
HAND: Highly Available Dynamic Deployment
Infrastructure for Globus Toolkit 4

Li Qi1, Hai Jin1, Ian Foster2,3, Jarek Gawor2

1Huazhong University of Science and Technology, Wuhan, 430074, China
quick@chinagrid.edu.cn; hjin@hust.edu.cn

2Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL 60439, U.S.A.
{foster, gawor}@mcs.anl.gov

3Department of Computer Science, University of Chicago, Chicago, IL 60637, U.S.A.

Abstract—Grid computing is becoming more and more attractive
for coordinating large-scale heterogeneous resource sharing and
problem solving. Of particular interest for effective Grid computing
is a software provisioning mechanism. We propose a highly
available dynamic deployment infrastructure, HAND, based on the
Java Web Services Core of Globus Toolkit 4. HAND provides
capability, availability, and extensibility for dynamic deployment of
Java Web Services in dynamic Grid environments. We identify the
factors that can impact dynamic deployment in static and dynamic
environments. We also present the design, analysis, implementation,
and evaluation two different approaches to dynamic deployment
(service level and container level). And examine the performance of
alternative data transfer protocol for service implementations. Our
results demonstrate that HAND can deliver significantly improved
availability and performance relative to other approaches.

1. INTRODUCTION
A Grid is an Internet-connected computing environment in

which computing and data resources are geographically
distributed in different administrative domains, often with
separate policies for security and resource use. With the
introduction of OGSA [11], the focus of Grid computing
moved from legacy computing-intensive applications to
service-oriented computing based on open standards. Globus
Toolkit (GT) development has tracked this trend, with GT4
[10, 12] building on the Web Service Resource Framework
(WSRF) specifications to provide an efficient, extensible,
stateful, and flexible Grid middleware.

Experience within ChinaGrid [1, 9] and elsewhere [2, 17]
has emphasized the importance of dynamic service
deployment and management as an enabler of dynamically
extensible virtual organizations (VOs) [8]. More specifically,
we identify the following requirements when services are
hosted on a dynamic management-enabled Grid:
• Services must adapt at run time to changes of scale in

VOs and to changes in the number of users.
• It must be easy to reconfigure, redeploy, and undeploy

services, without shutting down the whole system.
• Grid software provisioning must take into account

dynamic and unpredictable service demand from VO
members.

• The availability of target management units for service
requests should be maximized.

• Dynamic features should result in minimal
development and management costs; that is, users

must not be required to implement numerous
interfaces or rules for dynamic deployment features.

Dynamic deployment is a big challenge: frequent shutting
down and starting up of services for software upgrades or
changes in resources or users can increase management costs.
Some dynamic deployment solutions have been proposed
based on Apache Tomcat’s dynamic deployment
functionality [2, 3, 14]. However, that infrastructure provides
poor performance and availability, with the consequence that
(for example) dynamic deployment during a workflow’s
execution can cause a critical task to fail. In another scenario,
if a deployment operation is delayed or canceled because the
target container is unavailable, the dependent task would also
be delayed or canceled.

Before discussing the design and implementation of our
dynamic deployment infrastructure, we introduce some basic
concepts:
• Containers in a Web Services-based system such as

GT4 host services and execute user requests issued by
clients that invoke operations defined by those
services.

• The term dynamic deployment denotes the ability for
remote clients to request the upload and deployment of
new services into, or the undeployment of existing
services from, existing containers.

• Issues of correctness and performance are of
particular importance when service requests and
deployment requests occur concurrently.

We define availability in a dynamic deployment
infrastructure as the proportion of time a system is in a
functioning condition. The meaning of “functioning” is
different for two types of clients.
• End users of services deployed in the container care

about the success rate of their requests and the
response time of those requests. Key issues for these
users are the extent to which a container becomes
inaccessible during dynamic deployment, and any
overhead imposed on ordinary requests by the
dynamic service infrastructure (e.g., due to locking).

• Users who deploy services, typically administrators,
care about both the success rate and average time cost
of the dynamic deployment requests themselves.

Based on these considerations, we adopt as metrics the
success rate of user requests, the average time cost for
deployment requests, and the deployment availability.

 2
To implement highly available and capable dynamic

deployment functionality, we propose HAND (Highly
Available dyNamic Deployment). The design of HAND is
intended to meet six criteria:

1. A container that receives a dynamic deployment
requests should complete existing user requests if
possible, while ensuring that the dynamic deployment
request is accepted as scheduled.

2. User requests received during execution of a dynamic
deployment procedure should be handled correctly if
possible.

3. When a dynamic deployment procedure is finished,
user requests for newly installed services should be
handled correctly.

4. The deployment procedure should be decomposed into
smaller steps to reduce the risk of deadlock. Generally,
deadlocks in the dynamic deployment procedure arise
when threads use common runtime resources (e.g., the
common ClassLoaders) concurrently. Simplifying and
decomposing the deployment steps into smaller
substeps can reduce the time that the deployment
threads and ordinary threads occupy shared resources.

