

The Role of Planning in Grid Computing

Jim Blythe, Ewa Deelman, Yolanda Gil, Carl Kesselman, Amit Agarwal, Gaurang Mehta,
Karan Vahi

University of Southern California Information Sciences Institute

4676 Admiralty Way,
Marina del Rey, CA 90292 USA

{blythe,deelman,gil,carl,agarwal,mehta,vahi}@isi.edu

Abstract
Grid computing gives users access to widely distributed
networks of computing resources to solve large-scale tasks
such as scientific computation. These tasks are defined as
standalone components that can be combined to process the
data in various ways. We have implemented a planning
system to generate task workflows for the Grid
automatically, allowing the user to specify the desired data
products in simple terms. The planner uses heuristic control
rules and searches a number of alternative complete plans in
order to find a high-quality solution. We describe an
implemented test case in gravitational wave interferometry
and show how the planner is integrated in the Grid
environment. We discuss promising future directions of this
work. We believe AI planning will play a crucial role in
developing complex application workflows for the Grid.

Introduction
Grid computing (Foster & Kesselman 99, Foster et al. 01)
promises users the ability to harness the power of large
numbers of heterogeneous, distributed resources:
computing resources, data storage systems, instruments
etc. The vision is to enable users and applications to
seamlessly access these resources to solve complex large-
scale problems. Scientific communities ranging from high-
energy physics (GriPhyN 02), gravitational-wave physics
(Deelman et al. 02), geophysics (SCEC 02), astronomy
(Annis et al. 02), to bioinformatics (NPACI 02) are
embracing Grid computing to manage and process large
data sets, execute scientific simulations and share both data
and computing resources. Scientific, data intensive
applications, such as those outlined above are no longer
being developed as monolithic codes. Instead, standalone
application components are combined to process the data
in various ways. The applications can now be viewed as
complex workflows, which consist of various
transformations performed on the data. For example, in

Copyright © 2003, American Association for Artificial Intelligence
 (www.aaai.org). All rights reserved.

astronomy, workflows with thousands of tasks need to be
executed during the identification of galaxy clusters within
the Sloan Digital Sky Survey (Annis et al. 02). Because of
the large amounts of computation and data involved, these
workflows require the power of the Grid to execute
efficiently.
Up to now, much of the focus of Grid computing has been
on developing middleware, which provides basic
functionality such as the ability to query for information
about the resources and the ability to schedule jobs onto
the resources. With few exceptions, little work has been
done in the area of automating job execution. Users still
need to discover resources manually and schedule the jobs
directly onto the Grid, essentially composing detailed
workflow descriptions by hand. This leaves users
struggling with the complexity of the Grid and weighing
which resources to use, where to run the computations,
where to access the data etc.
The goal of our work is to automate this workflow
generation process as much as possible. Ideally, a user
should be able to request data by simply submitting an
application-level description of the desired data product.
The Grid infrastructure should then be able to generate a
workflow by selecting appropriate application components,
assigning the required computing resources and overseeing
the successful execution. This mapping should be
optimized based on criteria such as performance, reliability
and resource use.
In this paper, we cast workflow generation as a planning
problem, where the goals are the desired data products and
the operators are the application components. The
declarative representation of actions and search control in
domain-independent planners is convenient for
representing constraints such as machine characteristics
needed for some task or policies on user access to
computing resources as well as heuristics such as
preferring a high-bandwidth connection between hosts
performing related tasks. In addition, our planning-based
approach can provide high-quality solutions, in part
because it compares a number of alternative solutions and
uses heuristics to find good solutions more quickly.

154 ICAPS 2003

From: ICAPS-03 Proceedings. Copyright © 2003, AAAI (www.aaai.org). All rights reserved.

The next section describes the workflow generation
problem in a Grid computing infrastructure. We then
describe an initial system, not based on planning
techniques, that addresses some aspects of the problem.
The following section describes our approach using a
domain-independent planning system. The output from the
planner is a partially-ordered set of tasks assigned to
specific computational resources, which is automatically
executed on a distributed network through a Grid
infrastructure. We also describe our experiences to date in
the domain of a gravitational-wave observatory. The
following section presents some of the issues for future
work, including modeling solution quality, using richer
representations of planning knowledge in ontologies, plan
monitoring and replanning, and planning under
uncertainty.

Workflow Generation
We briefly describe the Grid environment where the jobs
are being executed. In the Grid (Foster et al. 01), resources
(computational, data and instruments) are distributed in the
wide area. To manage the information and interactions
with these resources, the Globus toolkit (Globus 02) is
deployed on the resources. Globus consists of services,
which allow for the discovery of the resources and the
scheduling of jobs onto the resources. Globus provides
information about locating replicas of files and the means
of high-performance data transfer.

