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Abstract. Both medical research and clinical practice are starting toinvolve large
quantities of data and to require large-scale computation,as a result of the digitiza-
tion of many areas of medicine. For example, in brain research – the domain that we
consider here – a single research study may require the repeated processing, using
computationally demanding and complex applications, of thousands of files corre-
sponding to hundreds of functional MRI studies. Execution efficiency demands the
use of parallel or distributed computing, but few medical researchers have the time
or expertise to write the necessary parallel programs.

The Swift system addresses these concerns. A simple scripting language,
SwiftScript, provides for the concise high-level specification of workflows that in-
voke various application programs on potentially large quantities of data. The Swift
engine provides for the efficient execution of these workflows on sequential com-
puters, parallel computers, and/or distributed grids thatfederate the computing re-
sources of many sites. Last but not least, the Swift provenance catalog keeps track
of all actions performed, addressing vital bookkeeping functions that so often cause
difficulties in large computations.

To illustrate the use of Swift for medical research, we describe its use for
the analysis of functional MRI data as part of a research project examining the
neurological mechanisms of recovery from aphasia after stroke. We show how
SwiftScript is used to encode an application workflow, and present performance
results that demonstrate our ability to achieve significantspeedups on both a local
parallel computing cluster and multiple parallel clustersat distributed sites.
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1. Introduction

Abundant examples exist of highly computational medical research in domains of vital
importance, and of infrastructures focused on supporting such research [8,13]. We de-
scribe and advocate here the use of Grid computing technologies toward this end, and
present a case study in which these tools are applied to the needs of medical research.

An attractive approach to enhancing the productivity of medical research is to use
existing Grid infrastructure. There are several good reasons for this, the most important
being its ready availability through global cyberinfrastructure, and the substantial capa-
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bilities that can be employed by Grid users. The Grid can be seen as a large, distributed
computing resource used in common by a wide group of scientists. From the end-user’s
point of view, the Grid is a powerful, multi-user computer, with familiar resource shar-
ing and user access mechanisms. Grid resources are shared according to specified poli-
cies or may be reserved upon request. The security of each user’s applications and data
is enforced by standard Unix permissions and by enhanced access control list security.
There are storage services, large scale execution services, easy and efficient data move-
ment utilities, and supporting tools that allow users to take advantage of large amounts
of computing power. These capabilities can conveniently address specific requirements
of medical research, such as access control to patient data,as mandated by HIPAA rules
in the USA; high bandwidth to rapidly transfer large DICOM images from the patient’s
records [5]; and sophisticated image analysis algorithms to aid in the interpretation of
medical conditions.

We describe our success to date in applications in imaging-based neurological re-
search in which we seek to expand the scope and scale of our computing capabilities to
study the neurological mechanisms of the process of recovery from aphasia due to stroke.
The neuroscience behind the system described below is basedon work in permutation
tests for clustering analysis [1,11]. The aphasia recoverystudy (described below) in-
volves the processing of many large functional MRI files through a set of domain-specific
applications, and re-running a statistical analysis protocol over a large parameter space.

The benefits of using the Swift workflow system (described in detail below) for this
application include large reductions in the data and computing resource management ef-
fort that is typpically required in modern scientific research. This is achieved by automat-
ing otherwise manual and labor-intensive processes. In addition to providing transparent
and on-demand access to Grid resources, our workflows also exhibit reproducibility and
provenance tracking of the data results, thus enabling collaboration in the actual research
process, not only in sharing the results. The sharing and reuse of the actual research pro-
cesses, as well as of the data, has already shown benefits in several other domains (e.g.,
physics, sociology, economics) in which we also have ongoing collaborations.

2. Grid Infrastructure

The purpose of the Grid software stack is to hide the complexity of the vast resources
being made available to the users. In a sense this software can be seen as an operating
system that provides the user with the desired functionality of transparent distributed
data access and application execution.