5. Multiple redundancy approaches should be provided to
both remote and local users in order to reduce
unavailability. If one approach proves to be
unavailable, a user or container can adopt other
approaches as backup to finish the deployment.

6. The performance of the deployment procedure should
be optimized to decrease the possibility of conflict
between ordinary and deployment requests. In short,
the overhead caused by the dynamic deployment
infrastructure should be as small as possible to the
ordinary requests.

In the following, we explore how our performance metrics
can be maximized and these criteria met via two different
approaches to dynamic deployment:
• Service-level deployment (HAND-S), in which we

deactivate one or more existing services, install new
services, and re-activate those services—without
reloading the whole container.

• Container-level deployment (HAND-C), in which the
installation of any new service involves reloading
(reinitializing and reconfiguring) the whole container.

We shall describe implementation techniques for both
approaches and present experimental results that demonstrate
that when HAND works concurrently in a dynamic network
environment, it can deliver capability and availability that are
acceptable and that meet the criteria described above.

The rest of this article is as follows. In Section 2 we
describe the HAND architecture and implementation. In
Section 3 we show how users can utilize the different
deployment levels and approaches to improve the availability
and capability of dynamic deployment. In Section 4 we
present our evaluation of the implementation. In Section 5 we
discuss related work. In Section 6 we conclude with a brief
discussion of future research.

2. HAND DESIGN AND IMPLEMENTATION
Provisioning is an important feature in cluster computing

and has been included in the OGSA specification [11].
However, the GT3 and GT4 releases of the Globus Toolkit
Java Web Service Core have not addressed dynamic service
deployment.

Weissman et al. [2] have implemented dynamic
deployment in GT by building on the dynamic
deployment-enabled Apache Tomcat server as the hosting
environment. With this approach, users package their services
with the basic Java WS Core libraries as a WAR file and
deploy it into Tomcat as a Web application. With the help of
Tomcat Manager the user can redeploy this application
dynamically without restarting Tomcat or interfering with
other Web applications.

An alternative approach (adopted here) is to refactor the
kernel structure of the Java WS Core standalone container.
This approach is more complicated as it requires low-level
changes to the container. However, we gain the benefit of a
more lightweight dynamic deployment implementation and
simpler management. With this approach, we can use the
Grid archive (GAR) format for services and reuse GT’s
existing deployment mechanism. The result, as we shall show,
is a highly available dynamic deployment infrastructure.

Weighing these advantages and disadvantages, we
designed and implemented HAND in three parts, as
illustrated in Figure 1. The shaded components—Service
Package Manager, Auto Deployer, and Local Directory—are
optional; they are provided to support future advanced
provisioning features.

Figure 1 Dynamic deployment modules

2.1 Dynamic Deployer Core
The Dynamic Deployer Core (DDC) is the kernel part to

realize the dynamic deployment in HAND and meet the
criteria described in Section 1. The challenge in the DDC is
to resolve two factors:

1. The deactivation and activation of the services and
container.

 3
2. The update of the runtime context in JVM, especially

in case of dynamic and multiple ClassLoaders.
To address time cost and safety issues, we use two

ClassLoaders to isolate manageable services from system
services. The common ClassLoader is responsible for the
basic libraries used to run the container such as the XML
parser, the SOAP engine, logging, and security; this
ClassLoader is not reloadable. The service ClassLoader is
responsible for loading service libraries and is fully
reloadable.

As shown in Figure 1, DDC is comprised of seven parts.
The GAR Deployer is in charge of invoking the actual
deployment actions. In the HAND, a reloading action can be
safely executed once all services are shut down but before a
new service ClassLoader is obtained. The Undeployer,
Reloader, and Deployer are reloading actions that can be
passed from the Deploy Approach Manager to the GAR
Deployer. Reloading action can update the service libraries,
configuration files, and so forth. The Validater is responsible
for checking the correctness of the GAR file that is being
deployed. It prevents DCC from deploying invalid or
malformed GAR files. The Logging module is used to record
a detailed log of the execution of the reloading actions.
Finally, the Restorer is a simple backup mechanism. In case
of an error it can help the container to restore to its previous
working state.

2.2 Deploy Approach Manager
The Deploy Approach Manager (DAM) takes as input a

GAR file in Java archive format. This file consists of a Web
Service deployment descriptor (WSDD), WSRF resource
descriptor files, and application implementations and stubs.
The GAR file might contain zero or more services.

DAM addresses our desire for redundant approaches
(Criteria 5) by extending GT4 to provide three approaches to
service deployment.

The Auto Deployer is an experimental component that
allows users to deploy and undeploy a target GAR file into a
container by copying it into a specific directory on the local
file system. This feature is convenient for local
administrators.

The Ant Scripts are intended for the offline approach of
deploying and undeploying the GARs. This approach works
only when the container is off. This restriction is necessary in
order to prevent conflicts that could arise when deploying
into a running container.

The Remote Deployer is a standard WSRF service
deployed in DDC. Named DeployService, this service
supports five operations: upload, download, deploy,
undeploy, and reload. The first two operations provide two
different approaches to transferring a GAR file that is to be
deployed to the container:

1. Via SOAP with attachments using the upload()
function. The GAR file is attached to the request.

2. Via the download() function. The request specifies a
URL (HTTP/S, GridFTP/FTP, etc.) for the GAR file,
and the DeployService uses globus-url-copy to copy
the GAR file from that URL location to the local file
system.

