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Abstract—Grid computing is becoming more and more attractive 
for coordinating large-scale heterogeneous resource sharing and 
problem solving. Of particular interest for effective Grid computing 
is a software provisioning mechanism. We propose a highly 
available dynamic deployment infrastructure, HAND, based on the 
Java Web Services Core of Globus Toolkit 4. HAND provides 
capability, availability, and extensibility for dynamic deployment of 
Java Web Services in dynamic Grid environments. We identify the 
factors that can impact dynamic deployment in static and dynamic 
environments. We also present the design, analysis, implementation, 
and evaluation two different approaches to dynamic deployment 
(service level and container level). And examine the performance of 
alternative data transfer protocol for service implementations. Our 
results demonstrate that HAND can deliver significantly improved 
availability and performance relative to other approaches. 

1. INTRODUCTION 
A Grid is an Internet-connected computing environment in 

which computing and data resources are geographically 
distributed in different administrative domains, often with 
separate policies for security and resource use. With the 
introduction of OGSA [11], the focus of Grid computing 
moved from legacy computing-intensive applications to 
service-oriented computing based on open standards. Globus 
Toolkit (GT) development has tracked this trend, with GT4 
[10, 12] building on the Web Service Resource Framework 
(WSRF) specifications to provide an efficient, extensible, 
stateful, and flexible Grid middleware.  

Experience within ChinaGrid [1, 9] and elsewhere [2, 17] 
has emphasized the importance of dynamic service 
deployment and management as an enabler of dynamically 
extensible virtual organizations (VOs) [8]. More specifically, 
we identify the following requirements when services are 
hosted on a dynamic management-enabled Grid: 
• Services must adapt at run time to changes of scale in 

VOs and to changes in the number of users.  
• It must be easy to reconfigure, redeploy, and undeploy 

services, without shutting down the whole system. 
• Grid software provisioning must take into account 

dynamic and unpredictable service demand from VO 
members. 

• The availability of target management units for service 
requests should be maximized. 

• Dynamic features should result in minimal 
development and management costs; that is, users 

must not be required to implement numerous 
interfaces or rules for dynamic deployment features. 

Dynamic deployment is a big challenge: frequent shutting 
down and starting up of services for software upgrades or 
changes in resources or users can increase management costs. 
Some dynamic deployment solutions have been proposed 
based on Apache Tomcat’s dynamic deployment 
functionality [2, 3, 14]. However, that infrastructure provides 
poor performance and availability, with the consequence that 
(for example) dynamic deployment during a workflow’s 
execution can cause a critical task to fail. In another scenario, 
if a deployment operation is delayed or canceled because the 
target container is unavailable, the dependent task would also 
be delayed or canceled.  

Before discussing the design and implementation of our 
dynamic deployment infrastructure, we introduce some basic 
concepts: 
• Containers in a Web Services-based system such as 

GT4 host services and execute user requests issued by 
clients that invoke operations defined by those 
services. 

• The term dynamic deployment denotes the ability for 
remote clients to request the upload and deployment of 
new services into, or the undeployment of existing 
services from, existing containers. 

• Issues of correctness and performance are of 
particular importance when service requests and 
deployment requests occur concurrently.   

We define availability in a dynamic deployment 
infrastructure as the proportion of time a system is in a 
functioning condition. The meaning of “functioning” is 
different for two types of clients. 
• End users of services deployed in the container care 

about the success rate of their requests and the 
response time of those requests. Key issues for these 
users are the extent to which a container becomes 
inaccessible during dynamic deployment, and any 
overhead imposed on ordinary requests by the 
dynamic service infrastructure (e.g., due to locking). 

• Users who deploy services, typically administrators, 
care about both the success rate and average time cost 
of the dynamic deployment requests themselves. 

Based on these considerations, we adopt as metrics the 
success rate of user requests, the average time cost for 
deployment requests, and the deployment availability. 
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To implement highly available and capable dynamic 

deployment functionality, we propose HAND (Highly 
Available dyNamic Deployment). The design of HAND is 
intended to meet six criteria:  

1. A container that receives a dynamic deployment 
requests should complete existing user requests if 
possible, while ensuring that the dynamic deployment 
request is accepted as scheduled. 

2. User requests received during execution of a dynamic 
deployment procedure should be handled correctly if 
possible. 

3. When a dynamic deployment procedure is finished, 
user requests for newly installed services should be 
handled correctly.  

4. The deployment procedure should be decomposed into 
smaller steps to reduce the risk of deadlock. Generally, 
deadlocks in the dynamic deployment procedure arise 
when threads use common runtime resources (e.g., the 
common ClassLoaders) concurrently. Simplifying and 
decomposing the deployment steps into smaller 
substeps can reduce the time that the deployment 
threads and ordinary threads occupy shared resources. 

