
Title: CoG Kits: A Bridge between Commodity Distributed-Computing and High-
Performance Grids

Authors: Gregor von Laszewski, Ian Foster, Jarek Gawor, Warren Smith, Steven Tuecke

Address: Argonne National Laboratory, Argonne, IL 60439, U.S.A.

e-mail: gregor@mcs.anl.gov

date: January 17, 2000

Contents

1 Introduction 1

2 Grids and Grid Technologies 2

3 A Motivating Example for CoG Kits: Science Portals 3
3.1 Science Portal Scenario 3
3.2 Science Portal Requirements 3

4 Commodity Grid Toolkits 4

5 Java CoG Kit 4

6 Java CoG Kit Implementation 5
6.1 Low-Level Grid Mappings 5
6.2 Low-Level Utilities 7
6.3 Low-Level GUI components 7
6.4 High-Level Graphical Application 7

7 Future Applications 9

8 Summary 9

1

CoG Kits: A Bridge between Commodity Distributed-Computing
and High-Performance Grids

Gregor von Laszewski�, Ian Foster, Jarek Gawor, Warren Smith, Steven Tuecke

Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL 60439, U.S.A.

Abstract

Emerging national-scale "Computational Grid" infras-
tructures are deploying advanced services beyond those
taken for granted in today’s Internet: for example, au-
thentication, remote access to computers, resource man-
agement, and directory services. The availability of these
services represents both an opportunity and a challenge
for the application developer: an opportunity because
they enable access to remote resources in new ways, a
challenge because these services may not be compatible
with the commodity distributed-computing technologies
used for application development. The Commodity Grid
project is working to overcome this difficulty by creating
what we call Commodity Grid Toolkits (CoG Kits) that
define mappings and interfaces between Grid and par-
ticular commodity frameworks. In this paper, we explain
why CoG Kits are important, describe the design of a Java
CoG Kit, and use examples to illustrate how CoG Kits can
enable new approaches to application development based
on the integrated use of commodity and Grid technolo-
gies.

1 Introduction

The explosive growth of the Internet and of distributed
computing in general has led to rapid technology devel-
opment in several domains. In the world of commod-
ity computing, a broad spectrum of distributed computing
technologies (i.e., Web protocols [16], Java[14], JINI[1],
CORBA[4], DCOM[20], etc.) has emerged with revolu-
tionary effects on how we access and process informa-
tion. Simultaneously, the high-performance computing
community has taken big steps toward the creation of so-
calledGrids[6], advanced infrastructures designed to en-
able the coordinated use of distributed high-end resources
for scientific problem solving.

These two worlds of what we will call “commodity”
and “Grid” computing have evolved in parallel, with dif-
ferent goals leading to different emphases and technol-�Corresponding e-mail: gregor@mcs.anl.gov

ogy solutions. For example, commodity technologies tend
to focus on issues of scalability, component composition,
and desktop presentation, while Grid developers empha-
size end-to-end performance, advanced network services,
and support for unique resources such as supercomputers.
The results of this parallel evolution are multiple technol-
ogy sets with some overlaps, much complementarity, and
some obvious gaps.

In this context, we believe that it is timely to investi-
gate how the worlds of commodity and Grid computing
can be combined. Hence, we have established theCom-
modity Grid (CoG) project, with the twin goals of (a)
enabling developers of Grid applications to exploit com-
modity technologies wherever possible and (b) exporting
Grid technologies to commodity computing (or, equiv-
alently, identifying modifications or extensions to com-
modity technologies that can render them more useful for
Grid applications).

A first activity being undertaken within the CoG project
is the design and development of a set of Commodity Grid
Toolkits (CoG Kits), which we define as follows:

Definition: A Commodity Grid Toolkit (CoG Kit) de-
fines and implements a set of general components
that map Grid functionality into a commodity envi-
ronment/framework.

Hence, we can imagine a Web/CGI CoG Kit, a Java
CoG Kit, a CORBA CoG Kit, a DCOM CoG Kit, and
so on. In each case, the benefit of the CoG Kit is
that it enables application developers to exploit advanced
Grid services (resource management, security, resource
discovery) while developing higher-level components in
terms of the familiar and powerful application develop-
ment frameworks provided by commodity technologies.
In each case, we also face the challenge of developing
appropriate interfaces between Grid and commodity con-
cepts and technologies—and, if similar Grid and com-
modity services are provided, reconciling competing ap-
proaches.

Our initial focus of our work in this area is on a Java
CoG Kit. (We have also started some investigations of

1

Applications

Application
Toolkits

Grid Services
(Middleware)

Grid Fabric
(Resources)

Data
Grid

Remote
Computation

Remote
Vizualization Collaboratories Portals

Remote
Sensors

Protocols, Authentication, Policy, Instrumentation,
Resource Management, Discovery, Events, etc.