In large distributed systems, the granularity of the atomicactions changes in scale:
instead of CPU-based operations, users describe their workin terms of application in-
vocations. They use existing applications and existing data, customize them, and iterate
over them until the sought-after analysis results are obtained. At the next level, the dis-
tributed system middleware consists of software that transparently manages the execu-
tion of applications on computers that are typically managed by local resource manage-
ment systems such as Condor [9] or PBS [17]. On top of these computing clusters, the
Grid software provides an access layer that gives users uniform interface to distributed
resources, and provide tools to manage data transfers, applications execution, and many
other features that hide the heterogeneity of resources across distributed clusters. The



current standard for homogenizing the resources is described by the Open Grid Services
Architecture (OGSA), and implemented by the Globus Toolkit, among others. At this
level of the Grid software stack, users can access remote data and execute remote ap-
plications, but they still have to be aware of the networked nature of Grids, and must
manage the executions of their applications. A higher-level component that abstracts the
distributed nature of Grid resources is the Swift system [7], which maps “virtual local
applications” to their corresponding physical installation on remote Grid sites.

2.1. An Application User’s View

Scientific researchers do not, in general, want to be aware ofcomputing infrastructure:
they want easy to use, high-performance applications that deliver fast and accurate re-
sults with little effort, and minimal disruption of their scientific thought process. This
dictates that their applications must be reliably and transparently allocated the resources
necessary to solve the problems at hand. Our solution to making tools available on the
Grid in a fashion which hides the complexities of manually managing different comput-
ers is tovirtualize the locationof the tool through a level of indirection. This indirec-
tion is implemented in Swift in an internal directory consisting of the application and
computing-site descriptors. With Swift, Grid users can consider their applications to be
virtually local to them: the selection of the site to executethe application and the transfer
of input and output data and parameters to the site is handledtransparently by Swift.

In addition to the transparency of accessing the tools, researchers benefit from the
ability to create complex functionality by composing simple tools that each solve some
subproblem of the researcher’s agenda. These gains are further enhanced by the expres-
sivity of SwiftScript, which allows such complex algorithms to be expressed in clear,
simple, and high-level logical terms, rather than in low-level physical details.

Treating the existing applications that the scientists useas theatomic computation
unitsof the workflow describing the algorithm, we have built a workflow execution en-
gine around the concept ofdata flow analysis: whenever the input data for an atomic
computation unit in the workflow becomes available, the engine selects a Grid resource
and sends out the computation and the data to that site. At theend of the computation,
the engine copys back the results, to make them available to subsequent workflow steps
that depend on this result as their input, or copies them to a repository for archival, dis-
semination, or later analysis.

2.1.1. SwiftScript Language Constructs

SwiftScript extends the earlier Virtual Data Language [7] with support for dataset typing
and mapping, dataset iteration, conditional branching, sub-workflow composition, and
other advanced features. SwiftScript support for standardprogramming language control
constructs make it easy to script the execution of applications and thus to automate the
research process. For example, loops are used to iterate through parameter sweeps, map-
pers to associate inputs and outputs with actual file names, and arrays to store groups of
similar datasets. We describe in the implementation section below how SwiftScript can
be used to naturally and effectively express workflows describing neuroscience research
tasks.



3. Aphasia and Brain Research Tools

Stroke, in addition to being the third highest cause of deathin the United States, is the
leading cause of disability among adults. (American Heart Association. (2003). 2003
Heart and Stroke Statistical Update. Dallas, Texas: American Heart Association.) Thus
there is intense interest in the clinical research community in understanding the neuro-
logical mechanisms involved in recovery from stroke. One such research area, in which
we are involved, specifically focuses on analysis of the recovery phase fromaphasia
caused by stroke, and effects on the neurobiological aspects of the patient.In our aphasia-
recovery studies, we apply fMRI to analyze neural activity (BOLD response) in the
brains of subjects after stroke, in response to various congnitive stimuli.

3.1. The Research Problem

The medical research behind testing the SwiftScript workflow technology on the grid is
the study of the stroke recovery process in a set of patients.The study uses fMRI brain
images data of the patients subjected to various stimuli to detect neural activations in
the brain as a result of the experimental conditions. However, given the practically lim-
ited number of patients available for a typical imaging study, the results of the activa-
tion detection process are likely to suffer from the uncertainty of random brain activa-
tions. Thus, besides the actual activation detection, the research plan also contains of a
verification phase to analyze the validity of the results. This step involves assessment of
a null hypothesis about the results obtained from the experiment’s data using random
modifications of the original fMRI readings.