5. Multiple redundancy approaches should be provided to 
both remote and local users in order to reduce 
unavailability. If one approach proves to be 
unavailable, a user or container can adopt other 
approaches as backup to finish the deployment. 

6. The performance of the deployment procedure should 
be optimized to decrease the possibility of conflict 
between ordinary and deployment requests. In short, 
the overhead caused by the dynamic deployment 
infrastructure should be as small as possible to the 
ordinary requests. 

In the following, we explore how our performance metrics 
can be maximized and these criteria met via two different 
approaches to dynamic deployment:  
• Service-level deployment (HAND-S), in which we 

deactivate one or more existing services, install new 
services, and re-activate those services—without 
reloading the whole container. 

• Container-level deployment (HAND-C), in which the 
installation of any new service involves reloading 
(reinitializing and reconfiguring) the whole container. 

We shall describe implementation techniques for both 
approaches and present experimental results that demonstrate 
that when HAND works concurrently in a dynamic network 
environment, it can deliver capability and availability that are 
acceptable and that meet the criteria described above. 

The rest of this article is as follows. In Section 2 we 
describe the HAND architecture and implementation. In 
Section 3 we show how users can utilize the different 
deployment levels and approaches to improve the availability 
and capability of dynamic deployment. In Section 4 we 
present our evaluation of the implementation. In Section 5 we 
discuss related work. In Section 6 we conclude with a brief 
discussion of future research. 

2. HAND DESIGN AND IMPLEMENTATION  
Provisioning is an important feature in cluster computing 

and has been included in the OGSA specification [11]. 
However, the GT3 and GT4 releases of the Globus Toolkit 
Java Web Service Core have not addressed dynamic service 
deployment. 

Weissman et al. [2] have implemented dynamic 
deployment in GT by building on the dynamic 
deployment-enabled Apache Tomcat server as the hosting 
environment. With this approach, users package their services 
with the basic Java WS Core libraries as a WAR file and 
deploy it into Tomcat as a Web application. With the help of 
Tomcat Manager the user can redeploy this application 
dynamically without restarting Tomcat or interfering with 
other Web applications.  

An alternative approach (adopted here) is to refactor the 
kernel structure of the Java WS Core standalone container. 
This approach is more complicated as it requires low-level 
changes to the container. However, we gain the benefit of a 
more lightweight dynamic deployment implementation and 
simpler management. With this approach, we can use the 
Grid archive (GAR) format for services and reuse GT’s 
existing deployment mechanism. The result, as we shall show, 
is a highly available dynamic deployment infrastructure. 

Weighing these advantages and disadvantages, we 
designed and implemented HAND in three parts, as 
illustrated in Figure 1. The shaded components—Service 
Package Manager, Auto Deployer, and Local Directory—are 
optional; they are provided to support future advanced 
provisioning features.  

 
Figure 1 Dynamic deployment modules 

2.1 Dynamic Deployer Core 
The Dynamic Deployer Core (DDC) is the kernel part to 

realize the dynamic deployment in HAND and meet the 
criteria described in Section 1. The challenge in the DDC is 
to resolve two factors: 

1. The deactivation and activation of the services and 
container. 
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2. The update of the runtime context in JVM, especially 

in case of dynamic and multiple ClassLoaders. 
To address time cost and safety issues, we use two 

ClassLoaders to isolate manageable services from system 
services. The common ClassLoader is responsible for the 
basic libraries used to run the container such as the XML 
parser, the SOAP engine, logging, and security; this 
ClassLoader is not reloadable. The service ClassLoader is 
responsible for loading service libraries and is fully 
reloadable.  

As shown in Figure 1, DDC is comprised of seven parts. 
The GAR Deployer is in charge of invoking the actual 
deployment actions. In the HAND, a reloading action can be 
safely executed once all services are shut down but before a 
new service ClassLoader is obtained. The Undeployer, 
Reloader, and Deployer are reloading actions that can be 
passed from the Deploy Approach Manager to the GAR 
Deployer. Reloading action can update the service libraries, 
configuration files, and so forth. The Validater is responsible 
for checking the correctness of the GAR file that is being 
deployed. It prevents DCC from deploying invalid or 
malformed GAR files. The Logging module is used to record 
a detailed log of the execution of the reloading actions. 
Finally, the Restorer is a simple backup mechanism. In case 
of an error it can help the container to restore to its previous 
working state. 