The problem
Scientists often seek specific data products, which can be
obtained by configuring available application components
(programs) and executing them on the Grid. As an
example, suppose that the user’s goal is to obtain a
frequency spectrum of a signal for a given instrument and
time frame, placing the results at a given location. In
addition, the user would like the results of any intermediate
filtering steps performed to be available at another
location, perhaps to check the filter results for unusual
phenomena or to extract some salient features to the
metadata of the final results. The process of mapping this
type of user request into jobs to be executed in a Grid
environment can be decomposed into two steps, as shown
in Figure 1.
Generate an abstract workflow: selecting and
configuring application components to form an abstract
workflow. Application components are selected based on
their specified capabilities and whether they can generate
the desired data products. They may require inputs that
either exist or need to be planned for in the same way. The
resulting abstract workflow specifies the order in which
the components must be executed. At this level the
components and files are referred to by their logical names.
A logical name uniquely identifies a component in terms of
its functionality or a data file in terms of its content, but a

single logical name can correspond to many actual
executables or physical data files in different locations.
Generate a concrete workflow: selecting specific
resources, files, and additional jobs required to form a
concrete workflow that can be executed in the Grid
environment. Each component in the abstract workflow is
associated with an executable job by specifying the
locations of the physical files of the component and data as
well as the resources assigned to it in the execution
environment. The chosen resources must meet the
computational requirements of the component. Additional
jobs may be included in the concrete workflow, for
example, to transfer files to the appropriate locations.

FFT

FFT filea

/usr/local/bin/fft /home/file1

transfer filea from host1://
home/filea

to host2://home/file1

ApplicationDomain

Abstract
Workflow

Concrete
Workflow

Execution
Environment

host1 host2

Data

Data

host2

A
pp

lic
at

io
n

D
ev

el
op

m
en

t a
nd

 E
xe

cu
tio

n
P

ro
ce

ss

DataTransfer

Resource,
Data location,
Transformation

Instance Selection

Application
Component
Selection

Retry

Change Resources

Specify a
Different
Workflow

Failure Recovery
Method

 Figure 1: The Process of Developing Data Intensive
Applications for Grid Environments.

Although Grid middleware allows for discovery of the
available resources and of the locations of the replicated
data, Grid users today must carry out these steps manually.
There are several reasons why automating this process is
not only desirable but necessary:

ICAPS 2003 155

Usability: Users are currently required to have extensive
knowledge of the Grid computing environment and its
middleware functions. For example, the user needs to
understand how to query an information service such as
the Monitoring and Directory Service (MDS) (Czajkowski
et al. 01), to find the available and appropriate
computational resources for the computational
requirements of a component. The user also needs to
query the Replica Location Service (RLS) (Chervenak et
al. 02) to find the physical locations of the data.
Complexity: In addition to requiring scientists to become
Grid-enabled users, the process may be complex and time
consuming. At each step, the user must make choices
between alternative application components, files, or
locations. The user may reach a dead end where no
solution can be found, which would require backtracking
to undo some previous choice. Many different
interdependencies may occur among components, and as a
result it may be hard to determine which choice should be
changed and which option will lead to a feasible solution.
Solution cost: Lower cost solutions are highly desirable in
light of the high cost of some of the computations and
users’ resource access limitations. Because finding any
feasible solution is already time consuming, users are
unlikely to explore alternative workflows that may reduce
execution cost.
Global cost: Because many users are competing for
resources, minimizing cost within a community or a virtual
organization (VO) is desirable (Foster et al. 01). This
requires reasoning about individual user’s choices in light
of other user’s choices, such as possible common jobs that
could be included across user’s workflows and executed
only once.
Reliability of execution: In today’s Grid framework, when
the execution of a job fails the recovery consists of
resubmitting that job for execution (In Figure 1 this is
shown as the “retry”). However, it is also desirable to be
able to choose a different set of resources when tasks fail.
This process needs to be performed at the abstract
workflow level and may require choosing a new abstract
workflow. Currently there is no mechanism for
opportunistically redoing the remaining tasks in the
workflow to adapt to the dynamic environment. Moreover,
if any job fails repeatedly the system should assign an
alternative component to achieve the same overall user
goals. This would need to be performed at the application
level, where there is an understanding of how different
application components relate to each other.
While addressing the first three points would enable wider
accessibility of the Grid to users, the last two simply
cannot be handled by individual users and will probably
need to be addressed at the architecture level. In addition,
there are many access control policies that limit user’s
access to resources, and these must be taken into account
in order to accommodate as many users as possible while
they are contending for limited resources.

There are three different levels of abstraction that a user
can use to specify a workflow. At the lowest level
(concrete workflow) the user needs to specify explicit data
movements and the exact executables and resources to be
used. At the abstract workflow level the user needs only
specify the workflow using logical files and logical
component names. Finally at the application level, the user
needs to specify only the metadata describing the desired
data products.