Storage Networks, Computers, Display Devices, etc.
and their associated local services

Cosmology Chemical

Engeneering

Climate

Research

High

Energy

Physics
AstrophysicsCombustion ...

...

Figure 1: The integrated Grid architecture has four main categories.

Web/CGI, CORBA, and Python CoG Kits.) In the rest of
this article, we first review briefly some Grid technologies,
then use an example to illustrate what capabilities we want
the Java CoG Kit to provide, and finally present technical
details on the Java CoG Kit design.

2 Grids and Grid Technologies

The scientific problem-solving infrastructure of the next
century will support the coordinated use of numerous dis-
tributed heterogenous components, including advanced
networks, computers, storage devices, display devices,
and scientific instruments. The term “The Grid” is often
used to refer to this emerging infrastructure [6]. NASA’s
Information Power Grid and the NCSA Alliance’s Na-
tional Technology Grid are two contemporary projects
prototyping Grid systems; both build on a range of tech-
nologies, including many provided by the Globus project
in which we are involved.

Future applications that will use Grid infrastructures
will range from tomorrow’s equivalent of today’s “secure
shell” and Web browsers to more sophisticated collabora-
tive tele-immersive engineering, distributed Petabyte data
analysis, and real-time instrument control systems. These
various applications will share a common need to cou-
ple devices that have not traditionally been thought of as
part of the network. This need is motivating the develop-
ment of a broad set of new services beyond those provided
by today’s Internet. These Grid services will provide the
security, resource management, data access, instrumenta-
tion, policy, accounting, and other services required for
applications, users, and resource providers to operate ef-
fectively in a Grid environment.

Figure 1 illustrates the structure of what we term the

Integrated Grid Architecture [7], which comprises four
general types of components. TheGrid Fabric provides
resource-specific implementations of basic mechanisms
required for Grid operation, for example, advance reserva-
tion mechanisms in a supercomputer scheduler or storage
system, or quality-of-service mechanisms in a network
router.

These Fabric capabilities enable the construction of
resource-independent and application-independentGrid
Services. One example is an information service, which
provides uniform access to information about the struc-
ture and state of Grid resources; another example is an
authentication and authorization service, which provides
mechanisms for establishing identify, creating delegatable
credentials, and so forth. These Grid Services are often
termed “middleware”: they typically involve distributed
state and can be viewed as a natural evolution of the ser-
vices provided by today’s Internet.

Grid Fabric capabilities and Grid Services in turn en-
able the creation of more application-specific services and
toolkits: for example, distributed data management capa-
bilities to support the creation of data-intensive applica-
tions, or flow management capabilities to support the cre-
ation of collaborative work environments. These services
and toolkits are then used to implement applications.

The significance of Grid infrastructures for applica-
tion developers is that they greatly enhance the capabil-
ities that can be taken for granted when developing ap-
plications. For example, a Grid-wide information service
means that resource discovery and characterization be-
come possible; hence, applications can reliably expect to
discover required resources at runtime, rather than requir-
ing resource choices to be fixed or provided by the user.
Similarly, remote computation control interfaces provided

2

in the Grid Fabric mean that having discovered a suitable
remote computer, a user can schedule, monitor, and con-
trol a computation without needing to know the idiosyn-
cratic details of local mechanisms.

3 A Motivating Example for CoG
Kits: Science Portals

We use an example to illustrate the role that we expect
CoG Kit capabilities to play in future Grid/commodity
architectures and the technology developments required
to realize this promise. The example is an instantiation
of what some call a “science portal”: an access point
(e.g., desktop, browser, palm device) designed to facilitate
scientific research in a particular discipline by providing
seamless access to a wide range of information and com-
putational resources.

3.1 Science Portal Scenario

We consider a “Midwest Climate Change Portal” that
provides access to computational and data resources
relating to regional impacts of global climate change.
Such a portal serves a variety of users with different
needs and interests, for example, climate researchers,
weather forecasters, students, traffic control agencies and
services, and farmers. We consider two usage scenarios.

Researcher: A researcher interested in impacts of cli-
mate change on cranberry bog yields in Wisconsin uses
the portal to discover relevant datasets and models. He
quickly puts together a description of his required data,
using a graphical editor. This description is transformed
automatically in a sequence of computations and lookups
in order to obtain the desired data. Existing software in-
frastructure must be seamlessly integrated into the set of
tools used by the researcher to derive results. The results
of such an interaction can be viewed using browsers while
preparing and invoking further analysis on the data. The
results are discussed and interpreted with the help of col-
leagues during interactive sessions and then are posted to
an electronic notebook and are prepared for the use of
other interested parties.