2.2 Deploy Approach Manager 
The Deploy Approach Manager (DAM) takes as input a 

GAR file in Java archive format. This file consists of a Web 
Service deployment descriptor (WSDD), WSRF resource 
descriptor files, and application implementations and stubs. 
The GAR file might contain zero or more services. 

DAM addresses our desire for redundant approaches 
(Criteria 5) by extending GT4 to provide three approaches to 
service deployment.  

The Auto Deployer is an experimental component that 
allows users to deploy and undeploy a target GAR file into a 
container by copying it into a specific directory on the local 
file system. This feature is convenient for local 
administrators. 

The Ant Scripts are intended for the offline approach of 
deploying and undeploying the GARs. This approach works 
only when the container is off. This restriction is necessary in 
order to prevent conflicts that could arise when deploying 
into a running container. 

The Remote Deployer is a standard WSRF service 
deployed in DDC. Named DeployService, this service 
supports five operations: upload, download, deploy, 
undeploy, and reload. The first two operations provide two 
different approaches to transferring a GAR file that is to be 
deployed to the container: 

1. Via SOAP with attachments using the upload() 
function. The GAR file is attached to the request. 

2. Via the download() function. The request specifies a 
URL (HTTP/S, GridFTP/FTP, etc.) for the GAR file, 
and the DeployService uses globus-url-copy to copy 
the GAR file from that URL location to the local file 
system. 

Once a GAR file is transferred, the DeployService returns 
an identifier for the GAR. The GAR file can then be deployed 
by calling the deploy() function with that identifier. Once a 
GAR file is deployed, the DeployService deletes the file 
automatically.  

A deployed service can be undeployed via the undeploy() 
operation. In addition, a client can reload the entire container 
by invoking the reload() operation, which restarts the 
container without executing any deployment actions. This 
operation is useful when a service or container configuration 
has changed. 

The DeployService publishes two resource properties: 
1. Undeployable: a list of GAR identifiers that can be 

undeployed.  
2. Deployable: a list of GAR identifiers that have been 

transferred to the service but not yet deployed.  
GSI authentication and authorization are used to ensure 

that only authorized clients can invoke the DeployService 
operations. 

2.3 Service Package Manager 
The optional Service Package Manager (SPM) provides 

higher-level management features. In particular, the Package 
Lifecycle and Package Registry Table maintain information 
necessary for the service-level implementation. Since each 
GAR file may contain several services, service-level 
management cannot be based on a simple GAR file 
management system. In our service-level implementation, 
SPM communicates with DDC to manage the target services 
dynamically. The SPM also includes three 
components—Version Control, Customized Deployment, and 
Validating Checker—that complete the complicated 
service-level Grid software version control and online 
upgrades in different VOs. 
• Version Control is responsible for the version 

management of different services. It also provides 
metadata about cross-dependencies for the container 
system. It avoids upgrades of different applications’ 
JARs. 

• Customized Deployment permits remote users to 
submit their own deployment scripts; for example a 
user can deploy an RPM package to a target system. 

• The Validating Checker is similar to the DDC 
Validater. A minor difference is that it focuses on 
more complicated dependencies and conflict checking 
among different services before deployment. 

3. SERVICE-LEVEL VERSUS CONTAINER-LEVEL  
We define two approaches which is also the effort to meet 

Criteria-5 to dynamic deployment: 
• In container-level deployment (HAND-C) the entire 

container is reloaded; that is, all services in the 
container are deactivated and re-activated. 

• In service-level deployment (HAND-S) a single 
service that is being deployed or undeployed is 
deactivated and re-activated. All other services are 
unaffected.  
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We have implemented both approaches within GT4. The 

container-level implementation is complete and has been 
merged into the GT code repository 1 . The service-level 
implementation is a prototype, suitable for performance 
studies but not yet for production use.  

Both approaches are important and useful in different 
scenarios, as we now discuss. Container-level deployment 
works well when a global upgrade or configuration is needed, 
while service-level deployment is more flexible and available 
in dynamic environments. 

3.1  HAND-C: Container-Level Deployment 
Container-level deployment proceeds as follows to reload a 

service implementation: 
1. Put the container in “reloading mode.” The container 

will then return “service unavailable” error to any 
request that the container receives during the 
deployment. This step blocks until all currently 
executing requests finish or until a specified timeout 
expires (whichever occurs first). 

2. Stop and deactivate all services, resource homes, and 
so forth. 

3. Perform cleanup operations to flush caches that might 
contain references to the resources and classes loaded 
by the original deployment. 

4. Execute the deployment or undeployment scripts. 
5. Reload the whole container. Configuration descriptor 

files, etc. are re-read, and all services, resource homes, 
etc., are re-activated.  