Level Specification
example

Specification
detail

Application Frequency spectrum
of a signal for a
given instrument
and time frame

Application-
specific metadata

Abstract
workflow

FFT file1 Logical file
names, logical
component names

Concrete
workflow

Gridftp
host1://home/file1
host2://home/file1
/bin/fft –i file1

Resource-level
physical files and
executables

Table 1: Levels of abstraction used to describe
workflows

Original Workflow Generators
In the first approach taken by the group, the work is
divided between two separate programs, an Abstract
Workflow Generator (AWG) and a Concrete Workflow
Generator (CWG). AWG uses rewrite rules to choose
executable programs that can be used to produce required
files, using Chimera’s Virtual Data Language (Foster et al.
02). The program requires the rules to be specified in terms
of logical file names, so rules must typically be specified
for each request for a file. AWG takes does not check
whether a file already exists, and so its resulting abstract
workflow can be larger than necessary.
CWG performs the mapping from an abstract workflow to
a concrete workflow. It finds physical locations for both
components and data, finds appropriate computer
resources to execute the components and generates an
executable workflow of jobs that can be submitted to the
Grid. It determines whether files in the abstract workflow
already exist and, if so, removes unnecessary jobs to
produce them. However, CWG performs no search, and
makes a random choice whenever several alternatives are
possible (e.g., alternative physical files, alternative
resources). Therefore the final result is a feasible solution
and not necessarily a low-cost one.
As an example, Figure 2 shows a simple abstract workflow
that might be produced by AWG, in which the logical
component Extract is applied to an input file with a logical
filename F.a. The resulting files, with logical filenames
F.b1 and F.b2, are used as inputs to the components
identified by logical filenames Resample and Decimate
respectively. Finally, the results are Concatenated. CWG
locates existing files by querying a Grid service and

156 ICAPS 2003

removes the Decimate step, since F.c2 has been created
previously. It assigns computer resources to the nodes and
adds appropriate nodes for file transfer to yield the
concrete workflow shown in Figure 3. This is submitted to
Grid workflow programs for execution.
This solution produces a feasible workflow, querying the
existing services for existing files. CWG has been
successfully used in mapping and executing workflows for
the Compact Muon Solenoid detector (Wulz 98), executing
678 jobs over 7 days. During that time a total of 350
CPU/days of computing power was used and a total of
200GB of data was produced. For more details on the
approach and its application, see (Deelman et al. 03a).
However, these workflow generators require specifying
explicit files, while a user should be able to directly
request the information that the files contain, for example a
Fourier transform of data from a particular location and
time. We refer to this information as the file metadata.
Moreover the generators do not attempt to optimize the
workflow for time or reliability, and the split between
abstract and concrete workflow generation introduces a
barrier for optimization. Nor do they consider network
bandwidth, scheduler queue size, resource reliability,
speed or available memory, or check for access control
policies. A more powerful approach is warranted to
address aspects such as these. We next describe a solution
using AI planning techniques that uses metadata, integrates
abstract and concrete workflow creation and searches for a
globally optimal solution. The declarative nature of the
planning domain makes it easier to represent criteria based
on bandwidth and resource characteristics, some of which
are represented in the current version.

Figure 2: abstract workflow

Planning Solution

In this section we describe how we have framed workflow
generation (WG) as a planning problem. Later we describe
further work that is needed in planning to improve the task
modeling and the generated solution.

Formulating workflow generation as a planning
problem
WG models the application components along with data
transfer and data registration as operators. Each operator’s

parameters include the host where the component is to be
run, so a ground plan corresponds to a concrete workflow.
In addition, some of the effects and preconditions of the
operators capture the data produced by components and
their input data dependencies. As a result the planner can
also create an abstract workflow. The state information
used by the planner includes a description of the available
resources and the relevant files that have already been
created. The input goal description can include (1) a
metadata specification of the information the user requires
and the desired location for the output file, (2) specific
components to be run or (3) intermediate data products.
Several issues make this application domain challenging,
we touch upon them as we describe the domain model in
more detail.

Figure 3: Concrete w
described and nodes for

are

In our initial work, we
(Veloso et al. 95), beca
important role in WG a
language for search contro
domain with the more
(Hoffman & Nebel 01)
competitive for our purpos
of Aler & Borrajo (02).

State information
The planner’s world sta
resources. Some state infor
such as the operating syst
on a resource, and some o
seconds or minutes, such a
length. In the long run th
about how the information
our initial implementation

a

F.a

F.b2F.b1

F.c2F.c1

F.d

Extract

DecimateResample

Concat

Gridftp host://f.a
lumpy.isi.edu://nfs/temp/f.
 lumpy.isi.edu://bin/extract

data transfer
nodes

 jet.caltech.edu://home/ma/
resample –l /home/ma/F.b1

registration
nodes

F.c2

concat

Register F.c1 at
/home/ma/X

orkflow. Specific hosts are
data transfer and registration
 added.

are using the Prodigy planner
use search heuristics play an
nd Prodigy has an expressive
l. We also tested versions of the

recent planner FastForward
 and found Prodigy to be
es, similarly to the experiences

te includes information about
mation changes slowly if at all,
em or total disk space installed
f the information can change in
s the available memory or queue
e planner may need to reason
 can change over time, but in

 we only model the type of a

ICAPS 2003 157

host, network bandwidths and file information. This
information is captured once at the planner’s startup. In
general, thousands or millions of files may be available,
while only a relatively small number are relevant to the
current plan. The planner can handle this by requesting the
relevant information while planning, but currently we filter
the set of files before planning begins.
It is useful for the planning state to include metadata about
the files for several reasons. As mentioned, the planner can
assume the task of creating both the abstract and concrete
workflows. It is also more appropriate to reason at the
level of the metadata than at the level of the files that
represent that data content. Instead of searching for a file
with appropriate characteristics, the components are linked
to the characteristics themselves. This also avoids
quantifying over the set of existing files, which may
change during planning as objects are created and
destroyed.

