
Globus Auth: A Research Identity and Access
Management Platform

Steven Tuecke, Rachana Ananthakrishnan, Kyle Chard, Mattias Lidman,
Brendan McCollam, Stephen Rosen, and Ian Foster

Computation Institute
The University of Chicago and Argonne National Laboratory, Chicago, IL 60637, USA

Abstract—Globus Auth is a foundational identity and access
management platform service designed to address unique needs
of the science and engineering community. It serves to broker
authentication and authorization interactions between end-users,
identity providers, resource servers (services), and clients (includ-
ing web, mobile, desktop, and command line applications, and
other services). Globus Auth thus makes it easy, for example, for
a researcher to authenticate with one credential, connect to a
specific remote storage resource with another identity, and share
data with colleagues based on another identity. By eliminating
friction associated with the frequent need for multiple accounts,
identities, credentials, and groups when using distributed cyber-
infrastructure, Globus Auth streamlines the creation, integration,
and use of advanced research applications and services. Globus
Auth builds upon the OAuth 2 and OpenID Connect specifications
to enable standards-compliant integration using existing client
libraries. It supports identity federation models that enable
diverse identities to be linked together, while also providing
delegated access tokens via which client services can obtain
short term delegated tokens to access other services. We describe
the design and implementation of Globus Auth, and report on
experiences integrating it with a range of research resources
and services, including the JetStream cloud, XSEDE, NCAR’s
Research Data Archive, and FaceBase.

I. INTRODUCTION

Developers of research applications and services face two
major infrastructure challenges: (1) providing secure and reli-
able identity and access management (IAM) functionality; and
(2) integrating, in a manner convenient for users, with other
services that have been developed by independent parties.
The difficulties of addressing these challenges has resulted in
a fragmented ecosystem of research services. For example,
few scientific web applications and science gateways leverage
federated identity systems such as InCommon [1]. Instead,
each service provider commonly cobbles together its own
identity management solution. The result is often applications
with limited functionality (due to the high cost and expertise
of implementing sophisticated IAM functionality), little inte-
gration (due to different IAM approaches), high development
and maintenance costs (due to each group creating their own
partial solutions), poor user experience (due to inconsistent
and incompatible IAM functionality), and even poor security
(due to buggy implementations).

Globus Auth is platform-as-a-service (PaaS) that addresses
these challenges, with the goal of streamlining the creation,
integration, and use of advanced research services [2]. In

brief, it allows research service providers to outsource iden-
tity, authentication, credential, and authorization management
functions to a cloud-hosted, professionally managed service.
In so doing, providers gain five major benefits. First, they
gain access to sophisticated IAM functionality that would be
difficult for them to implement themselves. Second, they gain
integration with other system and services, based on standards
such as OAuth 2 [3], OpenID Connect [4], SAML [5], and
X.509. Third, they reduce implementation and operation costs:
complex in-house code can be replaced with simple REST
API calls to a professionally operated service. Fourth, they
improve user experience by delivering high-quality, consis-
tently presented IAM capabilities and interfaces. And fifth,
they improve the security of their system by using IAM
functionality implemented and operated by dedicated security
professionals.

The rest of this paper is as follows. We describe the use
cases that motivate the Globus Auth design in Section II. In
Section III we present the Globus Auth model and its use of
authentication and authorization standards. In Section IV we
review how Globus Auth is implemented, deployed, and oper-
ated. In Section V we present five research services that build
upon Globus Auth. Finally, in Section VI we describe related
work before summarizing our contributions in Section VII.

II. MOTIVATING USE CASES

Globus Auth addresses important use cases that arise in
scientific settings. Specifically, it brokers authentication and
authorization interactions, enables identity linking, supports
single sign on across scientific services, and enables delegated
access to external services. We focus on the advantages that
Globus Auth brings to developers and users of scientific
services [6]—an increasingly common model for delivering
scientific capabilities to a broad community via well defined,
Internet accessible services.

Identity broker: Developers of scientific services want
to allow users to authenticate using existing identities (e.g.,
campus accounts). However, implementing such support re-
quires registering clients with a multitude of identity providers,
developing support for a number of different authentication
protocols (e.g., SAML, OAuth 2, OpenID), addressing subtle
differences that exist between implementations due to non-
prescriptive specifications, and supporting these implemen-
tations over time as changes are inevitably made. Ideally,



developers would like to leverage a reliable and secure service
that can broker different identity providers while offering a
single stable API from which these identities can be used.

Identity federation: Researchers are accustomed to requir-
ing an ever-growing number of identities to perform their daily
tasks. For example, using institution identities to access local
storage resources, Google accounts to access Google Docs,
and national cyberinfrastructure credentials to access HPC
resources. Instead, users want to be able to link their identities,
proving ownership once (or infrequently), and then being
authorized to perform actions based on this set of identities.
For example, consider a common authorization model that
uses group membership to manage access to resources. A
user should, irrespective of which identity they have used for
authentication, be able to perform the roles granted to any
identity in that set.

Single sign on: Researchers now have access to many
domain-specific and general scientific services. However, these
services typically operate in silos in which identities, groups,
data, analyses, and other state are not shared between services.
Thus, artificial barriers exist between services. Instead we
envision a global scientific ecosystem in which many different
scientific services build upon a common platform [7]. As a first
step towards this goal, methods are required that enable state
to be easily shared between services, so that users can use a
single identity across services (i.e., single sign on), and service
developers can unambiguously refer to users.

Delegated access: Scientific services are increasingly built
upon a suite of external services: i.e., as “mash ups.” For
example, a climate modeling service may outsource to external
services tasks such as managing users, groups, data storage,
and computation; the climate modeling service implementa-
tion then needs to address only domain-specific issues. This
approach has the benefit of allowing developers to deliver
advanced capabilities at a fraction of the cost of developing
them entirely from scratch. However, for such applications to
work, they must be able to make requests to external services
on behalf of users, with user information passed down so that
user authorizations can be enforced at remote services. We thus
require sophisticated authorization models via which users can
allow services to transfer to other services the authority to
access their state or to perform actions on their behalf. That
is, they require secure authorization delegation mechanisms.