6. Return the container to the normal operating mode, 
and start accepting new requests. 

This algorithm—in particular,the use of timeouts in Step 
1—seeks to balance the demands of Criteria 1 above with 
container stability. Steps 2 and 3 are executed to address 
Criteria 3. We note that this algorithm does not address 
Criteria 2: all user requests to a container are refused during 
any dynamic deployment operation on that container. 

The timeline in Figure 2 depicts a typical deployment 
operation. In this figure, “Service Session” denotes an 
execution of an ordinary request and “Deploy Session” the 
execution of a deployment request. Moving from the top 
down, we see first a request that is interrupted due to the Step 
1 timeout; then three requests that complete successfully 
against the old service version; then the deployment request; 
then three requests that are refused because deployment is in 
progress; and finally two requests that execute successfully 
against the new version of the service. 

This approach is similar to that used in the Tomcat 
container. It has the following advantages: 
• It avoids deadlock for it does not care about the 

dependencies among the services deployed in 
container. It just reloads the whole container. 

• It works well when we need to reload the whole 
service container, including the global configuration, 
service handlers, and providers. In case of a global 

                                                        
1 The stable implementation can be checked out from 
:pserver:anonymous@cvs.globus.org:/home/globdev/CVS/glo
bus-packages with module name ‘wsrf’. 

installation and configuration issued or service-level 
reload operation failed, the container-level reload is 
significant to promise the container keeping stable. 

• It minimizes memory and time costs in management, 
since all services share the same runtime context, i.e. 
the common service ClassLoader, unified deactivating 
and activating procedures, and GAR management. 

 
Figure 2: Container-level deployment available sequence 

On the other hand, container-level deployment has 
disadvantages: 
• (Re)deployment of any service results in the loss of 

nonpersistent state associated with all services. While 
arguably no service implementation should make any 
assumptions concerning the availability of 
nonpersistent state, in practice people often write 
services with such assumptions in mind. Thus, 
dynamic deployment can result in unpredictable 
behaviors for clients. 

• Deployment time is unpredictable when several 
parallel threads are involved (see Section 4.3). 

3.2  HAND-S: Service-Level Deployment 
Service-level deployment requires complete service 

isolation (including the service JAR files), a hierarchical 
ClassLoader tree (a separate ClassLoader for a set of services 
associated with a GAR file), and an SPM to manage the 
separate services. This approach allows us to address Criteria 
2 of Section 1: the reduction in reloading granularity means 
that the deployment procedure need not impact requests to 
other services unrelated to those that are being deployed. Our 
service-level deployment logic meets these requirements as 
follows: 

1. Check the requested target service name. If it matches 
the DeployingService, then switch the ClassLoader to 
system level, or use the normal services’ own 
ClassLoader registered in the SPM. If requests are 
being processed that involve the services that are to be 
deployed, then suspend deployment until those 
requests complete or a timeout occurs. 

2. Stop the services that are to be deployed if they are 
already running. During this period, the container will 
return “service unavailable” to any request to the 
services in the GAR file.  
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3. Stop any services on which the pre-deployed services 

depend, and deactivate any related resources. 
Typically, these services are named in the 
pre-deployed GAR file. 

4. Perform cleanup operations to flush caches that might 
contain references to the classes loaded by the original 
deployment (just for redeploy). 

5. Execute the deployment or undeployment scripts. 
6. Create or update the working space context for the 

new services, and then register to the SPM registry. 
7. Initialize, activate, and start the new services. 
The main difference between this approach and the 

container-level approach is that the reloading unit here is the 
service rather than the container as in HAND-C. Figure 3 
shows what happens when requests arrive during dynamic 
deployment in HAND-S. Requests 1, 2, 3, 4, 6, and 8 are to 
services other than the services being deployed, and can thus 
proceed without interruption. Only the 7th and 10th requests 
are to a service that is being deployed, and thus these two 
requests fail and succeed, respectively, as they occur during 
and after deployment.  

Service-level deployment has the following advantages 
relative to container-level deployment: 
• The time required to reload a service is more 

predictable as it depends primarily on characteristics 
of that service, not other components deployed in the 
same container.  

• Because there is no need to wait for and deactivate all 
services in the container, service-level deployment is 
much faster in most cases. 

 
Figure 3: Service-level deployment available sequence 

Service-level deployment also has limitations: 
• There is a need for additional internal synchronization 

in the container, which can be costly. The container 
should switch among different ClassLoaders to match 
the various service requests, and must also maintain 
consistency with persistent storages (a XML file in our 
implementation), JNDI resources, and Caches existing 
in service instances. Furthermore, HAND-S cannot 
handle circular dependencies among services well. 
(The dependency of service composition is another 
critical challenge in Grid which will be discussed in 
our future papers.) 