3.2. The Scientific Methodology

In fMRI studies, data are sampled from spatial locations in aresolution measured in
voxels. Statistical analysis in a typical experiment with two conditions (e.g., viewing
circles vs. viewing faces) is based on the following steps:

1. Spatially align all the brain images from an experimentalrun.
2. For each subject, for each voxel, establish the activity level (BOLD response) for

each condition (2 data points), and save the difference in activity (delta).
3. At the group level, analyze these delta values to establish, for each voxel, whether

subjects’ deltas differ from zero. This is performed by calculating whether the
delta vector for each voxel (of length N = number of subjects)has a mean that
is reliably greater than 0, using a t-test (i.e., testing if the two conditions differ
reliably).

4. on the group level: Once we establish for each voxel whether there is a reliable
difference between the two conditions, find reliable clusters of activity.

Because there are many thousands of voxels in our brain images, some would be
“active” just by chance (e.g., if data were randomly sampled). The permutation algorithm
identifies which clusters of neural activity are not likely to be found by chance. In brief,
the method tests the null hypothesis that the clusters of activation found in the dataset
are indeed likely to be found by chance. The null hypothesis asserts that if we were to
“switch” the labels of the conditions for one or more participants, and calculate the delta
values in each voxel, we would get equally large activations. To test this null hypothesis,



for one or more participants (in all possible combinations), we interchange the labels of
the two conditions, re-calculate the reliability of delta in each voxel (step 3), and evaluate
the clusters we find. If the clusters in our data are greater than the majority of the clusters
found in the permutations, then the null hypothesis is refuted and we conclude that the
clusters of activity found in our study are not likely to be found by chance.

4. Grid Implementation

We coded the algorithm described above in SwiftScript and then installed on the Grid
the software applications that were previously used on desktop workstatins to solve the
original problem.

In the aphasia-recovery study, the main tools used were theR [14] Statistical Pack-
age, used to generate the data for the null-hypothesis testing, and theSUMA[16] tool,
part of the AFNI [2] package, for computing the clustering ofneural activity levels.

The input files can be separated into two classes. The first group consists of
experiment-dependent inputs, such as the files that containthe brain activity measure-
ments from the experiments (theorigBrain file). The second group consists of files
that are required by the tools involved in the processing, such as the full standard brain
files brainFile, specFile needed by AFNI to map the experimental measure-
ments.

There is a special set of files which result as a by-product of the data-processing
focus of the SwiftScript workflow language. These are the intermediary files, that are
produced by the application components that make up the finalworkflow, and which
are being fed as inputs to the subsequent blocks in the workflow. In the example
below, they have names likerandomBrain, randomCluster, dsetReturn,
clusterThresholdsTable.

Following thelocation virtualization principlesdescribed earlier, these file names
aremapped transparentlyfrom real files that exist on the computer running the workflow
to logical names that the SwiftScript program uses to describe the workflow data entities.

4.1. SwiftScript Representation of the Aphasia Algorithm

The SwiftScript description of the algorithm first defines the data types of each dataset
(file) that participates in the workflow. For clarity, we define a unique type for each file
containg syntactically and/or semantically different kinds of data:

type file {}
type fileNames{ file f[]; }
type script {}
type brainMeasurements{}
type precomputedPermutations{}
type fullBrainData {}
type fullBrainSpecs {}
type brainDataset {}
type brainClusterTable {}
type brainDatasets{ brainDataset b[]; }
type brainClusters{ brainClusterTable c[]; }



Having defined the types of the data entities in the workflow, we define the proce-
dures that process the input files. Some procedures serve as interface wrappers for exter-
nal programs, and map the input and output parameters used inthe SwiftScript workflow
to the actual physical arguments of the application program.