III. GLOBUS AUTH

Globus Auth provides a set of features that enable identities
to be asserted from a range of identity providers, offers various
standard interfaces for integration in third-party applications
and services, and enables linking of identities to facilitate
federated login. Here, we describe the unique features of
Globus Auth.

A. General model

Globus Auth builds upon the OAuth 2 and OpenID Connect
specifications to deliver identity and access management as a
platform. The high level model is depicted in Fig. 1. Here

we outline the general Globus Auth model and describe how
it relates to the OAuth 2 and OpenID Connect specifications.
Terms defined in these specifications are denoted with italics.

A protected resource (or simply resource in this paper) is
something that can be addressed via a URL, and is accessible
to authorized clients via HTTPS methods (e.g., a REST API).

Globus Auth is an authorization server. It issues an access
token to a client after successfully authenticating the resource
owner and obtaining authorization for the client to access
resources provided by a resource server. The resource owner
is typically an end-user, who authenticates to a Globus Auth-
managed Globus account using an identity issued by one of
an extensible set of (federated) identity providers supported by
Globus Auth. The resource owner authorizes (i.e., consents)
that the client can request access to the resource server on
the resource owner’s behalf within a limited scope. The client
might be an application (e.g., web, mobile, desktop, command
line), or it may be another service, as described below.

When a client makes a request to a resource server, it
presents the access token as part of the request (in the HTTP
Authorization header), to demonstrate that it is authorized to
make the request.

Globus Auth can act as the authorization server to an
extensible set of resource servers. All Globus [8] services, such
as the Globus data management [9] and groups services [10],
are resource servers that use the Globus Auth authorization
server. Third parties can also create their own resource servers
that rely on the Globus Auth authorization server in exactly
the same way as Globus services. This broad applicability is
why we call Globus Auth a foundational service: it provides
a platform for an extensible, integrated ecosystem of resource
servers and their clients.

The OAuth 2 specification states that “[t]he interaction
between the authorization server and resource server is beyond
the scope of [the OAuth 2] specification.” Globus Auth fills
this gap by defining a REST API that allows a resource server,
upon receiving a request with an access token from a client, to
verify that the access token is valid and intended for use with
this resource server, and to query for additional information
related to that access token such as the client identity, the
scope, the resource owner’s identity, and other identities linked
to that resource owner’s identity, which the resource server
can use to make authorization decisions for the request.
Globus Auth leverages the OAuth 2.0 Token Introspection
specification (RFC 7662) [11] for this interaction.

Globus Auth also plays the role of an OAuth 2 resource
server, allowing clients to access Globus Auth-managed re-
sources, such as identities, and access tokens. For example,
clients acting on behalf of end-user resource owners, can be
clients to the Globus Auth resource server, to access and
manage the end-user’s Globus account-related information.
When a resource server receives a request from a client with
an access token, that resource server assumes the role of a
(different) client to the Globus Auth resource server, in order to
validate the access token. In this situation, the resource server
uses its own client id and client secret when making requests



Globus

Auth
(Authorization Server)

InCommon/
CILogon

MyProxy
OAuth

OpenID

OIDC

Globus

Transfer
(Resource Server)

Third-Party 
Service
(Client)

4. Access Token

2. Redirect
(Authenticate)

3. Authenticate

1. Invoke 

Fig. 1: The Globus Auth model. A user authenticates with a third-party service using one of the supported Globus Auth IDPs. Globus Auth
presents a page allowing the user to consent the third-party service to access other resources. Globus Auth presents the third-party service
a delegated access token that can be used to both authenticate the user and also access other approved services as that user.

to the Globus Auth resource server. An identity provider
can act as a client to the Globus Auth resource server to
provision and manage identities within the identity provider’s
namespace. In this situation, the identity provider uses its own
client id and client secret (established previously through a
registration process with Globus Auth) when making requests
to the Globus Auth resource server.

B. Identities

A Globus Auth identity is a unique name (e.g.,
user@example.org), issued by an identity provider (e.g.,
an institution or Google), for which a user or client can
prove possession via an authentication process (e.g., presenting
a password to the identity provider). Globus Auth manages
the use of identities (e.g., to login to clients and services),
their properties (e.g., associated contact information), and
relationships between identities (e.g., allowing login to an
identity by using another linked, “federated” identity).

Globus Auth neither defines its own identity usernames nor
verifies authentication (e.g., via passwords) with identities.
Rather, it acts as an intermediary between external identity
providers and clients and services that want to leverage iden-
tities issued by those providers.

Globus Auth assigns each identity that it encounters an
identifier (id): a universally unique identifier (UUID) that is
guaranteed to be unique among all Globus Auth identities,
and that will never be reused. This identifier is what resource
servers and clients should use as the canonical identifier for a
Globus Auth identity. Associated with each id is an identity
provider (identity_provider), a name given to the identity
by the provider, and other provider-supplied information such
as display name and contact email address (see Listing 1).

The identity username is a (somewhat) human
friendly string, such as an email address or InCommon

Listing 1: Globus Auth Identity

username: user@institution.edu
id: ab2312e23-8a34-bd230bca023120ab
identity_provider: institution.edu
display_name: User Name
email: user@institution.edu

eduPersonPrincipleName, which is guaranteed by Globus
Auth to be unique at any point in time. However, because
some identity providers (e.g., InCommon) reuse identity
usernames (typically with a hiatus between uses), a given
identity username may map to different identity ids over
time. In such cases, Globus Auth uses a unique identifier
(provider_specific_id) provided by the identity provider
(e.g., InCommon eduPersonTargetedID) to disambiguate,
and ensure that at any given time there is a one-to-one
mapping between an identity username and an identity id.