• The need for a more detailed registry results in 
increased memory usage and execution time costs.  

• If the registry structure is destroyed or the global 
configuration is updated, we must use container-level 
deployment to reinitialize the whole container. 

3.3  Time Cost Analysis 
We now discuss the costs associated with the two 

deployment approaches. We use the symbols in Table 1. 

TABLE 1 SYMBOLS USED IN THIS PAPER 

Notation Definition 

totalt  Total time required to deploy a target GAR file. 

transfert  Time required to transfer the GAR file. 

pendingt
 

Time required to wait for the container to become available. 

deployt
 

Deployment time for script processing during deployment. 

reloadt  Time required to restart container or services. 

limitt  Reload timeout limitation for a running service. 

systemt
 

System cost to reload the container itself. 

it  Time to stop and deactivate target service i. 

it′  Time to activate and start target service i. 

is  Execution time left for unfinished request i. 

R  Running services that are requested during dynamic 
deployment and are being processed on the container. 

D  Deployed services on the target container; these are the 
aggregate of all the services deployed on the target container, 
whether activated or deactivated. 

D′  Services that are prepared to be deployed. 

To meet Criteria 4, as shown in Figure 4, the deployment 
procedure in HAND consists of several phases: deployment 
preparation, physical deployment, and system reloading. The 
dashed “Pending” box indicates that it depends on the 
concrete approach (HAND-S or HAND-C) chosen to issue 
the reloading. 

 
Figure 4: Three-phase deployment procudure 

The total dynamic deployment time consists of four parts:  

total transfer pending deploy reloadt t +t t t= + +   (1) 

The tdeploy and ttransfer components are determined by the 
deployment methods used in the preparation phase and the 
complexity of the ANT scripts that implement deployment 
actions, both of which are independent of the deployment 
procedure. 
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For HAND-C, tpending and treload are as follows. 

)Rt,)s(maxmin(t limitiRpending ×=   (2) 

Dn,t)t(tt system

n

1i
iireload =+′+= ∑

=   (3) 

Based on the discussion in Section 3.2, we conclude that 
the pending time is mainly spent waiting for completion of 
existing requests. Hence, the total time is the minimum of the 
maximum remaining time of the currently executing requests 
and the time required to interrupt for all running threads. The 
reloading time is equal to the system reloading time plus the 
deactivation and activation time for all deployed services. 

For HAND-S, the pending time is the time spent waiting 
for completion of existing requests for the target service and 
any related services. (However, we note that the problem of 
service dependency is complicated; we will investigate it and 
discuss it in future papers.) Here, we assume that related 
services D’ are just the services defined in the GAR’s Web 
Service Deployment Descriptor (WSDD) file. The reloading 
time shrinks to the sum of the deactivating time and 
activating time of the related services. 

))(maxmin( RDt,st limitiRDpending I
I

′×=
′

 (4) 

∑∑
′′

′+=
D

i
RD

ireload ttt
I      (5) 

We define ttotal(HAND-S) and ttotal(HAND-C) as the time 
cost for two approaches, and we assume that both approaches 
use the same deploying method and the same GAR file. The 
relationship between running services, predeployed services, 
and deployed services is 

DRRD ⊆⊆′I       (6) 

If the processing requests finished at the same time, then 
tpending(service) ≤ tpending(container). Similarly, we can achieve 
treload(service) ≤ treload(container).. Hence, it is not too difficult 
to conclude that ttotal(service) ≤ ttotal(container) in a dynamic 
invocation environment. 

4. EVALUATION 
A comprehensive evaluation of dynamic deployment is 

challenging because of the difficulty of capturing the 
complexities of a realistic Grid environment. Thus, we focus 
on micro-benchmarks designed to capture specific aspects of 
dynamic deployment behavior, namely, deployment time, 
capability and availability, and file transfer performance.  

4.1  Dynamic Deployment Experiments 
As discussed in Section 3, the service container becomes 

unavailable during dynamic deployment. Thus, we first 
measured deployment time as a function of both the size of 
the file being deployed and the number of services in the 
container. 

The experimental setup was as follows. We installed and 
tested the HAND containers at two sites: a local site with 
three PC servers, powered by Pentium 4 2.4 GHz with 2 GB 

RAM and 37 GB hard disk in a cluster; and a remote site 
equipped with one PC server, powered by Pentium III 1 GHz 
with 1024 MB RAM. The two sites were connected by a 2.5 
G fabric WAN shared with other CERNET applications. The 
local cluster was connected with 100 Mb Ethernet. All tests 
ran on Fedora 3 with Linux kernel 2.6.9-1.667. The Java 
version was J2SDK 1.4.2_08-b03, and we used –Xms64m 
and –Xmx1024m parameters to enlarge the maximum JVM 
memory. 