Once a GAR file is transferred, the DeployService returns
an identifier for the GAR. The GAR file can then be deployed
by calling the deploy() function with that identifier. Once a
GAR file is deployed, the DeployService deletes the file
automatically.

A deployed service can be undeployed via the undeploy()
operation. In addition, a client can reload the entire container
by invoking the reload() operation, which restarts the
container without executing any deployment actions. This
operation is useful when a service or container configuration
has changed.

The DeployService publishes two resource properties:
1. Undeployable: a list of GAR identifiers that can be

undeployed.
2. Deployable: a list of GAR identifiers that have been

transferred to the service but not yet deployed.
GSI authentication and authorization are used to ensure

that only authorized clients can invoke the DeployService
operations.

2.3 Service Package Manager
The optional Service Package Manager (SPM) provides

higher-level management features. In particular, the Package
Lifecycle and Package Registry Table maintain information
necessary for the service-level implementation. Since each
GAR file may contain several services, service-level
management cannot be based on a simple GAR file
management system. In our service-level implementation,
SPM communicates with DDC to manage the target services
dynamically. The SPM also includes three
components—Version Control, Customized Deployment, and
Validating Checker—that complete the complicated
service-level Grid software version control and online
upgrades in different VOs.
• Version Control is responsible for the version

management of different services. It also provides
metadata about cross-dependencies for the container
system. It avoids upgrades of different applications’
JARs.

• Customized Deployment permits remote users to
submit their own deployment scripts; for example a
user can deploy an RPM package to a target system.

• The Validating Checker is similar to the DDC
Validater. A minor difference is that it focuses on
more complicated dependencies and conflict checking
among different services before deployment.

3. SERVICE-LEVEL VERSUS CONTAINER-LEVEL
We define two approaches which is also the effort to meet

Criteria-5 to dynamic deployment:
• In container-level deployment (HAND-C) the entire

container is reloaded; that is, all services in the
container are deactivated and re-activated.

• In service-level deployment (HAND-S) a single
service that is being deployed or undeployed is
deactivated and re-activated. All other services are
unaffected.

 4
We have implemented both approaches within GT4. The

container-level implementation is complete and has been
merged into the GT code repository 1 . The service-level
implementation is a prototype, suitable for performance
studies but not yet for production use.

Both approaches are important and useful in different
scenarios, as we now discuss. Container-level deployment
works well when a global upgrade or configuration is needed,
while service-level deployment is more flexible and available
in dynamic environments.

3.1 HAND-C: Container-Level Deployment
Container-level deployment proceeds as follows to reload a

service implementation:
1. Put the container in “reloading mode.” The container

will then return “service unavailable” error to any
request that the container receives during the
deployment. This step blocks until all currently
executing requests finish or until a specified timeout
expires (whichever occurs first).

2. Stop and deactivate all services, resource homes, and
so forth.

3. Perform cleanup operations to flush caches that might
contain references to the resources and classes loaded
by the original deployment.

4. Execute the deployment or undeployment scripts.
5. Reload the whole container. Configuration descriptor

files, etc. are re-read, and all services, resource homes,
etc., are re-activated.

6. Return the container to the normal operating mode,
and start accepting new requests.

This algorithm—in particular,the use of timeouts in Step
1—seeks to balance the demands of Criteria 1 above with
container stability. Steps 2 and 3 are executed to address
Criteria 3. We note that this algorithm does not address
Criteria 2: all user requests to a container are refused during
any dynamic deployment operation on that container.

The timeline in Figure 2 depicts a typical deployment
operation. In this figure, “Service Session” denotes an
execution of an ordinary request and “Deploy Session” the
execution of a deployment request. Moving from the top
down, we see first a request that is interrupted due to the Step
1 timeout; then three requests that complete successfully
against the old service version; then the deployment request;
then three requests that are refused because deployment is in
progress; and finally two requests that execute successfully
against the new version of the service.

This approach is similar to that used in the Tomcat
container. It has the following advantages:
• It avoids deadlock for it does not care about the

dependencies among the services deployed in
container. It just reloads the whole container.

• It works well when we need to reload the whole
service container, including the global configuration,
service handlers, and providers. In case of a global

1 The stable implementation can be checked out from
:pserver:anonymous@cvs.globus.org:/home/globdev/CVS/glo
bus-packages with module name ‘wsrf’.

installation and configuration issued or service-level
reload operation failed, the container-level reload is
significant to promise the container keeping stable.

• It minimizes memory and time costs in management,
since all services share the same runtime context, i.e.
the common service ClassLoader, unified deactivating
and activating procedures, and GAR management.

Figure 2: Container-level deployment available sequence

On the other hand, container-level deployment has
disadvantages:
• (Re)deployment of any service results in the loss of

nonpersistent state associated with all services. While
arguably no service implementation should make any
assumptions concerning the availability of
nonpersistent state, in practice people often write
services with such assumptions in mind. Thus,
dynamic deployment can result in unpredictable
behaviors for clients.