Goal statements
In most planning applications, goals refer to properties that
should be true after the plan has been executed. For WG,
such goals include having a file described by the desired
metadata information on some host. However, it is also
sometimes useful to specify goals that refer to intermediate
components or data products, or for registering certain
files. Thus the goal statement can, in effect, specify a
partial plan.
In principle, the goals given to the planning system may be
those of a single user or the aggregated goals of a group of
users, although we have not explored the latter case. In that
case, the planner may be able to create a more efficient
plan for the overall computations required by exploiting
any synergy in the users’ goals.

Operator descriptions
The operators represent the concrete execution of a
component on a particular host to generate a particular file
or move a file across the network. Their preconditions
represent both the data dependencies of the component, in
terms of the input information required, and the feasible
resources for running the component, including the type of
resource. These operators capture information similar to
that represented in Chimera’s Virtual Data Language
(Foster et al. 02), such as the name of the component and
its parameters. However, the operators also contain the
additional information about the preconditions necessary
for the use of the component, and describe the effect of
executing the component on the state of the system, such
as the consumption of resources. We are currently adding
further information about resource requirements, such as
minimal physical memory or hard disk space.
Plans generated in response to user requests may often
involve hundreds or thousands of files and it is important
to manage the process of searching for plans efficiently. If
a component needs to be run many times on different input
files, it is not useful for the planner to explicitly consider

different orderings of those files. Instead the planner
reasons about groups of files that will be treated
identically. An auxiliary routine allocates the files to
different groups, looking for a locally optimal allocation.
Since the number of input files or groups may vary by
component and even by invocation, the preconditions are
modeled using quantification over possible files.
Below is an example of an operator representing a
frequency extraction component, translated to PDDL from
Prodigy’s action language. The operator is defined for a set
of input files and describes these files as well as the
resulting file in terms of metadata, such as start-time and
end-time, which define the interval of time of the signal
over which the extraction is taken. The predicates that are
negated in the preconditions are function calls used as
generative filters in Prodigy. The operator also captures the
notion of the availability of the component on a resource
(host). The effects show the creation of the output file on
the chosen host.

(:action frequency-extract
 :parameters (?host - Host
 ?file-group - File-Group
 ?start-time - Number
 ?end-time - Number
 ?channel - Channel
 ?instrument - Instrument
 ?format - File-Format
 ?f0 - Number
 ?fN - Number
 ?sample-rate - Number)
 :precondition
 (forall
 (?sft-file-group - File-Group
 ?file-start-time - Number
 ?file-end-time - Number)
 (or
 (not (sft-range-for-sub-sft
 ?start-time ?end-time
 ?channel ?instrument))
 (not (start-time-for-sft-range
 ?sft-file-group ..))
 (not (end-time-for-sft-range
 ?sft-file-group ..))
 (and
 (sft-group
 ?file-start-time ?file-end-time
 ?channel ?instrument FRAME
 ?sample-rate ?sft-file-group)
 (at ?sft-file-group ?host))))
 :effect
 (and (sub-sft-group
 ?start-time ?end-time
 ?channel ?instrument ?format
 ?f0 ?fN ?sample-rate
 ?file-group)
 (created ?file-group)
 (at ?file-group ?host)))

158 ICAPS 2003

Solution space and plan generation strategy
Most planning systems are designed to produce a feasible
plan given constraints on the possible actions, but do not
attempt to optimize any measure of plan quality. In WG
there may be many feasible plans and it is important to find
a high-quality solution. The measure of a plan’s quality
may include several dimensions, including the
performance in terms of the overall expected time to
satisfy the user request, the reliability in terms of
probability of failures and their impact on performance,
and issues of policy, for example not expending too much
of a user’s allowance on some precious resource if cheaper
resources would be adequate. Helping users manage the
tradeoff between these dimensions is a topic of future
work. Our current system attempts to minimize the overall
runtime of the plan. We can estimate the run-time of the
plan based both on the expected run-time of individual
components on the allocated resources and on the expected
transfer time for files around the network.
In our initial approach, we seek high-quality plans with a
combination of local search heuristics, aimed at preferring
good choices for individual component assignments, and
an exhaustive search for a plan that minimizes the global
estimated run-time. Both aspects are necessary: without the
global measure, several locally optimal choices can
combine to make a poor overall plan because of conflicts
between them. Without the local heuristics, the planner
may have to generate many alternatives before finding a
high quality plan.
These local heuristics are represented explicitly in the
planner using search control rules (Veloso et al. 95). As
the planner searches for a solution, it repeatedly chooses a
goal to address, an operator to achieve the goal and
parameter assignments for the operator. For each choice,
the planner may need to backtrack and examine several
alternatives in order to find a feasible plan, and search
further to find the best plan. Search control rules specify
options that should be exclusively considered at any choice
point in the search algorithm. They can also change the
order in which options are considered. The rules can refer
to information about the current state when the choice is
made, or to other goals in the planner. For example, a rule
can be used to prefer to allocate a component to a location
with a higher-bandwidth connection to the location at
which the component’s output is needed. This rule is
applicable in almost any WG problem. Application-
specific rules can also be defined. For example, the
following control rule would force the planner to choose a
host to perform the pulsar search that is in the same
location as a host that can execute the FFT component, if
possible.