We constructed a set of Grid Archive (GAR) files for use 
in our experiments, as summarized in Table 2. The first five 
files ranged in sizes from 42 KB to 100 MB, a range typically 
encountered in Grid applications. We also constructed a large 
number of identical services, testService_clone0 to 
testService_cloneN, for evaluating the impact of the number 
of deployed services on performance. The Jar Scale column 
in Table 2 denotes how many JAR files were in the package; 
the Compression Rate is the ratio of compressed file size to 
the original. 

TABLE 2 TEST PACAKGES USED IN OUR EXPERIMENTS 

Id Package 
 Name 

File Size 
(KB) 

Jar  
Scale 

Compression 
Rate (%) 

1 testService1.gar 42 2 63 
2 testService2.gar 1,154 4 33 
3 testService3.gar 12,909 56 90 
4 testService4.gar 42,236 61 75 
5 testService5.gar 98,004 59 55 
6..n testService_clone

N.gar 
40 2 63 

We measured the time required to deploy each of files 1-5 
of Table 2 into a container running nine services—the basic 
service set deployed by default by GT. The only request made 
during the dynamic deployment procedure was that to 
DeployService. Each deployment was repeated 40 times. We 
present the deployment and reloading times (as discussed in 
Section 3.3); the pending time is zero in this case. 

Figure 5 gives our results. Timers in our implementation 
allow us to break down the total deployment time into the 
following categories: 
• Deploy (D), which includes the physical deployment 

time (D-D) and reloading time (D-R) as discussed in 
Section 3.3. 

• Redeploy (R), which includes the physical 
redeployment time (R-D) and reloading time (R-R). 

• Undeploy (U), which also includes the physical 
undeployment time (U-D) and reloading time (U-R). 

The time required to execute physical deployment scripts is 
the biggest cost in the Deploy operation (D); the physical 
redeployment time (R-D) cost is slightly greater than that. 
Each redeploy operation consists of a sequence of undeploy 
and deploy operations. In HAND-C, the first step of 
deployment is to check whether or not the new GAR is 
already deployed. Undeploy simply deletes all deployed files 
and reloads the container; the time cost is decided mainly by 
U-D, which naturally increases with GAR file size. Thus, we 
can determine that the reloading time, equal to the difference 
between the operation times (D/R/U) and the physical 
deployment times (D-D/R-D/U-D), increases slowly as the 
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GAR size changes. Initially, the biggest time cost of an 
atomic operation is just less than 20 seconds, which we 
believe is tolerable for most Grid applications.  

 
Figure 5: Operation comparisons 

To identity additional impact factors on deployment and 
reloading costs, we enlarged the deployed service scale from 
nine to 879 services. Figure 6 shows the results of this new 
experiment. In this figure, the z axis expresses the time cost 
for reloading the container. The results show that reloading 
time increases with the number of services. In the service 
scale, the reloading time of different-sized GAR files is 
nearly the same when the GAR file size is less than 42 MB. 
However, the time increases rapidly when the GAR file size 
increases to about 100 MB. The results show nearly the same 
linearity in smaller GAR files (42 KB to 42 MB), but become 
bumpy when the GAR file size increases to about 100 MB. 
The reason is that the JVM’s garbage collector runs in the 
background randomly. When the deployed service size is big 
enough, garbage collection shares the reloading time with the 
HAND core. Generally, the trend should be increasing. Even 
in the vertex, the reloading time is beneath 30 seconds, which 
will satisfy the requirements of most Grid applications in a 
static environment. Accordingly, our service-level 
implementation is affected less by garbage collection, even 
for the biggest GAR file. In addition, it costs less time to 
finish the reload operation. 

 
Figure 6: Scaled comparison on reload 

 

Figure 7: Least Quadratic fitting curve for reload operation 

Based on the results from Figure 6, we discard the bumpy 
container-level data and then attempt to fit a curve to our two 
sets of data. As described in [21], we define x as the deployed 
service scale and y as the reload time cost, and assume kth 
degree polynomial as: 

k
k10 xaxaay +++= ...            (7) 

The residual is given by  

∑
=

+++−=
n

0i

2k
iki10i

2 xaxaayR )]...([    (8) 

  By using least quadratic fitting technique, we filled in our 
data, and finally achieved when k equals 2, we could get the 
fittest polynomial for two levels. As formulas list below, yc is 
the container-level time cost polynomial and ys is the 
service-level. 