If Globus Auth encounters an identity username that
has been reused (i.e., same identity username, different
provider_specific_id), it will invalidate the old identity
and create a new Globus Auth identity uniquely associated
with that identity username. Conversely, if Globus Auth en-
counters an existing identity where the identity username has
changed for a given provider_specific_id (e.g., the user
changes their name), it will update the identity username

while retaining the same Globus identity id. Thus, at any
point in time, the relationship between identity username and
Globus Auth identity is unique, and a Globus Auth identity
id can be relied on to always refer to the same identity.



C. Identity providers
Globus Auth supports an extensible set of identity providers

that may employ a variety of identity naming and authentica-
tion approaches.

1) Registration with Globus Auth: Each identity provider
supported by Globus Auth must register with Globus Auth.
(Currently this registration is an out-of-band process, but in the
future it can be automated via the Globus Auth API.) At time
of registration, Globus Auth establishes a client id and client
secret for the identity provider, to be used to allow the identity
provider to authenticate as a client to Globus Auth. Identity
provider clients can use certain Globus Auth interfaces, such
as identity provisioning.

Each identity provider must register either a web browser
based authentication protocol (e.g., OpenID Connect, SAML),
or a non-browser based protocol (e.g., LDAP, Kerberos, SAML
ECP), or both. If an identity provider registers only a non-
browser based protocol, Globus Auth will provide a browser
based interface for this identity provider. If an identity provider
registers only a browser based protocol, some Globus Auth
OAuth 2 grant types will not be possible with this identity
provider (e.g., Resource Owner Password Credentials Grant),
limiting the use of this provider’s identities to only browser-
based applications.

2) Identity provider namespaces: Each identity provider
has one or more namespaces in which it can exclusively issue
identity usernames.

An identity provider that issues “user@provider” names is
constrained to issuing identities with one or more specific
domain names. For example, The University of Chicago’s
identity provider, is the only provider that can issue iden-
tity usernames with a provider domain of “@uchicago.edu”
(e.g., “johndoe@uchicago.edu”). Note that subdomains are
distinct namespaces from their parent domain. For example,
“@uchicago.edu” and “@ci.uchicago.edu” are distinct names-
paces, from potentially different providers.

Some identity providers use email addresses as their user-
names. For example, an identity provider restricted to issuing
identities with names of “*@provider.org” may issue an iden-
tity with the name “johndoe@uchicago.edu@provider.org,”
but not “johndoe@uchicago.edu.”

3) Identity and account provisioning: An identity provider,
acting as a client to Globus Auth, may explicitly provision its
own identities into Globus Auth through the API. The identity
must include an identity username, and may include various
other fields such as email address, display name, etc.

When a user logs into Globus Auth using an identity that is
not associated with a Globus account (i.e., it is not a primary
identity or linked identity of any account), either a Globus
account must be created with this identity as the account’s
primary identity, or this identity must be linked to an existing
account’s primary identity. For some identity providers, when
an unlinked identity authenticates to Globus Auth, an account
will automatically be created with this identity as the primary.
For other identity providers, Globus Auth will prompt the user
to create an account or link the identity with another account.

4) Supported identity providers: Globus Auth currently
supports a range of identity providers including GlobusID,
OpenID Connect and Google identity providers.

GlobusID (Globus legacy usernames): Globus previously
required that users create an explicit Globus account with
a unique Globus username and password. This is no longer
required with Globus Auth. Rather, Globus usernames are
now managed and issued by a separate service: the GlobusID
identity provider. GlobusID identities are issued under the
identity provider domain namespace of “@globusid.org.” This
identity provider has no special status with Globus Auth: it is
just another identity provider.

OpenID Connect: Globus Auth can act as a client to any
standard OpenID Connect identity provider. The Globus Auth
identity username for OpenID Connect identities will be the
sub claim from the ID token issued by that identity provider,
suffixed with DNS name of the OpenID Connect server as
the provider domain. For example, if an OpenID Connect
server running at “example.org” issues an ID token with a
sub claim of “joeuser,” the Globus Auth identity username
is “joeuser@example.org.” OpenID Connect identity providers
can optionally register to follow Google’s conventions on use
of the sub, email, and email_verified claims, which
Globus Auth uses as described below.

Google: While Google uses OpenID Connect (with some
extensions), it is handled as a special case by Globus Auth.
The Google identity provider can issue identities for any email
address, and by default, such identities will have a Globus
Auth identity username of the email address (i.e., the value of
the Google-issued OpenID Connect ID token email claim),
with a “@accounts.google.com” provider domain: for ex-
ample, “user@uchicago.edu@accounts.google.com.” Globus
Auth only accepts Google-issued identities for email addresses
that it has verified (i.e., Google-issued ID token has an
email_verified claim with the value “true”). Globus Auth
uses the value of the Google-issued ID token sub claim, as
a provider-specific unique identifier for the identity. However,
Google is also the exclusive issuer of identities for certain
domains, such as “@gmail.com” and certain app domains
registered with Globus Auth. For these pre-defined domains,
Globus Auth does not add “@accounts.google.com” to the
identity username.

Email addresses: Globus Auth treats email addresses as
a special type of identity, where the identity’s username is
the email address (without an additional provider domain),
and authentication of that username is done using the com-
mon email verification technique of sending an email to
the address containing a secret that the user must validate
via a web authentication/verification form. Note that due to
identity provider namespacing, as described above, Globus
Auth will never allow an email address identity with a
domain name issued by a registered identity provider. For
example, if the University of Chicago identity provider owns
the “@uchicago.edu” namespace, “user@uchicago.edu” must
be authenticated using the University of Chicago identity
provider, and not simply via email address verification. If a



Fig. 2: Linked Globus Auth identities.

new identity provider is registered with an exclusive provider
domain for which email address identities were previously is-
sued, then Globus Auth will automatically change the provider
of such identities to the new identity provider.

D. Linking identities

Globus Auth enables the creation of a “Globus account”
using any identity. A Globus account is not an identity, rather it
represents a set of identities that belong to the same individual.
Fig. 2 shows an example of a Globus account with several
linked identities.