// Procedure to run R statistical package
(brainDataset t) bricRInvoke (script permutationScript, int iterationNo,

brainMeasurements dataAll, precomputedPermutations dataPerm){
app { bricRInvoke @filename(permutationScript) iterationNo

@filename(dataAll) @filename(dataPerm); }}

// Procedure to run AFNI Clustering tool
(brainClusterTable v, brainDataset t) bricCluster (script clusterScript,
int iterationNo, brainDataset randBrain,
fullBrainData brainFile, fullBrainSpecs specFile) {

app { bricPerlCluster @filename(clusterScript) iterationNo
@filename(randBrain) @filename(brainFile)
@filename(specFile);}}

// Procedure to merge results based on statistical likelhoods
(brainClusterTable t) bricCentralize ( brainClusterTable bc[]) {

app { bricCentralize @filenames(bc); }}

(brainDataset t) makebrain (brainDataset randBrain,
brainClusterTable threshold, fullBrainData brain,
fullBrainSpecs spec){

app { makeBrain @filename(randBrain) @filename(threshold)
@filename(brain) @filename(spec); }}

Other procedures use more complex language constructs suchas iterations and con-
ditional constructs to combine several atomic applicationinvocations.

// Procedure to iterate over the data collection
(brainClusters randCluster, brainDatasets dsetReturn) brain_cluster (
fullBrainData brainFile, fullBrainSpecs specFile) {

int j[]=[1:2000];
brainMeasurements dataAll<fixed_mapper; file="obs.imit.all">;
precomputedPermutations dataPerm<fixed_mapper; file="perm.matrix.11">;
script randScript<fixed_mapper; file="script.obs.imit.tibi">;
script clusterScript<fixed_mapper; file="surfclust.tibi">;
brainDatasets randBrains<simple_mapper; prefix="rand.brain.set">;
foreach int i in j {

randBrains.b[i] = bricRInvoke(randScript,i,dataAll,dataPerm);
brainDataset rBrain=randBrains.b[i];
(randCluster.c[i],dsetReturn.b[i]) =

bricCluster(clusterScript,i,rBrain, brainFile,specFile);
} }

Having declared the data types and the procedures that will process the data, we
must define the dynamic mapping of the logical file names used in SwiftScript to actual
on-disk file resources. This mapping can range from simple name-to-file mapping to
database-select operations or the matching of multiple files by a regular expression, based
on the choices available in an extensible library of mapper implementations.

fullBrainData brainFile<fixed_mapper; file="colin_lh_mesh140_std.pial.asc">;
fullBrainSpecs specFile<fixed_mapper; file="colin_lh_mesh140_std.spec">;
brainDatasets randBrain<simple_mapper; prefix="rand.brain.set">;



brainClusters randCluster<simple_mapper; prefix="Tmean.4mm.perm",
suffix="_ClstTable_r4.1_a2.0.1D">;

brainDatasets dsetReturn<simple_mapper; prefix="Tmean.4mm.perm",
suffix="_Clustered_r4.1_a2.0.niml.dset">;

brainClusterTable clusterThresholdsTable<fixed_mapper; file="thresholds.table">;
brainDataset brainResult<fixed_mapper; file="brain.final.dset">;
brainDataset origBrain<fixed_mapper; file="brain.permutation.1">;

The actual workflow consists simply of invocations of the high-level procedures
defined above:

// Main program: launches the entire workflow
(randCluster, dsetReturn) = brain_cluster(brainFile, specFile);
clusterThresholdsTable= bricCentralize (randCluster.c);
brainResult=makebrain(origBrain,clusterThresholdsTable,brainFile,specFile);

Note that this simple description, at which level most researchers will work, en-
hances productives by abstracting and automate many complex tasks. For the sci-
entific research that we described above, the two thousand invocations of the block
in the braincluster function were determined individualized processing of the
bricRInvoke function, depending on the parameteri. Also, the workflow performs
automatic synchronization of the many subtasks involved, waiting for the result of these
two thousand executions to finish before continuing with themerging (makebrain )
procedure.