• Deployment time is unpredictable when several
parallel threads are involved (see Section 4.3).

3.2 HAND-S: Service-Level Deployment
Service-level deployment requires complete service

isolation (including the service JAR files), a hierarchical
ClassLoader tree (a separate ClassLoader for a set of services
associated with a GAR file), and an SPM to manage the
separate services. This approach allows us to address Criteria
2 of Section 1: the reduction in reloading granularity means
that the deployment procedure need not impact requests to
other services unrelated to those that are being deployed. Our
service-level deployment logic meets these requirements as
follows:

1. Check the requested target service name. If it matches
the DeployingService, then switch the ClassLoader to
system level, or use the normal services’ own
ClassLoader registered in the SPM. If requests are
being processed that involve the services that are to be
deployed, then suspend deployment until those
requests complete or a timeout occurs.

2. Stop the services that are to be deployed if they are
already running. During this period, the container will
return “service unavailable” to any request to the
services in the GAR file.

 5
3. Stop any services on which the pre-deployed services

depend, and deactivate any related resources.
Typically, these services are named in the
pre-deployed GAR file.

4. Perform cleanup operations to flush caches that might
contain references to the classes loaded by the original
deployment (just for redeploy).

5. Execute the deployment or undeployment scripts.
6. Create or update the working space context for the

new services, and then register to the SPM registry.
7. Initialize, activate, and start the new services.
The main difference between this approach and the

container-level approach is that the reloading unit here is the
service rather than the container as in HAND-C. Figure 3
shows what happens when requests arrive during dynamic
deployment in HAND-S. Requests 1, 2, 3, 4, 6, and 8 are to
services other than the services being deployed, and can thus
proceed without interruption. Only the 7th and 10th requests
are to a service that is being deployed, and thus these two
requests fail and succeed, respectively, as they occur during
and after deployment.

Service-level deployment has the following advantages
relative to container-level deployment:
• The time required to reload a service is more

predictable as it depends primarily on characteristics
of that service, not other components deployed in the
same container.

• Because there is no need to wait for and deactivate all
services in the container, service-level deployment is
much faster in most cases.

Figure 3: Service-level deployment available sequence

Service-level deployment also has limitations:
• There is a need for additional internal synchronization

in the container, which can be costly. The container
should switch among different ClassLoaders to match
the various service requests, and must also maintain
consistency with persistent storages (a XML file in our
implementation), JNDI resources, and Caches existing
in service instances. Furthermore, HAND-S cannot
handle circular dependencies among services well.
(The dependency of service composition is another
critical challenge in Grid which will be discussed in
our future papers.)

• The need for a more detailed registry results in
increased memory usage and execution time costs.

• If the registry structure is destroyed or the global
configuration is updated, we must use container-level
deployment to reinitialize the whole container.

3.3 Time Cost Analysis
We now discuss the costs associated with the two

deployment approaches. We use the symbols in Table 1.

TABLE 1 SYMBOLS USED IN THIS PAPER

Notation Definition

totalt Total time required to deploy a target GAR file.

transfert Time required to transfer the GAR file.

pendingt

Time required to wait for the container to become available.

deployt

Deployment time for script processing during deployment.

reloadt Time required to restart container or services.

limitt Reload timeout limitation for a running service.

systemt

System cost to reload the container itself.

it Time to stop and deactivate target service i.

it′ Time to activate and start target service i.

is Execution time left for unfinished request i.

R Running services that are requested during dynamic
deployment and are being processed on the container.

D Deployed services on the target container; these are the
aggregate of all the services deployed on the target container,
whether activated or deactivated.

D′ Services that are prepared to be deployed.

To meet Criteria 4, as shown in Figure 4, the deployment
procedure in HAND consists of several phases: deployment
preparation, physical deployment, and system reloading. The
dashed “Pending” box indicates that it depends on the
concrete approach (HAND-S or HAND-C) chosen to issue
the reloading.

Figure 4: Three-phase deployment procudure

The total dynamic deployment time consists of four parts:

total transfer pending deploy reloadt t +t t t= + + (1)

The tdeploy and ttransfer components are determined by the
deployment methods used in the preparation phase and the
complexity of the ANT scripts that implement deployment
actions, both of which are independent of the deployment
procedure.

 6
For HAND-C, tpending and treload are as follows.

)Rt,)s(maxmin(t limitiRpending ×= (2)

Dn,t)t(tt system

n

1i
iireload =+′+= ∑

= (3)

Based on the discussion in Section 3.2, we conclude that
the pending time is mainly spent waiting for completion of
existing requests. Hence, the total time is the minimum of the
maximum remaining time of the currently executing requests
and the time required to interrupt for all running threads. The
reloading time is equal to the system reloading time plus the
deactivation and activation time for all deployed services.

For HAND-S, the pending time is the time spent waiting
for completion of existing requests for the target service and
any related services. (However, we note that the problem of
service dependency is complicated; we will investigate it and
discuss it in future papers.) Here, we assume that related
services D’ are just the services defined in the GAR’s Web
Service Deployment Descriptor (WSDD) file. The reloading
time shrinks to the sum of the deactivating time and
activating time of the related services.