Farmer: A farmer uses the portal when planning which
crop he should grow on his fields. His questions focus on
whether, when, and how to use his land in order to achieve
a maximum benefit over years. Naturally, he needs to
obtain a seasonal forecast allowing him to determine the
best time for planting the crop. Electronic microsensors
distributed in his ground help to steer the use of fertiliz-
ers during the growth period. Sensor data is fed into a
database accessible by scientists, allowing for feedback

Research
Portal

Farmer
Portal

Financial
Market
Portal

User customized
Portal

Figure 2: Multiple portals provide access to overlapping
functionality, with a particular portal specialized to there-
quirements of its user.

to check for model accuracy. Access points to the por-
tal include computer terminals in electronically enhanced
farm buildings and also specialized input and output de-
vices that allow for the installation in, for example, a
lightweight wireless device to access a useful subset of the
information in the field. The farmer’s portal also provides
access to other services and information sources, for ex-
ample, financial market monitoring services that observe
the fluctuation of the value of the crops and give advice
that may result in greater profits (Figure 2).

3.2 Science Portal Requirements

The creation of science portals such as those just de-
scribed requires the integration of many technologies
from different fields. We will typically provide access
to a wide variety of data; hence, we must be able to
access and communicate with a wide range of informa-
tion sources. The complex calculations performed on
this data requires the ability to access compute resources
with significant computational resources. We may also
require access to proprietary software loaded on remote
machines. Thus, theability to incorporate remote com-
putational resourcesare required. Interactive use can re-
quire that computational and data resources be accessed
via high-performance networks; we would also like to be
able to enforceperformance guaranteesfor data transfers
and computations.

The success of a science portal is also measured by
its usability and acceptance in the community. Hence,
we require environments that allow rapid prototyping of
both complete applications and new components that can
be shared with other users. Theability to rapidly create
portable user interfacesis particularly critical. These re-
quirements overlap strongly with two types of technology:. Commodity technologiesthat emphasize ease of use

and code reuse in local, especially desktop envi-
ronments: GUI components, component libraries,
scripting languages, industry-excepted distributed

3

computing frameworks, industrial strength database
servers, object-oriented programming languages and
frameworks, and the like.. Grid technologiesthat emphasize effective operation
in large-scale, multi-institutional, wide area environ-
ments: access to remote computation, information
services, high-speed data transfers, special protocols
(e.g., multicast), and gateways to local authentication
schemes.

These considerations lead to the question that has moti-
vated the research reported in this paper: How can com-
modity and Grid technologies interface and integrate so as
to adhere interoperability — and, ideally, to enhance the
capabilities of both? For example, we might decide to use
CORBA for application development, but also want to use
Grid services for scheduling and managing computations
on a supercomputer. Or, if we are using Java, then Jini
might appear to be a good mechanism for resource discov-
ery: but then we face the problem of accessing data stored
in the extensive (currently LDAP-based) Grid information
service. The interactions can be complex and require sig-
nificant effort by thought to get right. Yet the technology
base that exists in each case is sufficiently large and ro-
bust that exploiting these existing mechanisms leads to a
significant enhancement of both Grid and comodity based
technologies.

4 Commodity Grid Toolkits

The combination of commodity and Grid technologies
can, in principle, enable exciting new applications that
tie advanced network-accessible resources into the com-
modity desktop. Our goal in the Commodity Grid project
is to enable these opportunities to be realized in prac-
tice. Our research approach involves an iterative process
of definition, development, and application of Commod-
ity Grid Toolkits (CoG Kits): sets of general components
that map Grid functionality into specific commodity en-
vironments or frameworks. The wordmap is important:
the integration of Grid and commodity technologies is not
simply an interface definition problem but rather is con-
cerned with how Grid concepts and services are best ex-
pressed in terms of the concepts and services of a partic-
ular commodity framework. To take a simple example, in
the Globus Grid toolkit on which we are building our pro-
totypes, remote computation management is handled via
a procedural API and callbacks; in the Java CoG Kit, the
same functionality is provided via a Job object and Java
events.

The requirements of the science portals and other ap-
plications have motivated us to explore mappings to sev-
eral languages. Particular, we are exploringPerl and

Languages EnvironmentsFrameworks

Science Portals

Java CorbaJini DCOMPerl

CoG Kits

Common Grid Fabric and Services

Security
Services

...

Resource
Management
Services

Data
Management
Services

Monitoring
Services

Event
Services

Collaborative
Services

Integrated
Event Service

Uniform
Access Service

Datamining
Service

...