4.2. The Swift Environment, and Grid Application Deployment

For completeness, we summarize the additional infrastructure that enables the transpar-
ent execution of the workflow described above. The application components (containing
the problem-solving algorithms) that are invoked in the workflow, must be installed at the
sites that are to be involved in the computation. This step isgenerally done once, as part
of application deployment. In our case we installed the applicationsbricRInvoke,
bricPerlCluster, bricCentralize,andmakebrain at several sites, which
we recorded in Swift catalogs. Swift uses these catalog entries to choose on which sites,
and to what degree of parallelism, to invoke the applications.

Internally, Swift uses Globus [6] software for important functions such as authenti-
cation with remote sites, data transfer, and remote task invocation. We run our applica-
tions on several sites spanning the Teragrid, Open Science Grid, and independent institu-
tion clusters. The architecture of the infrastructure involved in executing one’s workflow
on the Grid is depicted in Figure 1.

Other Swift facilities allow the user to resume the workflow from the point of any
failure, to cluster short-running applications for more efficient remote execution, and to
visualize the progress of workflow execution. Figure 2 showsa snapshot of the executing
workflow.

5. Results

5.1. Benefits of Grid Computing in Health-related Research

To measure the benefits of using workflow systems to manage research data analysis in
Grid environments, we recorded the execution time of the same workflow instance in



Figure 1. The components of a workflow based application

Figure 2. The execution of a small subset of the aphasia study analysisworkflow. The colors of the boxes
indicate if the task has completed (green) or is executing (yellow). Lines represent data dependencies.

both a local workstation and a distributed Grid environment, and provide initial results
in Table 1 below. The performance gains depend primarily on the parallelism that the
workflow exhibits (in this case we had two thousand parallel execution threads), on the
available number of sites that could execute the applications that made up our workflow
(in our case, three sites), and the number of simultaneous jobs executed by those sites
(which depends in turn on local cluster sizes, on cluster resource management policies,
and on contention on the cluster from the other users that share them).

Other than speedup results, the current implementation allows the researcher to mod-
ify the scripts that are used in this workflow, as we chose a model where these scripts,



Table 1. Timing measurements for executing grid versus local execution of the aphasia workflow

Local Grid

3 min/1 job instance 5 min / single instance run on the Grid

300 min / 100 job instances 50 minutes / 100 job instances

Figure 3. An intermediate stage of activation analysis as processed by the workflow

containing the actual scientific procedures, are deployed on demand, dynamically to the
Grid sites.

While we used only three sites in this study, we could increase that number to im-
prove the workflow’s speedup significantly. We note a major benefit if this approach
here: other researchers using the same tools that were used in this work could readily use
the already deployed applications that we used as well (SUMA, R), or simply obtain the
current workflow definition and execute it without the need ofany special setup. Swift
also allows us to visualize both the workflow’ s execution (Figure 1) and the “real-time”
display of the activations on the brain, displayed in Figure3.

6. Related Work

Swift has its origins in the GriPhyN Virtual Data System (VDS) [7], originally designed
to automate the analysis of the large quantities of data produced by high energy physics
experiments. Another VDS component, Pegasus [4], implements specialized strategies
for scheduling tasks on computing sites.

Much work on workflow for eScience has focused on the orchestration of web ser-
vice invocations, as supported, for example, by BPEL and by Taverna [12], which im-
plements a BPEL subset. Kepler [10] is used for similar purposes. We view Swift as ad-
dressing a different problem than these systems, namely theorchestration of large num-
bers of calls to application programs, and their practical and transparent execution in a
distributed Grid.

GenePattern [15], like Swift, focuses on the composition ofapplication programs. It
differs in its graphical programming approach, and its lackof support for large-scale par-
allel processing. Google’s MapReduce [3], like Swift, focuses on the large-scale analysis
of large quantities of data. Swift differs in its support, via XDTM, of diverse file system
structures, and its support for task-parallel as well as data-parallel execution.



7. Summary

We have introduced a tool, Swift, that supports the paralleland distributed execution
of computationally demanding and data-intensive scientific computations. Using an ex-
ample from a clinical study of aphasia recovery, we have described how Swift allows
(via its scripting language, SwiftScript) for the concise representation of complex algo-
rithms, for the efficient execution of those algorithms on parallel and distributed (“grid”)
computing systems, and the subsequent exploration and assessment of the workflow’s
execution history.
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