(control-rule
 select-nearby-mpi-for-pulsar-search
 (if (and (current-operator pulsar-search)
 (true-in-state
 (available fft ?fft-host))
 (true-in-state
 (physically-at ?fft-host ?loc))
 (true-in-state
 (physically-at ?mpi ?loc))
 (type-of-object ?mpi Mpi)))
 (then select bindings ((?host ?mpi))))
 ;;; (?host is a parameter of the pulsar-search operator)

The planner is able to produce results similar to CWG in
several test scenarios using only 3 operators and 2 control
rules, although it currently supports a broader range of
problems using 9 operators and 17 control rules. It takes
around a tenth of a second to find its first solution in a
problem with around 400 files and 10 locations, requiring
800 separate components, and around 30 seconds to
exhaustively search the solutions for this problem. In this
domain the time to find the first plan will scale linearly in
the number of files and resources, although of course this
cannot be guaranteed in other domains.

Case study: LIGO
The LIGO, or Laser Interferometer Gravitational-Wave
Observatory project aims to detect gravitational waves
predicted by Einstein. Theoretically, these can be used to
detect astronomical objects and events such as binary
pulsars, mergers of black holes or ‘starquakes’ in neutron
stars. Searching for these objects requires, among other
things, a Fourier analysis of a particular set of frequencies
over some time frame. To conduct a pulsar search, for
example, the user must find a number of files of raw data
output corresponding to this time frame, extract the
required channel, concatenate the files and make a series of
Fourier transforms (FT) on the result. The desired
frequencies must then be extracted from the set of FT
output files, and processed by a separate program that
performs the pulsar search.
In a typical pulsar search, the user may require thousands
of Fourier transforms, some of which may have already
been performed and stored at some location in the Grid.
For good performance, this work must be divided among
the suitable hosts that are available on the Grid, taking into
account their different speeds and currently queued tasks.
The results must be marshaled to one host for frequency
extraction, and the final search must be executed on a
different host because of the program requirements. In all,
many gigabytes of data files may be generated, so a fast-
running solution must take the bandwidth between hosts
into account.
We have implemented a workflow generator called
Pegasus that uses the planning approach described in the
last section, and applied it to the LIGO domain. The
system is operational and has generated workflows that

ICAPS 2003 159

have been executed on the Grid. Figure 4 shows a
simplified version of the Pegasus architecture, abstracting
from the actual Grid services and schedulers that are used.
More details can be found in (Deelman et al. 03b). In a run
conducted at the Supercomputer conference in November
2002, for example, the compute and storage resources
were at five locations distributed across the USA. Over 58
pulsar searches were performed resulting in a total of 330
tasks, 469 data transfers and 330 output files. The total
runtime for scheduled tasks was over 11 hours. We briefly
describe some of the issues that arose in integrating the
planner into this environment.

Figure 4: Simplified Pegasus architecture. The Request
Manager oversees creation of the current state, calling
the Planner and submitting the workflow for execution

on the Grid.

The initial state is divided into two components, based on
how rapidly the information changes. Relatively stable
information such as the available hosts on the Grid, their
computational resources and operating systems, is stored in
a persistent file, while more transient state information,
such as data files that have already been created, is
gathered from Grid services by the Current State Generator
and sent as part of each planning request to the Planner.
We intend the Planner to query Grid services directly for
existing files, available resources, host idle times and
network bandwidth conditions as the information is found
to be relevant during planning, but currently information
about files is sent with the request and no other state
information is used.
There are typically many FT tasks required in a plan and
relatively few hosts that are suitable to run these tasks.
Rather than search the possible assignments of tasks to
machines, the planner uses an auxiliary routine to allocate
the tasks that attempts to balance the workload of the hosts
according to their different capabilities. It is not
uncommon for planners to make use of auxiliary routines
such as this to solve real-world problems, for example

(Nau et al 95) describes a similar partnership for planning
and scheduling in manufacturing domains.
The planner models the expected run-time of each step in
order to estimate the expected runtime of the plan, based
on a critical path through the partial order of components.
(Although Prodigy generates totally-ordered plans, the
partial order can be recovered from the causal structure.)
Multiple plans are produced and the best according to the
runtime estimate is returned. The final plan is converted
into a detailed task specification that can be executed by a
Grid service that monitors the hosts and ensures that all
necessary tasks are completed prior to starting a new task.

Benefits of AI planning
Any workflow generation tool is a significant benefit to the
scientist, who no longer need compose the required tasks
and allocate them to hosts on the Grid by hand. We focus
on the benefits of planning over the existing workflow
generation approach, described earlier. First, the planner
allows the user to express goals in terms of metadata, or
information about the data required, rather than the logical
file names. For example, the planner’s top-level goal might
be a pulsar search specifying the location, time, channel,
instrument and settings to use. Second, the planner uses an
explicit, declarative representation for workflow
constraints such as program data dependencies and host
constraints, and user access constraints. This makes it
easier to add and modify these constraints, and to construct
applications out of reusable information about the Grid and
the hosts available, as we describe in the next section.
Third, the planner creates a number of alternative plans
and either returns the best according to some quality
criterion, or returns a set of alternatives for the user to
consider. This is possible because the planner is quite
efficient in this domain: a feasible plan involving hundreds
of FTs can be found in under a second on a 2 GHz
Pentium 4 PC. We currently use the estimated expected
runtime as the quality criterion as mentioned above.

