’18, ACM, New York, NY, USA, 2018, pp. 14:1–14:7.

[39] R. Ananthakrishnan, et al., An open ecosystem for pervasive use of
persistent identifiers, in: Practice and Experience in Advanced Re-
search Computing, ACM, 2020, p. 99–105. doi:10.1145/3311790.

3396660.
[40] R. Chard, Y. Babuji, Z. Li, T. Skluzacek, A. Woodard, B. Blaiszik, I. Fos-

ter, K. Chard, FuncX: A federated function serving fabric for science, in:
29th International Symposium on High-performance Parallel and Dis-
tributed Computing, 2020, pp. 65–76.

[41] Z. Li, R. Chard, Y. Babuji, B. Galewsky, T. J. Skluzacek, K. Nagait-
sev, A. Woodard, B. Blaiszik, J. Bryan, D. S. Katz, I. Foster, K. Chard,
FuncX: Federated function as a service for science, IEEE Transactions
on Parallel and Distributed Systems 33 (12) (2022) 4948–4963.

[42] J. Alt, et al., OAuth SSH with Globus Auth, in: Practice and Experience
in Advanced Research Computing, ACM, 2020, pp. 34–40. doi:10.

1145/3311790.3396658.
[43] Globus Action Providers, https://globus-automate-client.

readthedocs.io/en/latest/globus_action_providers.html.
Accessed August 2022.

[44] AWS Step Functions Visual workflows for modern applications, https:
//aws.amazon.com/step-functions. Accessed January 2022.

[45] A. Wright, et al., JSON Schema: A media type for describing JSON
documents, Internet-Draft draft-bhutton-json-schema-00, Internet Engi-
neering Task Force, work in Progress (Dec. 2020).

[46] D. Hardt, OAuth 2.0 authorization framework specification, http://
tools.ietf.org/html/rfc6749 (2012).

[47] Globus Action Provider Tools, https://action-provider-tools.
readthedocs.io/. Accessed August 2022.

[48] Existing workflow systems, https://s.apache.org/

existing-workflow-systems. Accessed January 2022.
[49] B. Ludäscher, et al., Scientific workflow management and the Kepler

system, Concurrency and Computation: Practice and Experience 18 (10)
(2006) 1039–1065.

[50] J. Goecks, et al., Galaxy: A comprehensive approach for supporting
accessible, reproducible, and transparent computational research in the
life sciences, Genome Biology 11 (8) (2010) 1–13.

[51] E. Deelman, et al., Pegasus, a workflow management system for science
automation, Future Generation Computer Systems 46 (2015) 17–35.

[52] M. Albrecht, et al., Makeflow: A portable abstraction for data intensive
computing on clusters, clouds, and grids, in: 1st ACM SIGMOD Work-
shop on Scalable Workflow Execution Engines and Technologies, 2012,
pp. 1–13.

[53] Y. Babuji, et al., Parsl: Pervasive parallel programming in python, in:
28th International Symposium on High-Performance Parallel and Dis-
tributed Computing, ACM, 2019, pp. 25–36.