A Globus account is a set of identities comprising a primary
identity and a number of other identities linked to that primary
identity. An identity can be the primary identity of at most
one Globus account. Identity linking allows for authentication
via one identity to imply login to a Globus account with a
different primary identity (i.e., federated identity login). Note
that a Globus account is not an identity itself. An account does
not have its own name. Rather, a Globus account is identified
by its primary identity. Similarly, profile information and other
metadata is tied to identities, not to accounts.

Clients and services should grant access to resources on
the basis of identities (specifically, identity ids) and their
associated attributes (e.g., group memberships, organization
affiliations), not accounts. Login to a Globus account, via its
primary identity or one of its linked identities, implies login to
the account’s primary identity and all identities linked to that
account’s primary identity. In other words, login to a Globus
account potentially grants access to all resources accessible via
all identities linked to that Globus account’s primary identity.
In future work, Globus Auth will support “level of assurance”
policies to further constrain the access(es) that are allowed by
the set of linked identities.

E. Resource server registration

A resource server must register with Globus Auth before
it can use Globus Auth as an authorization server. During
registration, Globus Auth establishes a client identifier and
client secret for the resource server. These credentials allow
the resource server to authenticate to Globus Auth in order to
obtain and validate access tokens.

A resource server, during registration, can set a number of
configurable properties such as a unique name, a restricted

set of allowable identity providers, its scopes, and scopes it
uses from other resource servers. The resource server must
register a unique resource server name, a DNS name that is
uniquely identifiable. The resource server name is used as part
of the scope URNs for its resources. Resource servers may
optionally restrict the set of permitted identity providers. In
this case, users must have an identity issued by the selected
identity providers, to access the resource server. During the
authentication process, the resource server will request a
specific effective identity associated with the access token. It
will then be given the user’s identity from this provider, even
if the user has a different primary identity.

A resource server defines a set of scopes for itself, each
corresponding to a subset of that resource server’s resources
or functionality. For example, a service could offer separate
scopes for starting, viewing, and managing tasks. Each scope
has a Globus Auth-issued URN that is unique across all scopes
on all resource servers, and is never reused. For example:

urn:globus:auth:scope:example.com:tasks:start

urn:globus:auth:scope:example.com:tasks:view

urn:globus:auth:scope:example.com:tasks:manage

Clients request an access token that authorizes use of a specific
set of scopes (and thus resource servers). A resource server
may choose to offer just a single scope that grants full access;
more limited scopes allow the resource server to protect
resources better by offering more limited rights.

Finally, as described in the following section, a resource
server may also define a set of scopes that it will use as a
client to other resource servers.

F. Access delegation

The OAuth 2 specification defines how to obtain and use
access tokens for interactions between a client and a resource
server, within a specified scope. However, it does not prescribe
an approach to allow delegated token usage. For example,
consider a resource server (RS1) that receives a request from
a client (C1) using a request access token (AT1), and that then
wants to act as a client (C2) to another resource server (RS2),
in order to help fulfill the request. The OAuth 2 specification
does not specify what access token should be used in the
request from C2 to RS2.

This scenario arises frequently within research IT scenarios.
For example, a user of a web application client wants to
submit a request to a workflow management service to run
a workflow. The workflow resource server, in turn, wants to
submit a request to the Globus data sharing service [12] to
access data from a shared endpoint for use in the workflow. In
order to satisfy the request, the Globus data sharing resource
server must, in turn, make a request to the Globus groups
service to determine the groups of which the user is a member,
based on that user’s linked identities, in order to determine the
user’s permissions on that shared endpoint. In this scenario, we
call the Globus groups service a dependent resource server to
the Globus data sharing resource server, and the Globus data



Fig. 3: The Globus Auth consent web interface. In this case the client
(Globus Data Publication) is requesting delegated access tokens to
retrieve identities managed by Globus Auth, manage groups using
Globus groups, and perform transfers using Globus Transfer.

sharing resource server is a dependent resource server to the
workflow service.

The Globus Auth authorization server provides an API for
its resource servers. This API allows a resource server to
request new dependent access tokens based on the access token
that it received from its client. These dependent access tokens
can be used to access downstream dependent resource server
scopes. The Dependent Token Grant API supports access
token delegation for such service invocation chains. When
first accessing the client via the Globus Auth authentication
workflow, the user is asked to consent the sharing of tokens
with the requesting client, as shown in Fig. 3.

G. Groups

Groups are an important component of any authorization
model and are therefore used in conjunction with Globus Auth
by several external services. While groups management is
beyond the scope of Globus Auth, we have extended Globus
groups [10] to support linked Globus Auth identities. In
this case, linked identities enable a user to perform actions
permitted by the union of memberships that their set of
identities dictate. Applications can leverage Globus groups
to define course-grained authorizations by assessing users’
memberships. Globus groups is offered like any other Globus
Auth resource server and delegated access to a user’s groups
can be obtained via a requested scope.

IV. IMPLEMENTATION AND OPERATIONS

The Globus Auth service is comprised of standards com-
pliant OAuth 2 endpoints including custom extensions, API
endpoints for querying identity and identity set information,
and a user-facing web interface for managing clients, consents,
and identity linkages.

The service is written in Python using the Pyramid web
framework. It uses an Amazon Web Services (AWS) Reliable
Database Service (RDS) PostgreSQL database for storing

state. RDS was chosen for its proven performance, scalability
and reliability. Globus Auth has been used in production since
February 2016, servicing more than 40,000 Globus users with
no downtime to date.

Globus Auth has extremely high requirements on security,
availability and data integrity. This section describes important
practices and patterns used during development and operations
to ensure those requirements are met.

A. Implementation

The Globus Auth implementation comprises three major
components: a web interface and API, the application, and
a stateful database.

The Globus Auth web interface provides the ability for users
to authenticate (by selecting an identity provider), consent to
client access, manage an account, and add and remove linked
identities. A subset of these capabilities are also available via
REST APIs for integration in third-party applications.