The Grid as a Test bed for Planning Research
Finding good abstract and concrete workflows involves a
wide range of issues that have been investigated by the
planning community, including hierarchical planning,
temporal reasoning and scheduling, reasoning about
resources, planning under uncertainty and interleaving
planning and execution. Although we have already shown
several advantages from using planning techniques for
workflow generation, we anticipate more as we begin to
incorporate some of the existing techniques we mention
here. In addition, this list, by no means exhaustive,
highlights the potential of the workflow generation
problem as a test application for planning research. In the
near future we plan to evaluate approaches such as plan
reuse and planning under uncertainty to increase the level
of WG’s performance and sophistication. We also plan to

Current
state

generator

Metadata attributes,
logical and physical

file names.

Workflow
description

Grid
metadata
and file
services

Resource
description

AI
planner

Request
manager

User
request

Workflow
submission

and
monitoring

Grid
task

schedulers

160 ICAPS 2003

investigate the applicability of our approach to service-
level composition.

Plan Quality
The workflow produced by the AI planner must be of
sufficiently high quality, where the quality metric is likely
to include a number of dimensions whose relative
importance may vary with the application area, the user
and even the specific application. These dimensions will
include the overall expected runtime of the workflow, a
probability of successful execution and a distribution of
possible runtimes, the use of computer or data resources
that are costly or restricted for the user, and application-
dependent preferences on data sources and component
programs. The tradeoffs between these different
dimensions will be hard to predict in general for a partial
plan, which is why our approach is to generate a number of
alternative complete plans and test them against a global
quality measure as well as using local search control. In
the future, we would like to handle the requests of several
users simultaneously, increasing the benefits of
optimization and also making tradeoffs more complex.
Most of the work in plan quality focuses on plan length, or
a sum of operator costs as the metric (Estlin & Mooney 97)
although others have used more general approaches, e.g.
(Perez 95). Some recent approaches in scheduling have
had success using iterative refinement techniques (Smith &
Lassila 94) in which a feasible assignment is gradually
improved through successive modifications. The same
approach has been applied in planning (Ambite &
Knoblock 97) and is well suited to seeking high-quality
plans in WG. Some work has been done on integrating
planning and scheduling techniques to solve the joint task
(Myers et al. 01).
A research area that is likely to be effective for this
problem is the reuse of previously computed plans. Case-
based planning is a powerful technique to retrieve and
modify existing plans that need slight changes to work in a
new situation (Veloso 94, Kambhampati 89). These
approaches have potential for workflow generation
because the network topology and resource characteristics
are likely to be fairly stable and therefore high-quality
solutions, which may take time to generate from first
principles, will be good starting points for similar
problems in the future.

Ontologies and Reuse of Planning Knowledge
Although much work needs to be done in the area of
workflow generation, we believe that the current
framework is a good foundation for developing more
sophisticated techniques, which will make use of an
increasing amount of information about the applications
and the execution environment. Figure 5 shows additional
sources of information that we would like to integrate
within the workflow generation process in our future work.
At the application level, we can describe the application
components as services, which can be composed into new

more sophisticated services. We plan to augment service-
based component descriptions by developing ontologies of
application components and data, which will describe the
service behavior and add semantic meaning to the service
interactions. Ontologies will allow us to generate abstract
workflows more flexibly from user requirements that may
be partially complete or specified at higher levels of
abstraction than the current service descriptions.
Additional information provided by performance models
of the services can guide the initial composition.

Figure 5 The workflow mapping process and the
information and models required.

Ontologies will also play a very important role in
generating concrete workflows. Ontologies of Grid
resources will allow the system to evaluate the suitability
of given resources to provide a particular application
service instance. The resources that are to be allocated to
various tasks can often be characterized in a domain-
independent way by how they are used. For example, a
computer system becomes available again once a task has
been completed but a user’s allocation of time on a
particular machine is permanently depleted. Ontologies of
resources capture these qualities e.g. (Smith & Becker 97,
Gil & Blythe 00). Such ontologies, along with others that
can capture computer system capabilities and job
requirements, are key in building planning domains
quickly and reliably from generic components. However,
there has been little work in this area of engineering
planning domains, although an example is (Long & Fox
00).

Fault-tolerant planning
In the simplest case, the planner creates a plan that is
subsequently executed without a hitch. Often, however,
run-time failures may result in the need to repair the plan
during its execution. Planning systems can also design
plans that either reduce the risk of execution failure or are
more likely to be salvageable when failures take place, by
reasoning explicitly about the risks during planning and
searching for reliable plans, possibly including conditional
branches in their execution (Boutilier, Dean et al. 1999),

Models of application
component behaviour

Performance models

Models of resource behaviour

Policy descriptions at
the org. and user level

Current state of
resources and data

Application
domain

Abstract workflow
domain

Concrete workflow
domain

Execution
environment

ICAPS 2003 161

(Blythe 1999). Some planners delay building parts of the
plan until execution, in order to maintain a lower
commitment to certain actions until key information
becomes available. These approaches are likely to have
high impact in the Grid computing domain, since its
decentralized nature means many factors are beyond the
control of the planning agent. Some resources may fail to
complete tasks that are assigned to them, or may suffer
long delays. In addition, network bandwidth may change
greatly in a short period of time. However current
techniques for handling uncertainty have high complexity,
and are not useable when more than a few potential failure
points need to be considered.