17

https://conductor.netflix.com
https://conductor.netflix.com
https://states-language.net/
https://arxiv.org/abs/2111.11330
https://arxiv.org/abs/2111.11330
https://doi.org/10.1101/2021.11.05.467504
https://doi.org/10.1101/2021.11.05.467504
https://doi.org/10.1101/2022.04.06.487333
https://arxiv.org/abs/2204.09805
https://doi.org/10.1107/S2059798317017235
https://doi.org/10.1007/978-3-319-99465-9_7
https://www.aps.anl.gov/Science/Scientific-Software/MIDAS
https://www.aps.anl.gov/Science/Scientific-Software/MIDAS
https://doi.org/10.1007/s11837-016-2001-3
https://doi.org/10.1007/s11837-016-2001-3
https://commonfund.nih.gov/dataecosystem
https://commonfund.nih.gov/dataecosystem
https://doi.org/10.1038/s41586-019-1923-7
https://doi.org/10.1038/s41586-019-1923-7
https://doi.org/10.1016/j.future.2015.09.006
https://doi.org/10.1016/j.future.2015.09.006
https://doi.org/10.1145/2076450.2076468
https://doi.org/10.1145/2076450.2076468
https://doi.org/10.1145/3311790.3396660
https://doi.org/10.1145/3311790.3396660
https://doi.org/10.1145/3311790.3396658
https://doi.org/10.1145/3311790.3396658
https://globus-automate-client.readthedocs.io/en/latest/globus_action_providers.html
https://globus-automate-client.readthedocs.io/en/latest/globus_action_providers.html
https://aws.amazon.com/step-functions
https://aws.amazon.com/step-functions
http://tools.ietf.org/html/rfc6749
http://tools.ietf.org/html/rfc6749
https://action-provider-tools.readthedocs.io/
https://action-provider-tools.readthedocs.io/
 https://s.apache.org/existing-workflow-systems
 https://s.apache.org/existing-workflow-systems

[54] R. F. da Silva, et al., A community roadmap for scientific workflows
research and development, in: 2021 IEEE Workshop on Workflows in
Support of Large-Scale Science (WORKS), 2021, pp. 81–90. doi:10.
1109/WORKS54523.2021.00016.

[55] C. S. Liew, et al., Scientific workflows: Moving across paradigms, ACM
Computing Surveys 49 (4) (2016) 1–39.

[56] K. Krauter, et al., A taxonomy and survey of grid resource management
systems for distributed computing, Software: Practice and Experience
32 (2) (2002) 135–164.

[57] E. Deelman, et al., Workflows and e-Science: An overview of workflow
system features and capabilities, Future Generation Computer Systems
25 (5) (2009) 528–540.

[58] M. Wilde, et al., Swift: A language for distributed parallel scripting,
Parallel Computing 37 (9) (2011) 633–652.

[59] D. Hull, et al., Taverna: A tool for building and running workflows of
services, Nucleic Acids Research 34 (suppl 2) (2006) W729–W732.

[60] F. Curbera, et al., Unraveling the Web services web: An introduction to
SOAP, WSDL, and UDDI, IEEE Internet computing 6 (2) (2002) 86–93.

[61] N. Alshuqayran, et al., A systematic mapping study in microservice ar-
chitecture, in: IEEE 9th International Conference on Service-Oriented
Computing and Applications, IEEE, 2016, pp. 44–51.

[62] L. Candela, et al., A workflow language for research e-infrastructures,
International Journal of Data Science and Analytics 11 (4) (2021) 361–
376.

[63] DAGman: The Directed Acyclic Graph Manager, http://www.cs.
wisc.edu/condor/dagman.

[64] Common workflow language specifications, v1.0.2, https://www.

commonwl.org/v1.0/. Accessed April 2020.
[65] W. Emmerich, et al., Grid service orchestration using the business pro-

cess execution language (BPEL), Journal of Grid Computing 3 (3)
(2005) 283–304.

[66] W. Tan, et al., A comparison of using Taverna and BPEL in building
scientific workflows: the case of caGrid, Concurrency and Computation:
Practice and Experience 22 (9) (2010) 1098–1117.

[67] W. Tan, et al., BPEL4Job: A fault-handling design for job flow manage-
ment, in: B. J. Krämer, K.-J. Lin, P. Narasimhan (Eds.), International
Conference on Service-Oriented Computing, Springer Berlin Heidel-
berg, Berlin, Heidelberg, 2007, pp. 27–42.

[68] Amazon Simple Workflow Service, https://docs.aws.amazon.

com/amazonswf/latest/developerguide/swf-welcome.html.
Accessed January 2022.

[69] GitHub Actions, https://github.com/features/actions/. Ac-
cessed January 2022.

[70] AWS CodePipeline, https://aws.amazon.com/codepipeline/.
Accessed January 2022.