Figure 3: CoG Kits provide a mapping between comput-
ing languages, frameworks, and environments and grid
services and fabric. Together grid services, languages,
frameworks, and environments build a powerful develop-
ment tool for building grid-enhanced applications.

Python, in order to support easy prototyping and Web-
based programming based on CGI scripts; andJava, in or-
der to support graphical user interface development, ease
of programming, and the ability to run many Grid services
through Java-enabled Web browsers.

We also need to address the issue of accessing Grid
services through high-level distributed computing frame-
works defined by industry, so as to allow integration
of common off-the-shelf tools and development environ-
ments. Hence, we consider the Common Object Request
Broker Architecture, and the Distributed Component Ob-
ject Model.

5 Java CoG Kit

In the rest of this paper we focus our attention on our Java
CoG Kit prototype and explain how it enables us to ac-
cess Grid services, provided by the Globus toolkit. Due
to the large number of packages and classes to expose the
necessary functionality of the Globus toolkit we focus in
this paper on a subset of all available classes that we deem
most useful for the development of Java based Grid appli-
cations. Part of the strategy to provide a Java CoG Kit is
based on the development of future components as a com-
munity project. To support an iterative process of defini-
tion, development, and application of a Java CoG Kit in
collaboration with other teams, we classify components
as depicted in Figure 4. This provides the nesecary sub-
division in order to coordinate such a challanging open

4

Application Level Utilities and GUI components

Low Level GUI Interfaces

HBM displays MDS browsers

Low Level Utilities

Job & JobSets MDS CoordinateServer

Low Level Grid Interfaces to Grid Middleware & Fabric

Rsl Gram Duroc Gass HBM Gloperf

Grid Middleware & Fabric

...

Rsl Gram Duroc Gass HBM Gloperf ...

...

...

Figure 4: Applications and more complex components
can be built with the help of the CoG Kit. Components
are classified here based on their role.

community software engenering task.

Low-Level Grid Interface Components provide map-
pings to commonly used Grid services: for exam-
ple, theGrid information service(the Globus Meta-
computing Directory Service, MDS), which provides
Lightweight Directory Access Protocol (LDAP)[15]
access to information about the structure and state of
Grid resources and services;resource management
services, which support the allocation and manage-
ment of computational and other resources (via the
Globus GRAM and DUROC services); anddata ac-
cess services, for example via the Globus GASS ser-
vice [2].

Low-Level Utility Components are utility functions de-
signed to be reused by many users. Examples are
components that use information service functions to
find all compute resources that a user can submit to;
that prepare and validate a job specification while us-
ing the extended markup language (XML) [13] or the
Globus job submission language (RSL); that locate
the geographical coordinates of a compute resource;
or that test whether a machine is alive.

Common Low-Level GUI Components provide a set
of low level GUI components that can be reused
by application developers. Examples for such com-
ponents are LDAP Attribute Editors, RSL editors,
LDAP browsers, and search components.

Application-specific GUI Components simplify the
bridge between applications and the basic CoG Kit
components. Examples are a stock market monitor,
a graphical climate data display component, or a
specialized search engine for climate data.

For each of the above mentioned classes we will provide
in this paper exemplary Java CoG Kit components and
code fragments.

6 Java CoG Kit Implementation

Figure 5 shows how our Java CoG Kit is used in practice.
This Java program skeleton forms part of a Climate Portal;
it demonstrates how simple it is to build portal-specific
services when accessing a variety of basic Grid services
through the Java CoG Kit. In this example, an appropriate
machine is selected for execution, data for an instantiation
of the climate model is located and downloaded to the ma-
chine, and the climate model is executed on that machine.
The program generates an output file in GrADS[12] for-
mat, a well-known format for storing three-dimensional
climaterelated data. Throughout the remainder of paper
we will expand this example as we introduce various Java
CoG Kit components.

6.1 Low-Level Grid Mappings

In the following section we enumerate a subset of pack-
ages that provide the interface to the low-level Grid ser-
vices and application interfaces. These packages are used
by many users to develop Java-based programs in the
Grid. We will only describe the general functionality of
these packages, as it is beyond the scope of this paper to
explain every class and method. For a complete list of the
classes and methods we refer to the distribution [27].

RSL. The packageorg.globus.rslprovides methods for
creating, manipulating, and checking the validity of the
RSL expressions used in Globus[11] to express resource
requirements. As shown in Step 3 of Figure 5, the argu-
ments to anewcall include parameters that specify both
characteristics of the required resources and properties of
the computation.