997.0R372.5,13.478x 0.0106xy 22
c =++=  (9) 

9910R86,2353.5468x 0.0018xy 22
s .. =++= (10) 

  Figure 7 denotes our fit curves. We see that service-level 
reloads are less expensive than container-level reloads in all 
circumstances. This result confirms our earlier analyses and 
matches our conclusions in previous sections. We note that 
the availability of sufficient memory for service-level 
deployment is an important precondition for this result. 

From formula 9 and 10, we see that if no services are 
deployed, both approaches incur a reload cost of around 
300ms. And in both cases, the polynomial time are all O(x2). 

To enable direct comparison with other dynamic 
deployment enabled containers, we repeated our experiments 
on the Apache Tomcat container (version 5.0.30), as used by 
Weissman et al. [2, 3] and Matthew et al. [17]. (However, we 
note that we use GT4, not GT3 as used by those authors.) 
Also, we increased the JVM memory to 1G by adding the 
‘-Xms64m –Xmx1024m’ parameter. Figure 6 presents the 
experimental results in the different service-level (10, 200, 
400, and 600 services) environment. In this figure, HAND-C 
is our container-level implementation, HAND-S is the 
service-level implementation, and TOMCAT denotes the 
Apache Tomcat hosting environment. 
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Figure 8: Comparisons against the Tomcat container    

We see in Figure 8 that both HAND-C and HAND-S use 
less time to reload than does Tomcat, particularly when few 
services are deployed. (The one exception is in 8(B), when 
HAND-C is slightly slower than Tomcat for the largest file.) 
This effect is particularly evident in the case of our 
service-level implementation (Tomcat is a container-level 
implementation), but is also evident in the case of the 
container-level implementation, presumably because Tomcat 
typically deactivates or activates more components, including 
Apache Axis itself, cluster components, Jasper, and the like. 
The HAND core, however, mainly involves only Apache 
Axis and just reloads the ClassLoader and updates the JNDI 
tree appropriately. In 8-D, Tomcat issues an ‘out of memory’ 
exception for the largest GAR file, which is particularly 
concerning our desire for container stability. 

As shown above, if support for massive dynamic 
deployment-enabled applications is needed, one should use 
the HAND container instead of Tomcat to guarantee 
capability, usability, and reliability. 

4.2  Capability and Availability in Dynamic Environment 
Our next experiments were designed to study interactions 

between service deployment operations and other requests to 
a container. We designed these experiments as follows: 
1) We first dynamically deployed eight cloned services that 

take, respectively, 0, 30, 60, 90, 120, 180, 240, and 330 
seconds to process a user request. 

2) We then started four client threads, each of which issued 
a series of 1,000 invocations, each to one of the eight 
services started in #1. These threads also logged both 
failed and successful invocations. 

3) We also started a thread that issued a series of 100 
deploy requests at random intervals during the period of 
Step 2. Each such request deployed, redeployed, and 
undeployed one of a second set of 10 cloned services. 

We ran experiments on both HAND-C and HAND-S, and 
used four parallel threads to do our experiments, which is the 
high water mark of the GT4 Java core container (i.e., the 

medium overhead of GT container). We configured the GT4 
container with 35 deployed services, which means (based on 
the results of Section 4.1) that HAND-C should incur a 
reloading cost of 875ms and HAND-S a cost of 362ms. 
Finally, we note that al deployed services are unrelated in 
logic: i.e., services in different GARs do not invoke the 
others’ ClassLoaders. 

Figure 9 shows that the deployment time increases rapidly 
with service serving time for HAND-C, due to the need to 
wait for the completion of service invocations that are already 
in progress. When service serving time is long enough (the 
cross mark in the figure), namely, greater than the reloading 
timed-out limitation (default 5 minutes in HAND-C), the 
deployment operation is canceled, due to the client timeout of 
10 minutes. In contrast, while HAND-S deployment time is 
initially slightly higher than for HAND-C, it then stays fairly 
constant as service serving time increases.  

Figure 10 shows that HAND-S also achieves consistently 
high success rates. This result is as expected, given that the 
reload of one service does not effect other services in the 
same container. In contrast, the HAND-C success rate is low 
and unpredictable. When the service serving time grows 
above the reload timed-out limitation, most client invocations 
are canceled because of client timeout. 

 
Figure 9: Deployment time in a dynamic environment 

 
Figure 10: Success rate in a dynamic environment 
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In Table 3, we show the average deployment time for both 

HAND-S and HAND-C across these experiments. Our results 
indicate that the capability of dynamic deployment at the 
container level is unpredictable in a complicated dynamic 
Grid environment. The cost stems from promising the success 
rate of the requests before dynamic deployment and 
preventing deadlock during container restart. Moreover, the 
success rate of normal service requests also decreases when 
deployment is triggered. This level is suitable for clients that 
incorporate some fault tolerance logic.  