))(maxmin(RDt,st limitiRDpending I
I

′×=
′

 (4)

∑∑
′′

′+=
D

i
RD

ireload ttt
I (5)

We define ttotal(HAND-S) and ttotal(HAND-C) as the time
cost for two approaches, and we assume that both approaches
use the same deploying method and the same GAR file. The
relationship between running services, predeployed services,
and deployed services is

DRRD ⊆⊆′I (6)

If the processing requests finished at the same time, then
tpending(service) ≤ tpending(container). Similarly, we can achieve
treload(service) ≤ treload(container).. Hence, it is not too difficult
to conclude that ttotal(service) ≤ ttotal(container) in a dynamic
invocation environment.

4. EVALUATION
A comprehensive evaluation of dynamic deployment is

challenging because of the difficulty of capturing the
complexities of a realistic Grid environment. Thus, we focus
on micro-benchmarks designed to capture specific aspects of
dynamic deployment behavior, namely, deployment time,
capability and availability, and file transfer performance.

4.1 Dynamic Deployment Experiments
As discussed in Section 3, the service container becomes

unavailable during dynamic deployment. Thus, we first
measured deployment time as a function of both the size of
the file being deployed and the number of services in the
container.

The experimental setup was as follows. We installed and
tested the HAND containers at two sites: a local site with
three PC servers, powered by Pentium 4 2.4 GHz with 2 GB

RAM and 37 GB hard disk in a cluster; and a remote site
equipped with one PC server, powered by Pentium III 1 GHz
with 1024 MB RAM. The two sites were connected by a 2.5
G fabric WAN shared with other CERNET applications. The
local cluster was connected with 100 Mb Ethernet. All tests
ran on Fedora 3 with Linux kernel 2.6.9-1.667. The Java
version was J2SDK 1.4.2_08-b03, and we used –Xms64m
and –Xmx1024m parameters to enlarge the maximum JVM
memory.

We constructed a set of Grid Archive (GAR) files for use
in our experiments, as summarized in Table 2. The first five
files ranged in sizes from 42 KB to 100 MB, a range typically
encountered in Grid applications. We also constructed a large
number of identical services, testService_clone0 to
testService_cloneN, for evaluating the impact of the number
of deployed services on performance. The Jar Scale column
in Table 2 denotes how many JAR files were in the package;
the Compression Rate is the ratio of compressed file size to
the original.

TABLE 2 TEST PACAKGES USED IN OUR EXPERIMENTS

Id Package
 Name

File Size
(KB)

Jar
Scale

Compression
Rate (%)

1 testService1.gar 42 2 63
2 testService2.gar 1,154 4 33
3 testService3.gar 12,909 56 90
4 testService4.gar 42,236 61 75
5 testService5.gar 98,004 59 55
6..n testService_clone

N.gar
40 2 63

We measured the time required to deploy each of files 1-5
of Table 2 into a container running nine services—the basic
service set deployed by default by GT. The only request made
during the dynamic deployment procedure was that to
DeployService. Each deployment was repeated 40 times. We
present the deployment and reloading times (as discussed in
Section 3.3); the pending time is zero in this case.

Figure 5 gives our results. Timers in our implementation
allow us to break down the total deployment time into the
following categories:
• Deploy (D), which includes the physical deployment

time (D-D) and reloading time (D-R) as discussed in
Section 3.3.

• Redeploy (R), which includes the physical
redeployment time (R-D) and reloading time (R-R).

• Undeploy (U), which also includes the physical
undeployment time (U-D) and reloading time (U-R).

The time required to execute physical deployment scripts is
the biggest cost in the Deploy operation (D); the physical
redeployment time (R-D) cost is slightly greater than that.
Each redeploy operation consists of a sequence of undeploy
and deploy operations. In HAND-C, the first step of
deployment is to check whether or not the new GAR is
already deployed. Undeploy simply deletes all deployed files
and reloads the container; the time cost is decided mainly by
U-D, which naturally increases with GAR file size. Thus, we
can determine that the reloading time, equal to the difference
between the operation times (D/R/U) and the physical
deployment times (D-D/R-D/U-D), increases slowly as the

 7
GAR size changes. Initially, the biggest time cost of an
atomic operation is just less than 20 seconds, which we
believe is tolerable for most Grid applications.

Figure 5: Operation comparisons

To identity additional impact factors on deployment and
reloading costs, we enlarged the deployed service scale from
nine to 879 services. Figure 6 shows the results of this new
experiment. In this figure, the z axis expresses the time cost
for reloading the container. The results show that reloading
time increases with the number of services. In the service
scale, the reloading time of different-sized GAR files is
nearly the same when the GAR file size is less than 42 MB.
However, the time increases rapidly when the GAR file size
increases to about 100 MB. The results show nearly the same
linearity in smaller GAR files (42 KB to 42 MB), but become
bumpy when the GAR file size increases to about 100 MB.
The reason is that the JVM’s garbage collector runs in the
background randomly. When the deployed service size is big
enough, garbage collection shares the reloading time with the
HAND core. Generally, the trend should be increasing. Even
in the vertex, the reloading time is beneath 30 seconds, which
will satisfy the requirements of most Grid applications in a
static environment. Accordingly, our service-level
implementation is affected less by garbage collection, even
for the biggest GAR file. In addition, it costs less time to
finish the reload operation.