The application implements client functionality to integrate
with various identity providers, for example acting as an
OpenID Connect client to Google. It provides the logic to
securely register and manage identity providers and a modular
framework via which new identity provider types can be
added. The application manages all resources in the system
such as identities, accounts, and clients. It provides support to
register and configure clients including defining scopes, iden-
tity restrictions, and customizing the authentication workflows.
Finally, the application also implements server OAuth 2 and
OpenID Connect APIs for integration in third-party applica-
tions.

The database stores all Globus Auth state including iden-
tities, accounts, clients, consents, and identity providers.
Database constraints and triggers are used extensively in the
data model. For example, a database trigger ensures that if
an identity is unlinked, consents that depend on that identity
are automatically revoked. This mechanism reduces the risk
of application-level bugs and also eliminates the risk that
administrator tools that bypass the user application interfaces
neglect to implement important side effects.

B. Standards compliance

We have worked hard to ensure that Globus Auth is compli-
ant with the OAuth 2 standard and related specifications. This
compliance ensures that external developers can use any one
of a number of off-the-shelf libraries to integrate their services
with Globus Auth. Custom extensions in Globus Auth, such
as returning multiple tokens in a single response, have been
designed so that they do not violate existing standards.

A challenge when working with OAuth 2 is that the speci-
fication is, in places, vague, and that existing implementations
either do not support every aspect of the specification or
implement some aspects incorrectly. Thus we have submitted
patches to OAuth 2 libraries to implement specification behav-
iors on which we rely. In addition, we have adapted Globus
Auth to support commonly used but non-standard behavior: for
example, we support both scope lists that are space-separated



(as mandated by the specification) and comma-separated (the
behavior of several widely used implementations).

C. Security

All Globus Auth API endpoints follow a pattern whereby
anything that is not explicitly allowed is forbidden. The
first part of this model is ingress security. Every incoming
request must be authenticated with valid credentials before
being allowed into a lower level of the application. Business
logic permission checks are then performed. Finally, before an
object (e.g., an identity) is rendered into a response, an egress
security check is performed to ensure that the object has been
explicitly marked as viewable by the authenticated party.

We have invested considerable effort into ensuring that
Globus Auth is protected from both general and targeted
attacks. We take care to manage private data and limit both
internal and external access to Globus Auth resources. All
credentials that Globus Auth is responsible for validating, such
as access tokens and client secrets, are only ever stored in
a hashed state. Further, any potentially sensitive data stored
in the database are encrypted with a secret shared amongst
the application servers. Where possible, Globus Auth stores
signatures and message digests for the credentials that it issues,
rather than the credentials themselves. Secrets are generated
using entropy sources suitable for cryptographic use, and
signatures are generated using SHA256 or SHA512. Finally,
all sensitive data used in deployment are encrypted in our
configuration management system with private keys belonging
to the application servers.

Globus Auth access tokens are HMAC-signed and contain
an expiration timestamp encoded within the token itself. Thus,
Globus Auth can reject invalid or expired access tokens
without querying the database. Globus Auth also supports an
extensible set of token versions, allowing seamless key rotation
and token format changes.

D. Testing and development model

Globus Auth features an extensive automated test suite,
covering not only expected behavior but also a wide number
of error cases such as misbehaving client applications and
reliant services being unavailable. The full test suite is run on
every single build of the system, and no build can be promoted
beyond a “sandbox” environment without every test passing.

Globus Auth follows a rigorous development and testing
model, where code changes progress through various envi-
ronments before being deployed in production. Every code
change is first reviewed by another member of the team.
Next it is deployed in a sandbox environment where the
development team can perform integration testing. Releases
are then deployed on a staging environment in which a team
of test engineers conduct a range of manual test cases. Finally,
the fully tested code is deployed to production servers.

E. Migration and legacy support

Globus Nexus [10] has long provided identity management
capabilities for Globus services. With the creation of Globus

Auth it was necessary that we continue to support existing
Globus identities. To do so, we registered a new identity
provider in Globus Auth, called GlobusID. The transition to
GlobusID was further complicated by the fact that Globus
Nexus already supported an identity linking model. To retain
these linkages we migrated identities from Globus Nexus to
Globus Auth. We used a script-based approach to migrate
existing identities, along with the identity provider that issued
the linked identity, to Globus Auth. We then assigned each
identity a unique Globus Auth identifier (i.e., UUIDs) and
linked the identities together into a Globus account.

Globus Nexus has offered an OAuth 2 interface (called
GOAuth) for several years. While this interface enables in-
tegration with third party applications, it neither provides the
flexibility of Globus Auth nor supports integration with stan-
dard client libraries. Thus, we have deprecated this interface
in favor of Globus Auth. To avoid the many applications and
services that previously used GOAuth having to migrate to
Globus Auth at the time of release, we developed a proxy
model via which GOAuth requests can be mapped to Globus
Auth requests. We created Globus Auth clients for all existing
applications. Requests to the GOAuth authorization endpoint
are redirected to Globus Auth, where a Python middleware
layer translates the scope and client_id parameters into
forms accepted by Globus Auth. Globus Auth handles the
authorization request normally, prompting for user consent if
needed and returning an authorization code. The legacy client
POSTs the authorization code to the GOAuth token endpoint,
which acts as a proxy, passing the code to Globus Auth for
validation, and returning the access token response issued by
Globus Auth in place of its native GOAuth token response.

F. Operations

The Globus Auth service implementation comprises two
primary components: the Database and the Application. The
Database component is a replicated PostgreSQL database
hosted on RDS. The Application servers are a cluster of
stateless web servers which use the database for all data
persistence requirements. This lets us scale the main load-
sensitive component—the web servers—trivially without any
impact on service availability. Additionally, we autoscale web
worker processes with load, allowing for resilience against
failure and spikes in the rate of requests. In addition to the
core infrastructure we operate a number of additional services
to monitor the system, record and aggregate logs, and detect
intrusions. These services enable our operations team to be
alerted to service degradation immediately and to review the
events leading up to an error or failure.