TABLE 3 COMPARISON OF EXPERIMENTAL RESULTS  

 HAND-S HAND-C 
Average Deployment Time, ms 6849.57 85487.94 
Average Success Rate, % 99.25 31.13 

 
We conclude that service-level deployment is more capable 

and more available than container-level deployment for 
dynamic and complicated Grid environments. 

4.3 GAR File Transfer Performance 
Our third set of experiments focused on the performance of 

the DAM file transfer function. We evaluate the performance 
of three transfer protocols in LAN and WAN environments. 
The test packages used the five GAR files, which were 
invoked 20 times each. 

Figures 11 and 12 show that in both the LAN and WAN, 
the SOAP attachment in DIME format approach costs more 
than HTTP or FTP. When the GAR file size is near to or less 
than 10 MB, the SOAP attachment is convenient for users to 
transfer the target files directly from the client. For larger 
files, it is advisable to choose GridFTP, FTP, or HTTP. 
Especially in a WAN environment, transferring big GAR files 
by SOAP attachment will cost more time and more server 
memory, and may even cause the server to run out of 
memory. Compared with HTTP, FTP may provide better 
access control and flow control. For secure and reliable 
transfers, the GT4 GridFTP [15] and Reliable File Transfer 
(RFT) service [16] are recommended, although we note that’s 
GridFTP use of public key authentication imposes a startup 
overhead relative to traditional FTP. 

 
Figure 11: Transfer time comparison, in LAN 

 
Figure 12: Transfer time comparison, in WAN 

5. RELATED WORK 
Dynamic service deployment functionality has been 

explored and developed in many different contexts, including 
J2EE [18, 19] and Web Services [20].  

Rauch et al. [6] implemented partition cloning and partition 
repositories as well as a set of OS-independent tools for 
software maintenance using entire partitions, thus providing a 
clean abstraction of operating system configuration states. 
However, this approach is not suitable for service-oriented 
architectures. Moreover, the deployment of an entire OS 
image is expensive, and the deployment itself will seriously 
impact system availability. Chase et al. explore related ideas 
in their Cluster on Demand project [22]. 

Keahey et al. [4, 5] use virtual machine technology (e.g., 
Xen, VMware) to build virtual working environments and to 
provide for the dynamic management of the Grid job life 
cycle. Their use of virtual machines rather than JVMs to host 
user computations leads to somewhat different solutions from 
our service-oriented approach.  

ROST [7], deployed in the CROWN Grid, focuses on 
dynamic and remote deployment for WSRF core with secure 
access. The developers evaluated remote deployment in the 
load balancing of local clusters. However, they did not 
discuss in detail the capability and availability of deployment. 

Weissman et al. present an architecture and 
implementation for a dynamic Grid service architecture based 
on Tomcat that extends GT3 to support dynamic service 
hosting (hosting and rehosting a service within the Grid in 
response to service demand and resource fluctuation) [2, 3]. 
Their implementation allows new services to be added or 
replaced without taking down a site for reconfiguration and 
allows a VO to respond effectively to dynamic resource 
availability and demand. But the implementation is based 
completely on Tomcat’s container-level deployment 
capability, which suffers from poor performance.  

These and a few other projects [14, 17] are the main 
dynamic deployment efforts for Grid applications. Some of 
them clearly are not intended for a WSRF-enabled 
service-oriented architecture. Moreover, although some have 
implemented service-oriented dynamic deployment, they do 
not address in detail the cost, namely, the capability brought 
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from dynamic deployment itself and the availability in 
dynamic Grid environments. 

6. CONCLUSION AND FUTURE WORK 
We have described HAND, a highly available dynamic 

deployment infrastructure for use in the Globus Toolkit Java 
Web Services container. HAND addresses dynamic service 
deployment at both the container level and the service level, 
and thus supports different granularities with different session 
lock characteristics, applicable for different Grid applications 
and scenarios. HAND can be adapted to dynamic conditions 
and changing user requirements. Three factors that affect 
HAND performance are the size of the predeployed GAR 
files, the number of services deployed in the container, and 
the runtime invocations and service serving time during 
deployment. Experiments show that HAND provides good 
capability, extendibility, and availability. 

We plan to complete a robust implementation of our 
prototype service-level deployment. We would like to design 
a mechanism to handle the dependency conflicts among 
deployed services. Using HAND to enhance Grid software 
provisioning is a major challenge in the Grid community. We 
will focus on integrating HAND with the GT information 
system and workflow, in order to build a real self-configuring, 
self-curing, and self-propagating Grid system. 
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