GRAM. The packageorg.globus.gramprovides a map-
ping to the GRAM services [10], which allow to sched-
ule and manage remote computations. The classes and
methods distributed allow users to submit jobs, bind to al-
ready submitted jobs, and cancel jobs on remote comput-
ers. Other methods allow users to determine whether they
can submit jobs to a specific resource (through a Globus
gatekeeper) and to monitor the job status (pending, active,
failed, done,andsuspended).

As shown on Step 4 of Figure 5 the class Gram is
used to create a job with an RSL string describing the
job and a machine contact that determines on which ma-
chine the job is requested for execution. An important
difference between our Java implementation of mappings
to Globus C interfaces is not only the introduction of a
formal job object, but also the availability of a sophis-
ticated event model in Java. Our implementation uti-
lizes this event model and transfers the C callbacks into

5

// Step 0. Initialization
MDS mds=new MDS("www.globus.org","389","o=Grid");

// JOB SUBMISSION
//Step 1. Search for an available machine

result = mds.search
("(objectclass=GridComputeResource)(freenodes=64))" ,

"contact");
// Step 1.a) Select a machine

machineContact = <select the machine with minimal execution time from
the contacts that are returned in result>

// Step 2. Prepare the data for the experiment
// Step 2.a) Search for the climate data and return
// the attributes: server,port,directory,file

dn = mds.search
("(objectclass=ClimateData)(year=1999)

(region=midwest)",
"dn", MDS.SubtreeScope);

result = mds.lookup (dn, "server port directory file");
// Step 2.b) download the data to the machine

url = result.get("server")+":"
+ result.get("port")+":"
+ result.get("directory")+"/"
+ result.get("file");

data = server.fetch (url, machineContact);
// Step 3. Prepare a description for running the model

RSL rsl = new RSL("(executable=climateModel)

(processors=64)
(arguments=-grads)(arguments=-out map.grads)
(arguments=-in " + data.filename +")");

// Step 4. Submit the program
GramJob job = new GramJob();

job.addJobListener(new GramJobListener() {
public void stateChanged(GramJob job) {

// react to job state changes
}

});
try{

job.request(machineContact, rsl);
} catch (GramException e) {

// problem submitting the job
}

Figure 5: This sample script demonstrates how we access basic Grid services with the help of the Java CoG Kit. Here
data for a climate model is located, an appropriate machine is selected, and the climate model is executed on that
machine.

6

equivalent Java events. In Java one can now use threads
in order to “listen” to a particular event that can trigger
further actions. A Java interfaceGramJobListener
that contains the methodstateChanged(GramJob
job) can be used to define customized job listeners
that can be added with the GramJob methodaddLis-
tener(GramJobListener listener).

DUROC. The packageorg.globus.durocenables a user
to coolaocate multiple resources. The mapping of the
application Globus duroc interface to a Java based event
model is similar to that of thegrampackage. In contrast
to Gram it allows the programmer to create and monitor
multirequest jobs [5].

MDS. The packageorg.globus.mdssimplifies the ac-
cess to the Metacomputing Directory Service (MDS)[25],
which is an important part of the Globus information ser-
vice. Its functions include (a) establishing a connection to
an MDS server, (b) querying MDS contents, (c) printing,
and (d) disconnecting from the MDS Server. The package
provides an intermediate application layer that can be eas-
ily adapted to different LDAP[15] client libraries, includ-
ing JNDI [17], Netscape SDK [18], and Microsoft SDK
[21].

As shown in Step 1 of Figure 5, the parameters to ini-
tialize the MDS class are the DNS name of the MDS
server, the port number for the connection, and the dis-
tinguished name (DN) that specifies the root for a search
in the directory tree. A search is performed in Step 2
a); the first parameter specifies the top level of the tree
in which the search is performed, the second parameter
specifies the LDAP query, and the third parameter speci-
fies the scope that is, for how many levels in the tree the
search should continue (in our case only the next level).
Search results can also be stored in a NamingEnumera-
tion provided by JNDI.

GASS. Global Access to Secondary Storage (GASS)
service [2] simplifies the porting and running of applica-
tions that use file I/O, eliminating the need to manually log
onto sites and ftp files or to install a distributed file system.
The packageorg.globus.glassprovides an essential subset
of GASS services to support the copying of files between
computers on which the Grid Services are installed. The
methodget(String from, String to)copies a remote file to a
local file and the methodput(String from, String to)copies
a local file to a remote location. Thefetchmethod used in
our example (Figure 5) provides a convenient wrapper and
uses internally the previously mentionedgetmethod.