Deployments and software updates are handled largely by
the Chef configuration management system, allowing us to
safely assume that all application servers are identical and
interchangeable. Chef allows us to develop automated and
reproducible scripts for completely configuring distributed
infrastructure including all dependencies, application software,
and configurations. Using a reproducible and automated model
enables us to maintain high availability and reduce errors,



allows versioned infrastructure configurations, supports repro-
ducible deployments, enables deployment of production-like
test and staging environments, and facilitates rapid deployment
required for updates, infrastructure scaling, and failure. To
eliminate downtime caused by updates, all application updates
and deployments are conducted as rolling upgrades on the
application servers. These are the targets of a continuous
integration pipeline that additionally lets us expand or replace
the set of application servers at any time.

V. THIRD-PARTY INTEGRATION

External services and applications can use Globus Auth
IAM capabilities directly, via the Globus Auth API. In ad-
dition, the Globus Auth delegated authorization model allows
integrated services to access any other Globus Auth-compliant
service using delegated access tokens. We describe here how
five services built upon Globus Auth.

A. Globus Services

Globus provides a suite of capabilities for managing
research data. Globus Transfer [9] provides for reliable,
high-performance, third-party, unattended file transfers be-
tween Globus-accessible storage servers. Globus Data Publica-
tion [13] supports self-service publication of research data with
user-configured submission and curation workflows, metadata
association, persistent identifier creation, and flexible search
mechanisms. Globus groups [10] provides a user-oriented
groups model with web and email-based workflows, role-based
management, and configurable visibility and membership poli-
cies.

All Globus services use Globus Auth for identity manage-
ment, authentication, and authorization. Each service has a
registered Globus Auth client, implements standard OAuth 2
authentication workflows, and uses Globus Auth APIs to
retrieve identity information. Each service is linked identity
aware, meaning that it derives user state from the collection
of linked identities. Thus, a Globus Transfer user can access
endpoints shared with any of their linked identities; a Globus
Data Publication user can perform the superset of roles as-
signed to their linked identities; and Globus group membership
is derived from the user’s linked identities.

As an example of the enhanced capabilities obtained from
using Globus Auth, we have recently developed a secure
Globus HTTPS endpoint server [14] that enables users to ac-
cess Globus endpoint-accessible data via HTTPS. This server
is an extension of the Globus Connect Server installed on
a Globus endpoint, and acts as an OAuth2 resource server
for itself and all shared endpoints that it hosts. A user’s web
client is a “client” to the HTTPS resource server. The HTTPS
resource server is a client to Globus Auth and Globus Transfer
resource servers. Globus Auth serves as the authorization
server. When a user attempts to access a file on a Globus
endpoint via HTTPS, the client is redirected to Globus Auth
to authenticate using a supported identity provider. The Globus
Auth API creates access tokens that match the approved
consents (transfer and auth) for this user, and presents these

tokens to the HTTPS resource server. The HTTPS resource
server can then validate the token and use the delegated
transfer access token to validate the user’s access permissions
on that endpoint.

B. Research Data Archive

The National Center for Atmospheric Research (NCAR)
maintains the Web-based Research Data Archive (RDA),
which contains more than 600 data collections. These collec-
tions, which range in size from gigabytes to tens of terabytes,
include meteorological and oceanographic observations, op-
erational and reanalysis model outputs, and remote sensing
datasets to support atmospheric and geosciences research,
along with ancillary datasets, such as topography/bathymetry,
vegetation, and land use datasets. RDA users are primarily
researchers at federal and academic research laboratories. In
2014 alone, more than 11,000 people downloaded more than
1.1 petabytes. Until recently, all downloads were over HTTP,
either via Web browser, or via scripts that use wget or cURL.

In order to provide its users with an easy to use, reliable,
high performance delivery service, NCAR recently added the
ability to download data via Globus. Globus provides simple
web interfaces for setting up and monitoring downloads, and
implements the downloads themselves by specialized software
and protocols that usually outperform HTTP and that can
resume a download even if the system being downloaded to
(or from) is temporarily turned off or temporarily loses its
network connection. The Globus Transfer service thus ensures
that downloads complete, regardless of how many times they
are interrupted along the way.

When NCAR added Globus data services to RDA, they also
integrated support for Globus identities and authentication.
The original integration used Globus Nexus and thus required
that each RDA user have a Globus username and password
(i.e., a GlobusID identity). NCAR is now migrating RDA to
use Globus Auth, which means that RDA users will no longer
need to have a GlobusID identity. Instead, users can leverage
their existing RDA identity either individually or linked with
other identities in a Globus account. This enhancement signifi-
cantly improves user experience and decreases the complexity
of the RDA-Globus integration.

C. XSEDE

The Extreme Science and Engineering Discovery Environ-
ment (XSEDE) [15] is the national scientific cyberinfrastruc-
ture federation in the US. XSEDE supports 16 supercomputers
and high-end visualization and data analysis resources across
the US. The XSEDE ecosystem also includes administration
and scientific services such as the XSEDE User Portal (XUP)
and XSEDE Resource Allocation Service (XRAS). These
services allow users to manage accounts, publications, and
allocations associated with their use of XSEDE resources.

XSEDE is currently integrating Globus Auth into their user-
facing services and APIs. XSEDE service APIs are being up-
dated to support Globus Auth access tokens and web interfaces
are being extended to operate with Globus Auth supported



identities. To translate XSEDE identities into a supported
Globus Auth protocol we have developed an OpenID server
that translates XSEDE identities obtained using Kerberos into
an OpenID Connect interface. All XSEDE clients (e.g., XUP)
use Globus Auth clients that are set with an “effective identity”
policy that requires that all users have an XSEDE identity
linked to their Globus account.