[71] P. T. Eugster, et al., The many faces of publish/subscribe, ACM Com-
puting Surveys 35 (2) (2003) 114–131.

[72] A. Alqaoud, et al., Publish/subscribe as a model for scientific workflow
interoperability, in: 4th Workshop on Workflows in Support of Large-
Scale Science, 2009, pp. 1–10.

[73] S. Kamburugamuve, et al., A framework for real time processing of sen-
sor data in the cloud, Journal of Sensors 2015 (2015).

[74] E. Renart, et al., Online decision-making using edge resources for
content-driven stream processing, in: 13th International Conference on
e-Science, IEEE, 2017, pp. 384–392.

[75] Experimental Physics and Industrial Control System (EPICS), https:
//epics.anl.gov. Accessed August 2022.

[76] M. Quigley, et al., ROS: An open-source Robot Operating System, in:
ICRA Workshop on Open Source Software, Vol. 3, Kobe, Japan, 2009,
p. 5.

[77] H. Xu, et al., iRODS primer 2: Integrated Rule-Oriented Data System,
Synthesis Lectures on Information Concepts, Retrieval, and Services
9 (3) (2017) 1–131.

[78] B. Ur, et al., Practical trigger-action programming in the smart home, in:
Conference on Human Factors in Computing Systems, 2014, pp. 803–
812.

[79] B. Ur, et al., Trigger-action programming in the wild: An analysis of

200,000 IFTTT recipes, in: Conference on Human Factors in Computing
Systems, 2016, pp. 3227–3231.

[80] R. Chard, et al., High-throughput neuroanatomy and trigger-action pro-
gramming: A case study in research automation, in: 1st International
Workshop on Autonomous Infrastructure for Science, 2018, pp. 1–7.

[81] W. J. Goscinski, et al., The Multi-modal Australian ScienceS Imaging
and Visualization Environment (MASSIVE) high performance comput-
ing infrastructure: applications in neuroscience and neuroinformatics re-
search, Frontiers in Neuroinformatics 8 (2014) 30.

[82] B. Plale, et al., CASA and LEAD: Adaptive cyberinfrastructure for real-
time multiscale weather forecasting, Computer 39 (11) (2006) 56–64.

[83] A. R. Elias, et al., Where’s the bear?–Automating wildlife image pro-
cessing using IoT and edge cloud systems, in: IEEE/ACM Second Inter-
national Conference on Internet-of-Things Design and Implementation,
IEEE, 2017, pp. 247–258.

[84] P. Beckman, et al., SPRUCE: A system for supporting urgent high-
performance computing, in: Grid-based Problem Solving Environments,
Springer, 2007, pp. 295–311.

[85] I. Altintas, Using dynamic data driven cyberinfrastructure for next gen-
eration disaster intelligence, in: International Conference on Dynamic
Data Driven Application Systems, Springer, 2020, pp. 18–21.

[86] T. Boccali, et al., Dynamic distribution of high-rate data processing from
CERN to remote HPC data centers, Computing and Software for Big
Science 5 (1) (2021) 1–13.

[87] N. Wilkins-Diehr, et al., TeraGrid science gateways and their impact on
science, Computer 41 (11) (2008) 32–41.

[88] J. P. Blaschke, et al., Real-time XFEL data analysis at SLAC and
NERSC: A trial run of nascent exascale experimental data analysis,
arXiv:2106.11469 (2021).

[89] S. Cholia, et al., NEWT: A RESTful service for building high perfor-
mance computing web applications, in: Gateway Computing Environ-
ments Workshop, IEEE, 2010, pp. 1–11.

[90] J. Stubbs, et al., Tapis: An API platform for reproducible, distributed
computational research, in: Future of Information and Communication
Conference, Springer, 2021, pp. 878–900.

[91] D. Thain, et al., Distributed computing in practice: The Condor experi-
ence, Concurrency and Computation: Practice and Experience 17 (2-4)
(2005) 323–356.