Multi-agent planning
When several users make workflow requests, each is likely
to use a personal planning agent because of the distributed
nature of the Grid. Improvements both to individual
solutions and to global resource usage will be made if
planners with overlapping goals can locate each other and
agree to pool some of their users’ resources. Issues in how
such planners could locate one another, communicate
shared goals and formulate, agree and commit to a shared
plan have been studied in work on multi-agent planning
(Tambe et al. 99) which we expect to be highly relevant to
this domain.

Discussion
We have described an application of planning techniques
to workflow generation on the computational grid. Key
features in our approach are the use of application meta-
data to describe user goals and component inputs and
outputs, explicit representation of constraints both in
operators and control rules, and searching a number of
plans to find a high-quality solution. The planning
representation also allows access policies and user
preferences to be represented. The planner-based approach
allows users to specify goals in terms of required metadata
and finds a solution that can be executed on the Grid in
time comparable to the existing tools, and with
significantly better performance. A contribution of this
work is the full integration of the planner in an end-to-end
system, Pegasus, that constructs workflows that are
executed on the Grid.
Other work in task scheduling on the Grid has focused on
individual tasks, while we believe it is necessary to
consider the entire workflow to optimize performance.
AppLeS (Berman and Wolski 96) uses a performance
metric which is tuned to each application, while the
Workflow Management Package (Giacomini and Prelz 01)
uses a resource broker that integrates several Grid services.
A number of AI planning techniques have been used for
composing software components, for example in image
processing (Lansky et al. 95, Chien and Mortensen 96;
Golden and Frank 02). These systems face similar issues in

modeling components for planners, but do not handle
distributed resources on the network or attempt to improve
plan runtime. McDermott (02) and McIlraith and Son (02)
apply planning to the problem of web service composition,
which shares with this domain the problem of composing
software components in a distributed environment where
many components are not directly under the planner’s
control. Many of the issues that we have described here are
also very important for web services composition. We
believe the family of Grid application domains can inform
a wide range of research interests in AI planning and Grid-
related ontologies.

Acknowledgements

We gratefully acknowledge many helpful and stimulating
discussions on these topics with our colleagues, including
Ann Chervenak, Jihie Kim, Paul Rosenbloom, Tom Russ
and Hongsuda Tangmunarunkit. This research was
supported in part by the National Science Foundation
under grants ITR-0086044 (GriPhyN) and EAR-0122464
(SCEC/ITR), and in part by an internal grant from USC’s
Information Sciences Institute.

References
R. Aler and D. Borrajo. On control knowledge acquisition

by exploiting human-computer interaction. Sixth
International Conference on AI Planning And
Scheduling, 2002.

J. L. Ambite and C. A. Knoblock, "Planning by Rewriting:
Efficiently Generating High-Quality Plans," Fourteenth
National Conference on Artificial Intelligence, 1997.

J. Annis, Y. Zhao, J. Voeckler, M. Wilde, S. Kent, and I.
Foster, "Applying Chimera Virtual Data Concepts to
Cluster Finding in the Sloan Sky Survey," Technical
Report GriPhyN-2002-05, 2002.

F. Berman and R. Wolski, "Scheduling from the
Perspective of the Application", High Performance
Distributed Computing, 1996

J. Blythe, "Decision-Theoretic Planning," AI Magazine,
vol. 20, 1999

C. Boutilier, T. Dean, and S. Hanks, "Planning under
uncertainty: structural assumptions and computational
leverage," Journal of Artificial Intelligence Research,
vol. 11, 1999.

A. Chervenak, E. Deelman, I. Foster, L. Guy, W. Hoschek,
A. Iamnitchi, C. Kesselman, P. Kunst, M. Ripenu, B.
Schwartzkopf, H. Stockinger, K. Stockinger, and B.
Tierney, "Giggle: A Framework for Constructing Sclable
Replica Location Services.," Proceedings of
Supercomputing 2002 (SC2002), 2002.

S. Chien and H. Mortensen, "Automating Image
Processing for Scientific Data Analysis of a Large Image

162 ICAPS 2003

Database," IEEE Transactions on Pattern Analysis and
Machine Intelligence 18 (8): pp. 854-859, August 1996.

K. Czajkowski, S. Fitzgerald, I. Foster, and C. Kesselman,
"Grid Information Services for Distributed Resource
Sharing," 10th IEEE International Symposium on High
Performance Distributed Computing, 2001.

E. Deelman, K. Blackburn, P. Ehrens, C. Kesselman, S.
Koranda, A. Lazzarini, G. Mehta, L. Meshkat, L.
Pearlman, K. Blackburn, and R. Williams., "GriPhyN
and LIGO, Building a Virtual Data Grid for
Gravitational Wave Scientists," 11th Intl Symposium on
High Performance Distributed Computing, 2002.