D. Jetstream

Jetstream [16] is an NSF-funded cloud resource designed to
support general science and engineering research. Jetstream
offers on-demand access to virtualized resources and ser-
vices. Its implementation is based on OpenStack and uses
the Atmosphere cloud computing environment to expose an
interface to users. Atmosphere offers both web and REST
interfaces that allow users to instantiate and manage virtual
machines, including all of the complexities involved with
storage, network, and security configurations. It provides a
repository of community virtual machines which are prepopu-
lated with standard software, this allows users to quickly stand
up environments to conduct their research.

The Jetstream team have integrated Atmosphere with
Globus Auth to provide seamless authentication and autho-
rization experience. Atmosphere acts as a resource server
enabling user access to its resources. To support a delegated
access model in which other services may use Atmosphere
functionality we have registered a new Globus Auth scope for
accessing Atmosphere resources. As Jetstream is an XSEDE
resource, Atmosphere also requires that each authenticated
user have a linked XSEDE identity. The authentication flow
redirects users to Globus Auth, which in turn allows the user
to authenticate using a supported identity. The resulting access
token is returned to Atmosphere and validated via the Globus
Auth APIs. The user is then either granted or denied access
based on inspection of the token and linked identities.

E. FaceBase

The FaceBase consortium generates data and develops tools
to support research into craniofacial development and malfor-
mation. Ten spoke projects are tasked with generating data and
tools, and a single hub is responsible for aggregating these
data and tools and making them available to the craniofacial
research community. FaceBase includes genetic, molecular,
biological, imaging, and other data for zebrafish, mouse,
human, and other organisms.

The FaceBase architecture is multi-faceted. Data is stored in
a proprietary object store and metadata is stored in a relational
entity management system [17]. A flexible data search and
browsing interface is provided by a dynamic web application.
Rather than manage identities and groups (for access control),
FaceBase instead uses Globus Auth and Globus groups. The
FaceBase team have developed a modular authentication and
authorization plugin to their services. This plugin uses a stan-
dard OpenID Connect client library to implement the OpenID
Connect workflow provided by Globus Auth. To abstract the
complexities involved with using multiple services, FaceBase

relies on a branded Globus web instance to enable identity
and group management for their users. In this way, FaceBase
users are able to authenticate using any of the Globus Auth
supported identity providers, manage their Globus account
(e.g., linking various identities) and manage groups.

VI. RELATED WORK

Social and commercial applications have long foregone
built-in identity management for the use of external identity
management solutions. For example, many websites and mo-
bile applications use social network identities, such as Google
and Facebook, for authentication. In each case, the third-party
application or service implements a standard OAuth 2 client to
the Google or Facebook authorization server. However, unlike
Globus Auth, these systems do not provide identity brokering
capabilities and instead support only a single identity provider.

InCommon is a framework that provides trusted access to
online resources and identity management federation across
US academic institutions. Global Authentication INfrastruc-
ture for education (eduGAIN) [18] extends this notion through
a global confederation that connects regional federations,
including InCommon. Both InCommon and eduGAIN are
built upon SAML and allow service providers to enable user
authentication using federated identities. Neither is capable
of supporting various IDP protocols, linking identities, or
providing scoped or delegated tokens. The Agave [19] and
Apache Airavata [20] platforms provide user management,
authentication and authorization, job submission, and data
management capabilities via REST APIs. Agave supports
OAuth 2-based authentication workflows that allow third-
party applications to leverage its capabilities. However, unlike
Globus Auth, it provides no brokering, account linking, or
delegation capabilities. Apache Airavata does not support
identity and group management.

Several commercial entities provide identity brokering ser-
vices. For example, the Google identity platform supports
identities from SAML and OpenID Connect identity providers,
while also offering OAuth 2 and OpenID Connect interfaces
for application integration. Atlassian Crowd [21] is a service-
based identity management service for web applications. It
enables user identities to be sourced from external directo-
ries and exposes different authentication interfaces, such as
OpenID, that can be embedded in external applications.

Amazon Web Services Identity and Access Management
(IAM) [22] provides identity federation support enabling users
to authenticate using their local identity provider. This inte-
gration is built on SAML. IAM also provides Web identity
federation, a mechanism that allows developers to use different
identity providers and to trade an authentication token from
these providers for temporary AWS credentials. It supports
Amazon, Facebook, and Google identity providers. The related
Amazon Cognito [23] associates a unique identifier with each
identity that can be referenced across devices and applica-
tions. It supports the creation of temporary, limited-privilege
credentials such that a third-party application can access AWS
resources. Its primary purpose is simplified synchronization of



application state across devices and thus it lacks capabilities
such as identity linking and delegated access tokens.

Another commercial service, Auth0 [24], addresses the
challenge of mapping from many identities to many appli-
cations. It supports a large number of identity providers,
including Facebook, Google, LinkedIn, Github, and Amazon.
Like Globus Auth, it provides APIs for accessing and man-
aging profiles, and allows users to link identities, use linked
identities in federated login scenarios, restrict the range of
identity providers that can be used to authenticate with a given
client, and use OAuth 2 and OpenID Connect interfaces for
integration into third-party applications.

Despite these similarities, Auth0’s focus on identity map-
ping leads to important differences. For example, Auth0 pro-
vides little support for enforcing limited access to managed
resources. At present, it only provides limited control over who
can access the profile information that it manages, offering
just three pre-defined scopes for profile information access.
In contrast, Globus Auth implements a flexible and extensible
consent-based scope model in which many different scopes
can be defined for each resource server. Similarly, the Auth0
delegation model is limited: clients must be preconfigured with
a group of add-on (or external) services for which delegated
tokens can then be obtained. In contrast, Globus Auth provides
a rich delegation model in which tokens with different scopes
can be obtained by a given client to access other services on
behalf of the user. Globus Auth is also differentiated by its
support for primarily research identity providers.