Figure 6: Scaled comparison on reload

Figure 7: Least Quadratic fitting curve for reload operation

Based on the results from Figure 6, we discard the bumpy
container-level data and then attempt to fit a curve to our two
sets of data. As described in [21], we define x as the deployed
service scale and y as the reload time cost, and assume kth
degree polynomial as:

k
k10 xaxaay +++= ... (7)

The residual is given by

∑
=

+++−=
n

0i

2k
iki10i

2 xaxaayR)]...([(8)

 By using least quadratic fitting technique, we filled in our
data, and finally achieved when k equals 2, we could get the
fittest polynomial for two levels. As formulas list below, yc is
the container-level time cost polynomial and ys is the
service-level.

997.0R372.5,13.478x 0.0106xy 22
c =++= (9)

9910R86,2353.5468x 0.0018xy 22
s .. =++= (10)

 Figure 7 denotes our fit curves. We see that service-level
reloads are less expensive than container-level reloads in all
circumstances. This result confirms our earlier analyses and
matches our conclusions in previous sections. We note that
the availability of sufficient memory for service-level
deployment is an important precondition for this result.

From formula 9 and 10, we see that if no services are
deployed, both approaches incur a reload cost of around
300ms. And in both cases, the polynomial time are all O(x2).

To enable direct comparison with other dynamic
deployment enabled containers, we repeated our experiments
on the Apache Tomcat container (version 5.0.30), as used by
Weissman et al. [2, 3] and Matthew et al. [17]. (However, we
note that we use GT4, not GT3 as used by those authors.)
Also, we increased the JVM memory to 1G by adding the
‘-Xms64m –Xmx1024m’ parameter. Figure 6 presents the
experimental results in the different service-level (10, 200,
400, and 600 services) environment. In this figure, HAND-C
is our container-level implementation, HAND-S is the
service-level implementation, and TOMCAT denotes the
Apache Tomcat hosting environment.

 8

Figure 8: Comparisons against the Tomcat container

We see in Figure 8 that both HAND-C and HAND-S use
less time to reload than does Tomcat, particularly when few
services are deployed. (The one exception is in 8(B), when
HAND-C is slightly slower than Tomcat for the largest file.)
This effect is particularly evident in the case of our
service-level implementation (Tomcat is a container-level
implementation), but is also evident in the case of the
container-level implementation, presumably because Tomcat
typically deactivates or activates more components, including
Apache Axis itself, cluster components, Jasper, and the like.
The HAND core, however, mainly involves only Apache
Axis and just reloads the ClassLoader and updates the JNDI
tree appropriately. In 8-D, Tomcat issues an ‘out of memory’
exception for the largest GAR file, which is particularly
concerning our desire for container stability.

As shown above, if support for massive dynamic
deployment-enabled applications is needed, one should use
the HAND container instead of Tomcat to guarantee
capability, usability, and reliability.

4.2 Capability and Availability in Dynamic Environment
Our next experiments were designed to study interactions

between service deployment operations and other requests to
a container. We designed these experiments as follows:
1) We first dynamically deployed eight cloned services that

take, respectively, 0, 30, 60, 90, 120, 180, 240, and 330
seconds to process a user request.

2) We then started four client threads, each of which issued
a series of 1,000 invocations, each to one of the eight
services started in #1. These threads also logged both
failed and successful invocations.

3) We also started a thread that issued a series of 100
deploy requests at random intervals during the period of
Step 2. Each such request deployed, redeployed, and
undeployed one of a second set of 10 cloned services.

We ran experiments on both HAND-C and HAND-S, and
used four parallel threads to do our experiments, which is the
high water mark of the GT4 Java core container (i.e., the

medium overhead of GT container). We configured the GT4
container with 35 deployed services, which means (based on
the results of Section 4.1) that HAND-C should incur a
reloading cost of 875ms and HAND-S a cost of 362ms.
Finally, we note that al deployed services are unrelated in
logic: i.e., services in different GARs do not invoke the
others’ ClassLoaders.

Figure 9 shows that the deployment time increases rapidly
with service serving time for HAND-C, due to the need to
wait for the completion of service invocations that are already
in progress. When service serving time is long enough (the
cross mark in the figure), namely, greater than the reloading
timed-out limitation (default 5 minutes in HAND-C), the
deployment operation is canceled, due to the client timeout of
10 minutes. In contrast, while HAND-S deployment time is
initially slightly higher than for HAND-C, it then stays fairly
constant as service serving time increases.

Figure 10 shows that HAND-S also achieves consistently
high success rates. This result is as expected, given that the
reload of one service does not effect other services in the
same container. In contrast, the HAND-C success rate is low
and unpredictable. When the service serving time grows
above the reload timed-out limitation, most client invocations
are canceled because of client timeout.