HBM. The Globus Heartbeat Monitor (HBM)[22] pro-
vides a simple, highly reliable mechanism for obtaining

the health and status information of Grid resources. This
includes monitoring the state of machines and processes
in the Grid. The packageorg.globus.hbmprovides classes
and methods to conveniently access this service, as illus-
trated in Figure 6. In alternative A the status of a machine
is checked and if the state is is notactive, an appropriate
action is performed. In case the status of a process that is
registered with the HBM is monitored, alternative B gives
an example.

6.2 Low-Level Utilities

The low-level utility classes currently defined in the
CoG Kit provide an abstract datatype representing acyclic
graphs and basic XML parsing routines. The graph class
is used, for example, to access dependencies between
jobs, a major requirement for science portal applications.
The XML classes are used to provide transformations be-
tween different data formats. Using XML has the advan-
tage that a Document Type Definition (DTD) that is de-
fined for these data formats can be used to verify whether
a record to be transmitted is well formed before it is send
to a server. Thus the load on servers can be dramatically
reduced. The availability of a dependency between jobs
is a significant extension towards the existing Globus low
level application interface. In addition, we have defined
a general concept of amachineand job broker interface.
This enables a programmer do define a customized selec-
tion of machines and jobs dependent on his demand. We
have utelized this technology as part of a high throuput
broker that is implemented in Java, but can also exposed
through CORBA objects. The Gecco application intro-
duced in section 6.4 utelizes the Java based machine and
job brokers.

6.3 Low-Level GUI components

The Java CoG Kit low-level GUI components provide ba-
sic graphical components that can be used to build more
advanced GUI-based applications. These components in-
clude text panels that format RSL strings, tables that dis-
play results of MDS search queries (Figures 7 and 8), trees
that display the directory information tree of the MDS,
and tables to display HBM and network performance data.
Each component can be customized and is available as
JavaBean. In future releases of the Java CoG Kit it will be
possible to integrate the bean in a Java based GUI compo-
sition tool such as JBuilder or VisualCafe.

6.4 High-Level Graphical Application

High-level graphical applications combine a variety of
CoG Kit components to deliver a single application or ap-
plet. Naturally, these applications can be combined in or-

7

// Step 0: Initialize the Heartbeat Monitor Object
HBM hbm = new HBM (“hbm.globus.org”, 2222);

hbm.update();
// Step 1: Retrieve the hostname of the machine to be watched

machinename = machineContact.hostname();
// Step 2: Get the data associated with the Client
// Alternative A: Monitor the machine

ClientData cd = hbm.get(machinename);
// Step 3: Evaluate the client data

if (cd.getStatus() != HBM.ACTIVE) {
<deal with the problem>

}

// Step 2 can be replaced with the following alternate code:
// Alternative B: Monitor the process

ClientData cd = hbm.search (machineContact.hostname(),
"(name=climateModel)");

Figure 6: Using the HBM to monitor the progress of a computation. In Alternative A, we check the status of a machine;
in Alternative B, we check whether the program with the nameclimateModel is still running. This code might be
run in conjunction with Figure 5.

Figure 7: The MDS search table can be used to display selectedMDS information in a tabular form. The search string
can be specified, and attributes can be selected easily to customize the table.

// Step 0: Initialize the table
MDSsearchTable table = new MDSsearchTable (mds);

// Step 1: perform a search in the MDS to request data to be displayed
table.search ("(objectclass=GridComputeResources)",

"hn gramversion contact");
// Step 2: display and update the table

table.show();
// Step 3: return the selection

String machineContact = table.getSelection("contact");

Figure 8: The program shows how the GUI component of Figure 7 can be used to select depicts the ease of use of the
Graphical User Interface for selecting a Grid contact string.

8

der to provide even greater functionality. The user should
select the tools that seem appropriate for the task. To
demonstrate the range of applications, we have included
a set of screen dumps that highlight the look and feel of
some applications developed to date.

GECCO. The Graph Enabled Console COmponent
(GECCO) is a graphical tool for specifying and monitor-
ing the execution of sets of tasks with dependencies be-
tween them [26][24]. Specifically it allows one to

1. specify the jobs and their dependencies graphically
or with the help of an XML-based configuration file;

2. debug the specification in order to find errornous
specification strings before the job is submitted; and

3. execute and monitor the job graphically and with the
help of a log file.

As shown in Figure 9 each job is represented as a node in
the graph. A job is executed as soon as its predecessors
are reported as having successfully completed. The state
of a job is animated with colors. It is possible to modify
the specification of the job while clicking on the node: A
specification window pops up allowing the user to edit the
RSL, the label, and other parameters. Editing can also be
performed during runtime (job execution), hence provid-
ing for simple computational steering.