VII. SUMMARY

Globus Auth provides a flexible identity and access man-
agement platform for the research community. Its unique
characteristics, including identity brokering, identity linking,
and delegated access model, directly address many frictions as-
sociated with creating and operating research services. Globus
Auth already supports a range of research identity providers
and can be integrated with external research services via
standard OAuth 2 interfaces. Globus Auth can thus form
the basis for a new generation research platform on which
researchers can rapidly develop new services that leverage
other research services. Moreover, Globus Auth provides a
fabric for integrating the currently fragmented and siloed
ecosystem of research services. In the three months since
deployment Globus Auth has been adopted by a number of
large research projects. This encouraging uptake highlights the
potentially transformative effect that Globus Auth can have on
the research service landscape.

ACKNOWLEDGMENTS

We thank Globus subscribers for supporting the operation
and development of Globus. We also thank users of Globus
services for their continued support. This research was sup-
ported in part by NSF grant ACI-1053575 (XSEDE) and US
Department of Energy contract DE-AC02-06CH11357.

REFERENCES

[1] V. Welch, A. Walsh, W. Barnett et al., “A roadmap for using NSF
cyberinfrastructure with InCommon,” in TeraGrid Conference: Extreme
Digital Discovery (TG), 2011, pp. 28:1–28:2. [Online]. Available:
http://doi.acm.org/10.1145/2016741.2016771

[2] R. Ananthakrishnan, K. Chard, I. Foster et al., “Globus platform-as-a-
service for collaborative science applications,” Concurrency - Practice
and Experience, vol. 27, pp. 290–305, 2014.

[3] D. Hardt, The OAuth 2.0 Authorization Framework, http://www.rfc-
editor.org/info/rfc6749 [accessed May 2016], RFC 6749 Std., October
2012.

[4] N. Sakimura, J. Bradley, M. Jones et al., “OpenID connect
core 1.0,” http://http://openid.net/specs/openid-connect-core-1 0.html
[accessed May 2016], OpenID Foundation, 2014.

[5] S. Cantor, J. Kemp, R. Philpott et al., “Security asser-
tion markup language (SAML) v2.0,” https://docs.oasis-
open.org/security/saml/v2.0/saml-core-2.0-os.pdf [accessed May
2016], OASIS, 2014.

[6] I. Foster, “Service-oriented science,” Science, vol. 308, no. 5723,
pp. 814–817, 2005. [Online]. Available: http://science.sciencemag.org/
content/308/5723/814

[7] I. Foster, K. Chard, and S. Tuecke, “The discovery cloud: Accelerating
and democratizing research on a global scale,” in IEEE International
Conference on Cloud Engineering (IC2E), April 2016, pp. 68–77.

[8] I. Foster, “Globus Online: Accelerating and democratizing science
through cloud-based services,” IEEE Internet Computing, vol. 15, no. 3,
pp. 70–73, May 2011.

[9] B. Allen, J. Bresnahan, L. Childers et al., “Software as a service for data
scientists,” Communications of the ACM, vol. 55, no. 2, pp. 81–88, Feb.
2012. [Online]. Available: http://doi.acm.org/10.1145/2076450.2076468

[10] K. Chard, M. Lidman, B. McCollam et al., “Globus Nexus: A
platform-as-a-service provider of research identity, profile, and group
management,” Future Generation Computer Systems, vol. 56, pp. 571–
583, 2016. [Online]. Available: http://www.sciencedirect.com/science/
article/pii/S0167739X1500285X

[11] J. Richer, “OAuth 2.0 token introspection,”
https://tools.ietf.org/html/rfc7662 [accessed May 2016], Internet
Engineering Task Force (IETF), 2014.

[12] K. Chard, S. Tuecke, and I. Foster, “Efficient and secure transfer,
synchronization, and sharing of big data,” IEEE Cloud Computing,
vol. 1, no. 3, pp. 46–55, Sept 2014.

[13] K. Chard, J. Pruyne, B. Blaiszik et al., “Globus data publication as
a service: Lowering barriers to reproducible science,” in 11th IEEE
International Conference on e-Science, Aug 2015, pp. 401–410.

[14] K. Chard, S. Tuecke, I. Foster et al., “Globus: Recent enhancements and
future plans,” in the Annual Annual Conference on Extreme Science and
Engineering Discovery Environment (XSEDE), 2016.

[15] J. Towns, T. Cockerill, M. Dahan et al., “XSEDE: Accelerating scientific
discovery,” Computing in Science Engineering, vol. 16, no. 5, pp. 62–74,
Sept 2014.

[16] C. A. Stewart, T. M. Cockerill, I. Foster et al., “Jetstream: A
self-provisioned, scalable science and engineering cloud environment,”
in XSEDE Conference: Scientific Advancements Enabled by Enhanced
Cyberinfrastructure, ser. XSEDE ’15, 2015, pp. 29:1–29:8. [Online].
Available: http://doi.acm.org/10.1145/2792745.2792774

[17] R. Schuler, C. Kesselman, and K. Czajkowski, “Digital asset manage-
ment for heterogeneous biomedical data in an era of data-intensive
science,” in IEEE International Conference on Bioinformatics and
Biomedicine, Nov 2014, pp. 588–592.

[18] “eduGAIN,” http://services.geant.net/edugain/ [accessed May 2016].
[19] R. Dooley, M. Vaughn, D. Stanzione et al., “Software-as-a-service:

The iPlant Foundation API,” in 5th IEEE Workshop on Many-Task
Computing on Grids and Supercomputers (MTAGS), 2012.

[20] M. Pierce, S. Marru, L. Gunathilake et al., “Apache Airavata: Design
and directions of a science gateway framework,” in 6th International
Workshop on Science Gateways, June 2014, pp. 48–54.

[21] “Atlassian Crowd,” http://atlassian.com/softwar/crowd/overview [ac-
cessed May 2016].

[22] “Amazon identity and access management (IAM),”
http://aws.amazon.com/iam [accessed May 2016].

[23] “Amazon Cognito,” https://aws.amazon.com/cognito/ [accessed May
2016].

[24] “Auth0,” http://auth0.com [accessed May 2016].