[92] M. Salim, et al., Balsam: Near real-time experimental data analysis on
supercomputers, in: 1st IEEE/ACM Annual Workshop on Large-scale
Experiment-in-the-Loop Computing, IEEE, 2019, pp. 26–31.

[93] S. Nickolay, et al., Towards accommodating real-time jobs on HPC plat-
forms, https://arxiv.org/abs/2103.13130 (2021).

[94] K. B. Antypas, et al., Enabling discovery data science through cross-
facility workflows, in: 2021 IEEE International Conference on Big Data
(Big Data), 2021, pp. 3671–3680. doi:10.1109/BigData52589.

2021.9671421.
[95] D. Bard, et al., The LBNL superfacility project report (2022). doi:

10.48550/arXiv.2206.11992.
[96] D. J. Bard, et al., Automation for data-driven research with the NERSC

superfacility API, in: H. Jagode, H. Anzt, H. Ltaief, P. Luszczek
(Eds.), High Performance Computing, Springer International Publish-
ing, Cham, 2021, pp. 333–345.

[97] D. Stansberry, et al., DataFed: towards reproducible research via feder-
ated data management, in: International Conference on Computational
Science and Computational Intelligence, IEEE, 2019, pp. 1312–1317.

[98] A. Sparkes, et al., Towards robot scientists for autonomous scientific
discovery, Automated Experimentation 2 (1) (2010) 1–11.

[99] L. M. Roch, et al., ChemOS: orchestrating autonomous experimentation,
Science Robotics 3 (19) (2018) eaat5559.

[100] S. Steiner, et al., Organic synthesis in a modular robotic system driven
by a chemical programming language, Science 363 (6423) (2019).

[101] B. Burger, et al., A mobile robotic chemist, Nature 583 (7815) (2020)
237–241.

[102] M. M. Noack, et al., Gaussian processes for autonomous data acquisition
at large-scale synchrotron and neutron facilities, Nature Reviews Physics
3 (10) (2021) 685–697.

18

https://doi.org/10.1109/WORKS54523.2021.00016
https://doi.org/10.1109/WORKS54523.2021.00016
http://www.cs.wisc.edu/condor/dagman
http://www.cs.wisc.edu/condor/dagman
https://www.commonwl.org/v1.0/
https://www.commonwl.org/v1.0/
https://docs.aws.amazon.com/amazonswf/latest/developerguide/swf-welcome.html
https://docs.aws.amazon.com/amazonswf/latest/developerguide/swf-welcome.html
https://github.com/features/actions/
https://aws.amazon.com/codepipeline/
https://epics.anl.gov
https://epics.anl.gov
https://arxiv.org/abs/2103.13130
https://doi.org/10.1109/BigData52589.2021.9671421
https://doi.org/10.1109/BigData52589.2021.9671421
https://doi.org/10.48550/arXiv.2206.11992
https://doi.org/10.48550/arXiv.2206.11992

	1 Introduction
	2 Research Process Automation
	2.1 Use Cases
	2.1.1 Real-time data analysis
	2.1.2 Machine learning training and inference
	2.1.3 Data publication
	2.1.4 Analysis as a service

	2.2 Requirements

	3 Globus Automation Services
	4 Using Globus Automation Services
	4.1 Interfaces and tools
	4.2 Working with Flows
	4.2.1 Flow definition
	4.2.2 Flow execution model
	4.2.3 Flow Input Schema

	4.3 Access control
	4.4 Defining Triggers and Timers
	4.5 Defining queues
	4.6 Example Actions

	5 Implementation
	5.1 Authentication and Authorization
	5.2 Action Providers
	5.3 The Flows Service
	5.3.1 Flow deployment
	5.3.2 Processing Flow runs

	5.4 The Queues Service
	5.5 The Triggers Service
	5.6 The Timers Service

	6 Evaluation
	6.1 Flow Throughput and Latency
	6.2 Action Providers
	6.3 Production Flows

	7 Experiences and Lessons learned
	8 Related Work
	9 Conclusions