GRC. A second example of a high-level application
component is an interactive Graphical Resource Co-
allocator (GRC) illustrated in Figure 10[5]. This Java ap-
plication allows the user to build a network representing
the resources required for an application and to describe
how the resources should be used. A combination of au-
tomatic and manual techniques is then used to guide re-
source selection, eventually generating an RSL specifica-
tion for the resources in question. MDS services are used
to automatically find candidate sets of resources that meet
the user’s constraints. The user then manually selects one
of the resource sets or requests a further search for candi-
dates. Once the user finds a suitable set of resources, the
GRAM or DUROC client libraries are used to execute,
monitor, and possibly terminate the application(s) (com-
pare Figure 10).

7 Future Applications

The availability of the Java CoG Kit has several advan-
tages for developing future Grid based applications. The
assumed platform independence of Java and its increased
popularity provides thebasis of a promising platform base
in near future. Furthermore, since Java is well established

on the Windows operating system, it seems an obvious
candidate to deliver a Globus server side implementation
(that is jabs can be submitted to any NT machine as long
as it is integrated in the Grid). More straight forward is
the development of a Globus thin-client, which constitutes
only of the necessary security routines and the communi-
cation routines to communicate with a Globus server. All
previous releases of CoG components used a pull model
to inquire the state of a submitted job. Since we have
changed the model to use listeners, it is now more easy
to write threaded Grid based Java applications based on
a push model. Projects which will benefit from this ap-
proach are for example [9] and [28].

Due to a change in the internal structure of Globus to
rely in many cases on the HTTP protocol, it is possible
to integrate such a thin-client as part of a Web browser to
allow submission through web pages. Projects like [19]
and [23] will profit from this change. Making some of
the components available as Java Beans and integrating
them in common of the shelf Java GUI building tools will
provide a Grid development environment that allows Grid
programming with ease. These applications can now be
developed due to the availability of the Java CoG Kit. Re-
cent efforts to standardize the Globus delegation model
in cooperation with the development of the Java CoG Kit
will allow a much easier integration in commodity tech-
nology in future.

8 Summary

Commodity distributed-computing technologies enable
the rapid construction of sophisticated client-server ap-
plications. Grid technologies provide advanced network
services for large-scale, wide area, multi-institutionalen-
vironments and for applications that require the coordi-
nated use of multiple resources. In the Commodity Grid
project, we seek to bridge these two worlds so as to enable
advanced applications that can benefit from both Grid ser-
vices and sophisticated commodity development environ-
ments.

The Java Commodity Grid Toolkit (CoG Kit) described
in this paper represents a first attempt at the creation of
such a bridge. Building on experience gained over the past
three years with the use of Java in Grid environments, we
have defined a rich set of classes that provide the Java pro-
grammer with access to basic Grid services, enhanced ser-
vices suitable for the definition of desktop problem solv-
ing environments, and a range of GUI elements. Initial
experiences with these components have been positive. It
has proved possible to recast major Grid services in Java
terms without compromising on functionality. Some sub-
stantial Java CoG Kit applications have been developed,
and reactions from users have been positive.

9

Figure 9: The Grid Enabled Console COmponent (GECCO) allowsthe user to specify dependencies between tasks
that are to be executed in the Grid environment. Here we show agraph created for a crystallography applicationShake
’n Bake.

Figure 10: The GRC allows to select a compute resource for scheduling a job interactively from a set of automatically
derived machines that fulfill a user-specific constraint.

10

Our future work will involve the integration of more ad-
vanced services into the Java CoG Kit and the creation of
other CoG Kits, with CORBA, DCOM, and Python being
early priorities. We also hope to gain a better understand-
ing of where changes to commodity or Grid technologies
can facilitate interoperability—and of where commodity
technologies can be exploited in Grid environments.

Availability

The Java Cog Kit is available as alpha release form the
CoG Kit web pages[27]. The release of the components is
done gradually to assure the necessary quality control of
the deliverd packages, classses, and methods. At present
the main distribution contains the low level components.
Besides the components described in this paper, we have
already an implementation of network based quality of
service methods. We expect that this package will be re-
leased as soon as the Globus toolkit API for this area will
be frozen. For more release notes, we refer to the web
page.

Acknowledgments

Many technologies and research projects are related and
important for the development of the CoG Kits. Some of
them can be found in [3]. We are grateful to members of
the NCSA Alliance for enlightening discussions on these
topics; in particular, we thank Jay Alameda, Dennis Gan-
non, Geoffrey C. Fox[8], and Mary Pietrowicz. This work
was supported in part by the Mathematical, Information,
and Computational Sciences Division subprogram of the
Office of Advanced Scientific Computing Research, U.S.
Department of Energy, under Contract W-31-109-Eng-38;
by the Defense Advanced Research Projects Agency un-
der contract N66001-96-C-8523; by the National Science
Foundation; and by the NASA Information Power Grid
program.