Figure 9: Deployment time in a dynamic environment

Figure 10: Success rate in a dynamic environment

 9
In Table 3, we show the average deployment time for both

HAND-S and HAND-C across these experiments. Our results
indicate that the capability of dynamic deployment at the
container level is unpredictable in a complicated dynamic
Grid environment. The cost stems from promising the success
rate of the requests before dynamic deployment and
preventing deadlock during container restart. Moreover, the
success rate of normal service requests also decreases when
deployment is triggered. This level is suitable for clients that
incorporate some fault tolerance logic.

TABLE 3 COMPARISON OF EXPERIMENTAL RESULTS

 HAND-S HAND-C
Average Deployment Time, ms 6849.57 85487.94
Average Success Rate, % 99.25 31.13

We conclude that service-level deployment is more capable

and more available than container-level deployment for
dynamic and complicated Grid environments.

4.3 GAR File Transfer Performance
Our third set of experiments focused on the performance of

the DAM file transfer function. We evaluate the performance
of three transfer protocols in LAN and WAN environments.
The test packages used the five GAR files, which were
invoked 20 times each.

Figures 11 and 12 show that in both the LAN and WAN,
the SOAP attachment in DIME format approach costs more
than HTTP or FTP. When the GAR file size is near to or less
than 10 MB, the SOAP attachment is convenient for users to
transfer the target files directly from the client. For larger
files, it is advisable to choose GridFTP, FTP, or HTTP.
Especially in a WAN environment, transferring big GAR files
by SOAP attachment will cost more time and more server
memory, and may even cause the server to run out of
memory. Compared with HTTP, FTP may provide better
access control and flow control. For secure and reliable
transfers, the GT4 GridFTP [15] and Reliable File Transfer
(RFT) service [16] are recommended, although we note that’s
GridFTP use of public key authentication imposes a startup
overhead relative to traditional FTP.

Figure 11: Transfer time comparison, in LAN

Figure 12: Transfer time comparison, in WAN

5. RELATED WORK
Dynamic service deployment functionality has been

explored and developed in many different contexts, including
J2EE [18, 19] and Web Services [20].

Rauch et al. [6] implemented partition cloning and partition
repositories as well as a set of OS-independent tools for
software maintenance using entire partitions, thus providing a
clean abstraction of operating system configuration states.
However, this approach is not suitable for service-oriented
architectures. Moreover, the deployment of an entire OS
image is expensive, and the deployment itself will seriously
impact system availability. Chase et al. explore related ideas
in their Cluster on Demand project [22].

Keahey et al. [4, 5] use virtual machine technology (e.g.,
Xen, VMware) to build virtual working environments and to
provide for the dynamic management of the Grid job life
cycle. Their use of virtual machines rather than JVMs to host
user computations leads to somewhat different solutions from
our service-oriented approach.

ROST [7], deployed in the CROWN Grid, focuses on
dynamic and remote deployment for WSRF core with secure
access. The developers evaluated remote deployment in the
load balancing of local clusters. However, they did not
discuss in detail the capability and availability of deployment.

Weissman et al. present an architecture and
implementation for a dynamic Grid service architecture based
on Tomcat that extends GT3 to support dynamic service
hosting (hosting and rehosting a service within the Grid in
response to service demand and resource fluctuation) [2, 3].
Their implementation allows new services to be added or
replaced without taking down a site for reconfiguration and
allows a VO to respond effectively to dynamic resource
availability and demand. But the implementation is based
completely on Tomcat’s container-level deployment
capability, which suffers from poor performance.

These and a few other projects [14, 17] are the main
dynamic deployment efforts for Grid applications. Some of
them clearly are not intended for a WSRF-enabled
service-oriented architecture. Moreover, although some have
implemented service-oriented dynamic deployment, they do
not address in detail the cost, namely, the capability brought

 10
from dynamic deployment itself and the availability in
dynamic Grid environments.

6. CONCLUSION AND FUTURE WORK
We have described HAND, a highly available dynamic

deployment infrastructure for use in the Globus Toolkit Java
Web Services container. HAND addresses dynamic service
deployment at both the container level and the service level,
and thus supports different granularities with different session
lock characteristics, applicable for different Grid applications
and scenarios. HAND can be adapted to dynamic conditions
and changing user requirements. Three factors that affect
HAND performance are the size of the predeployed GAR
files, the number of services deployed in the container, and
the runtime invocations and service serving time during
deployment. Experiments show that HAND provides good
capability, extendibility, and availability.

We plan to complete a robust implementation of our
prototype service-level deployment. We would like to design
a mechanism to handle the dependency conflicts among
deployed services. Using HAND to enhance Grid software
provisioning is a major challenge in the Grid community. We
will focus on integrating HAND with the GT information
system and workflow, in order to build a real self-configuring,
self-curing, and self-propagating Grid system.