E. Deelman, J. Blythe, Y. Gil, C. Kesselman, G. Mehta, K.
Vahi, K. Blackburn, A. Lazzarini, A. Arbree, R.
Cavanaugh and S. Koranda, "Mapping Abstract
Complex Workflows onto Grid Environments", Journal
of Grid Computing, vol. 1, to appear, 2003

E Deelman, J. Blythe, Y. Gil, C. Kesselman, "Pegasus:
Planning for Execution in Grids", GriPhyN technical
report, GRIPHYN-2002-20 (www.griphyn.org).

T. Estlin and R. Mooney , "Learning to Improve Both
Efficiency and Quality for Planning" Fifteenth
International Joint Conference on Artificial Intelligence,
1997.

I. Foster and C. Kesselman, The Grid: Blueprint for a New
Computing Infrastructure, Morgan Kaufmann, 1999.

I. Foster, C. Kesselman, and S. Tuecke, "The Anatomy of
the Grid: Enabling Scalable Virtual Organizations,"
International Journal of High Performance Computing
Applications, vol. 15, pp. 200-222, 2001

I. Foster, J. Voeckler, M. Wilde, and Y. Zhao, "Chimera:
A Virtual Data System for Representing, Querying, and
Automating Data Derivation," Scientific and Statistical
Database Management, 2002.

F. Giacomini and F. Prelz, "Definition of Architecture,
Technical Plan and Evaluation Criteria for Scheduling,
Resource Management, Security and Job Description",
EDG Workload Management Draft, 2001

Y. Gil and J. Blythe, "PLANET: A Shareable and
Reusable Ontology for Representing Plans," AAAI
Workshop on Representational Issues for Real-world
Planning Systems, 2000

Globus 02, www.globus.org
K. Golden and J. Frank, “Universal Quantification in a

Constraint-Based Planner”. in Sixth International
Conference in AI Planning And Scheduling, 2002

GriPhyN 02, www.griphyn.org.
J. Hoffmann, B. Nebel, The FF Planning System: Fast Plan

Generation Through Heuristic Search, in: Journal of
Artificial Intelligence Research, Volume 14, 2001, Pages
253 - 302.

S. Kambhampati, “Flexible Reuse and Modification in
Hierarchical Planning: a Validation-Structure Based
Approach”, PhD Thesis, University of Maryland, 1989

A. Lansky, L. Getoor, M. Friedman, S. Schmidler, N.
Short, “The COLLAGE/KHOROS Link: Planning for
Image Processing Tasks”, 1995 AAAI Spring
Symposium on Integrated Planning Applications

S. McIlraith and T. Son, “Adapting Golog for Composition
of Semantic Web Services”. in Eighth International
Conference on Knowledge Representation and
Reasoning, 2002

K. Myers, S. Smith, D. Hildum, P. Jarvis, and R. d.
Lacaze, "Integrating Planning and Scheduling through
Adaptation of Resource Intensity Estimates," Sixth
European Conference on Planning, 2001.

D. Long and M. Fox, "Recognizing and Exploiting
Generic Types in Planning Domains," Fifth
International Conference on AI Planning and
Scheduling, 2000

D. McDermott, “Estimated-Regression Planning for
Interactions with Web Services”. in Sixth International
Conference in AI Planning and Scheduling, 2002

NPACI 02, "Telescience,
https://gridport.npaci.edu/Telescience/."

D. Nau, W. Regli, and S. Gupta. "AI Planning Versus
Manufacturing-Operation Planning: A Case Study."
International Joint Conference on Artificial Intelligence,
1995.

M. A. Pérez., “Learning Search Control Knowledge to
Improve Plan Quality”, PhD thesis, School of Computer
Science, Carnegie Mellon University, July 1995

SCEC 02. Southern California Earthquake Center's
Community Modeling Environment,
http://www.scec.org/cme/.

S. F. Smith and M. Becker, "An Ontology for Constructing
Scheduling Systems," AAAI Spring Symposium on
Ontological Engineering, Stanford University, 1997.

S. F. Smith and O. Lassila, "Toward the Development of
Mixed-Initiative Scheduling Systems," in Proceedings
ARPA-Rome Laboratory Planning Initiative Workshop.
Tucson, AZ, 1994

M. Tambe, J. Adibi, Y. Alonaizon, A. Erdem, G. Kaminka,
S. Marsella and I. Muslea. Building agent teams using an
explicit teamwork model and learning. Artificial
Intelligence, volume 110, pages 215-240, 1999.

M. M. Veloso, Planning and Learning by Analogical
Reasoning: Springer Verlag, December 1994.

M. Veloso, J. Carbonell, A. Perez, D. Borrajo, E. Fink, and
J. Blythe, "Integrating Planning and Learning: The
PRODIGY Architecture," Journal of Experimental and
Theoretical AI, vol. 7, pp. 81-120, 1995.

C.-E. Wulz, "CMS - Concept and Physics Potential,"
Second Latin American Symposium on High Energy
Physics (II-SILAFAE), San Juan, Puerto Rico, 1998.

ICAPS 2003 163