References

[1] Ken Arnold, Bryan Osullivan, Robert W. Scheifler,
Jim Waldo, Ann Wollrath, and Bryan O’Sullivan.
The Jini Specification. The Java Technology Series.
Addison-Wesley, June 1999.

[2] Joseph Bester, Ian Foster, Carl Kesselman, Jean
Tedesco, and Steven Tuecke. GASS: A data move-
ment and access service for wide area computing
systems. InProc. IOPADS’99. ACM Press, 1999.

[3] Computing Portals: Project Catalog.
http://www.computingportals.org/projects, 1999.

[4] CORBA 2.0/IIOP Specification.
http://www.omg.org/corba/c2indx.htm.

[5] Karl Czajkowski, Ian Foster, and Carl Kesselman.
Co-allocation services for computational grids. In
Proc. 8th IEEE Symp. on High Performance Dis-
tributed Computing. IEEE Computer Society Press,
1999.

[6] I. Foster and C. Kesselman, editors.The Grid:
Blueprint for a Future Computing Infrastructure.
Morgan Kaufmann Publishers, 1999.

[7] Ian Foster. Building the Grid: An Inte-
grated Services and Toolkit Architecture for
Next Generation Networked Applications.
http://www.gridforum.org/building_the_grid.htm,
July 1999.

[8] Geoffrey C. Fox and Wojtek Furmanski. HPcc
as High Performance Commodity Computing.
http://www.npac.syr.edu/users/gcf/HPcc/HPcc.html,
December 1997.

[9] The Gateway Project Web Page.
http://www.osc.edu/ kenf/theGateway, 1999.

[10] The Globus GRAM. http://www.globus.org/gram.

[11] The Globus Resource Specification Language.
http://www.globus.org/rsl.

[12] GrADS: Grid Analysis and Display System.
http://grads.iges.org/grads/.

[13] Ian S. Grah and Liam Quin. XML Specificaton
Guide. Wiley, 1999.

[14] Cay S. Horstmann and Gary Cornell.Core Java 2,
volume 1 and 2. Prentice Hall, 4 edition, December
1999.

[15] Tim Howes and Mark Smith.LDAP : Programming
Directory-Enabled Applications With Lightweight
Directory Access Protocol. Technology Series.
Macmillan Technical Publishing, 1997.

[16] HTTP - Hypertext Transfer Protocol.
http://www.w3.org/Protocols/.

[17] JAVA Naming and Directory Interface (JNDI).
http://java.sun.com/products/jndi. Version 1.2.

[18] Netscape Directory and LDAP Developer Central.
http://developer.netscape.com/tech/directory/index.html.

11

[19] Ryan McCormack, John Koontz, and Judith De-
vaney. Seamless Computing with WebSubmit.Con-
currency: Practice and Experience, in press.

[20] Dale Rogerson.Inside COM - Microsoft’s Compo-
nent Object Model. Microsoft Press, 1997.

[21] Richard Schwartz.Windows 2000 : Active Directory
Survival Guide. John Wiley and Sons, 1999.

[22] P. Stelling, I. Foster, C. Kesselman, C.Lee, and Gre-
gor von Laszewski. A Fault Detection Service for
Wide Area Distributed Computations. InProc. 7th
IEEE Symp. on High Performance Distributed Com-
puting, pages pp. 268–278, July 1998.

[23] Mary Thomas. The Hotpage Web Page.
http://hotpage.npaci.edu.

[24] Gregor von Laszewski. A Loosely Coupled Meta-
computer: Cooperating Job Submissions Across
Multiple Supercomputing Sites.Concurency, Expe-
rience, and Practice, Dec. 1999.

[25] Gregor von Laszewski, S. Fitzgerald, I. Foster,
C. Kesselman, W. Smith, and S. Tuecke. A Di-
rectory Service for Configuring High-Performance
Distributed Computations. InProc. 6th IEEE Symp.
on High-Performance Distributed Computing, pages
pp. 365–375, 1997.

[26] Gregor von Laszewski and Ian Foster. Grid Infras-
tructure to Support Science Portals for Large Scale
Instruments. InProc. of the Workshop Distributed
Computing on the Web (DCW). University of Ros-
tock, Germany, June 1999.

[27] Gregor von Laszewski, Jarek Gawor,
and Peter Lane. Java CoG Distribution.
http://www.globus.org/cog, January 2000. Ver-
sion 0.8.6.

[28] The Webflow Web page.
http://www.npac.syr.edu/users/haupt/WebFlow/demo.html.

12