ACKNOWLEDGEMENTS
The work of IF and JG was supported in part by the

Mathematical, Information, and Computational Sciences
Division subprogram of the Office of Advanced Scientific
Computing Research, Office of Science, U.S. Department
of Energy, under contract W-31-109-Eng-38, and by the
NSF NMI program.

REFERENCES
[1] H. Jin. “ChinaGrid: Making Grid Computing a Reality,” Proceedings

of ICADL’04, Lecture Notes in Computer Science, (2004), 3334, 13-24.
[2] J. Weissman, S. Kim, and D. England. “Supporting the Dynamic Grid

Service Lifecycle,” CCGrid04, 2004.
[3] J. Weissman, S. Kim, and D. England. “A Framework for Dynamic

Service Adaptation in the Grid: Next Generation Software Program
Progress Report,” 19th IEEE International Parallel and Distributed
Processing Symposium (IPDPS'05), 2005.

[4] K. Keahey, I. Foster, T. Freeman, X. Zhang, and D. Galron. “Virtual
Workspaces in the Grid,” Europar 2005, Lisbon, Portugal, September,
2005.

[5] K. Keahey, I. Foster, T. Freeman, and X. Zhang, “Virtual Workspaces:
Achieving Quality of Service and Quality of Life in the Grid,”
Scientific Programming. 2006.

[6] F. Rauch, C. Kurmann, and T. M. Stricker, “Partition Repositories for
Partition Cloning – OS Independent Software Maintenance in Large
Clusters of PCs,” IEEE International Conference on Cluster
Computing, 2000, 233-242.

[7] H. Sun, Y. Zhu, C. Hu et al. “Early Experience of Remote and Hot
Service Deployment with Trustworthiness in CROWN Grid,” APPT
2005: 301-312

[8] I. Foster, C. Kesselman, S. Tuecke, “The Anatomy of the Grid:
Enabling Scalable Virtual Organizations,” International J.
Supercomputer Applications, 15(3), 2001.

[9] Y. Wu, S. Wu, H. Yu et al. “CGSP: An Extensible and Reconfigurable
Grid Framework,” APPT 2005, pp.292 – 300

[10] M. Humphrey, G. Wasson, J. Gawor, et al., “State and Events for Web

Services: A Comparison of Five WS-Resource Framework and
WS-Notification Implementations,” 14th International Symposium on
High Performance Distributed Computing (HPDC14), 2005.

[11] Global Grid Forum. “Open Grid Service Architecture, Version 1.0.”
http://www.gridforum.org/documents/GWD-I-E/GFD-I.030.pdf

[12] I. Foster, “Globus Toolkit Version 4: Software for Service-Oriented
Systems,” IFIP International Conference on Network and Parallel
Computing, 2005, Springer-Verlag LNCS 3779, 2-13.

[13] Apache Axis Group. Developer Guides.
http://ws.apache.org/axis/java/developers-guide.html

[14] P. Watson and C. Fowler, “An Architecture for the Dynamic
Deployment of Web Services on a Grid or the Internet,” Technical
Report Series, CS-TR-890, University of Newcastle upon Tyne

[15] W. Allcock, J. Bresnahan, R. Kettimuthu, M. Link, C. Dumitrescu, I.
Raicu, and I. Foster, “The Globus Striped GridFTP Framework and
Server,” SC'2005, 2005.

[16] W. Allcock, I. Foster, and R. Madduri, “Reliable Data Transport: A
Critical Service for the Grid,” Building Service-Based Grids Workshop,
2004, Global Grid Forum 11.

[17] M. Smith, T. Friese, and B. Freisleben. “Towards a Service-Oriented
Ad Hoc Grid,” 3rd International Symposium on Parallel and
Distributed Computing/Third International Workshop on Algorithms,
Models and Tools for Parallel Computing on Heterogeneous Networks
(ISPDC/HeteroPar'04), 2004, pp.201-208.

[18] F. Reverbel, B. Burke, and M. Fleury. "Dynamic Deployment of
IIOP-Enabled Components in the JBoss Server," Component
Deployment: Second International Working Conference, CD 2004,
Edinburgh, UK, May 20-21, 2004. pp. 65 - 80.

[19] N. Sridhar, J. O. Hallstrom, and P. A. Sivilotti. “Container-based
component deployment: A Case Study,” Technical Report
OSU-CISRC-2/04-TR08, Computer Science and Engineering, The
Ohio State University, Columbus, OH, February 2004.

[20] B. Benatallah, M. Dumas, Q. Z. Sheng, and A. H.H. Ngu. "Declarative
Composition and Peer-to-Peer Provisioning of Dynamic Web
Services,". In 18th Int. Conference on Data Engineering (ICDE), pages
297–308, San Jose, CA, February 2002. IEEE Computer Society.

[21] Eric W. Weisstein. "Least Squares Fitting--Polynomial." From
MathWorld--A Wolfram Web Resource.
http://mathworld.wolfram.com/LeastSquaresFittingPolynomial.html

[22] Chase, J., Grit, L., Irwin, D., Moore, J. and Sprenkle, S. “Dynamic
Virtual Clusters in a Grid Site Manager”. In 12th International
Symposium on High Performance Distributed Computing (HPDC-12).
2003.

