

Computation Institute

Practical Solutions for Big Data Analytics

Ravi Madduri (madduri@anl.gov) Paul Dave (pdave@uchicago.edu) Dinanath Sulakhe (sulakhe@uchicago.edu) Alex Rodriguez (arodri7@uchicago.edu)

Urban Science Genomics High energy physics Molecular biology **Climate change** Cosmology Linguistics Metagenomics Visual arts **Economics**

We are a non-profit organization of researchers, developers, and bioinformaticians, building solutions for the advancement of research in various fields

Our vision for a 21st century discovery infrastructure

To provide more capability for more people at substantially lower cost

- 12:30pm Challenges for biomedical analysis at scale
- 12:45pm Best practices and solution components
- 1:00pm Introduction to Globus Genomics, Globus Transfer
- 1:30pm Exercise: Transferring raw NGS datasets from sequencing centers and sharing
- 2:00pm Refreshment Break
- 2:15pm Demonstration of QC pipeline, Exome, RNA, Whole Genome analysis
- 2:30pm Exercise: Running example pipelines with sample data sets
- 2:45pm Running analysis at scale using Globus Genomics
- 3:15pm Exercise/Demonstration: Executing Exome, RNA, QC pipelines at scale
- 3:45pm Interactive Q&A and Session Wrap-up

All materials are available at: http://tinyurl.com/Insoy49 Please complete the sign-up form.

Thank you!

Challenges in Biomedical analysis at scale

- ...to get my sequence data from the NGS core to the lab for analysis."
- ...to easily, quickly, and reliably move or mirror (some or all of) my data to other places
 - Lab server, HPC cluster, desktop, public cloud server
- ...to easily and securely share my data with my colleagues at other institutions."
- ...to make my data available for others to replicate my experiments."
- ...a good place to backup and archive my research data, at a reasonable price."

Challenges in Sequencing Analysis

Data Movement and Access Challenges

- Data is distributed in different locations
- Research labs need access to the data for analysis
- Be able to Share data with other researchers/collaborators
 - Inefficient ways of data movement
- Data needs to be available on the local and Distributed Compute Resources
 - Local Clusters, Cloud, Grid

Once we have the Sequence Data

- Manually move the data to the Compute node
- Install all the tools required for the Analysis
 - BWA, Picard, GATK, Filtering Scripts, etc.
- Shell scripts to sequentially execute the tools
- Manually modify the scripts for any change
 Error Prone, difficult to keep track, messy...
- Difficult to maintain and transfer the knowledge

Manual Data Analysis

Solutions for Biomedical analysis at scale

What is Globus?

Big data transfer, sharing, publication and discovery... ...simply, securely, and fast...

...directly from your own storage systems

Reliable, secure, high-performance *file transfer* and *synchronization*

- "Fire-and-forget" transfers
- Automatic fault recovery
- Seamless security integration

Simple, secure *sharing* off existing storage systems

- Easily share large data with any user or group
- No cloud storage required

User A selects file(s) to share, selects user or group, and sets permissions

2 Globus tracks shared files; no need to move files to cloud storage!

Data Source

3

User B logs in to Globus and accesses shared file

Globus is SaaS

- Web, command line, and REST interfaces
- Reduced IT operational costs
- New features automatically available
- Consolidated support & troubleshooting
- Easy to add your laptop, server, cluster, supercomputer, etc. with Globus Connect

Flexible, scalable, affordable genomics analysis for all biologists

Globus Genomics

- Workflows can be easily defined and automated with integrated Galaxy Platform capabilities
- Data movement is streamlined with integrated Globus file-transfer functionality
- Resources can be provisioned on-demand with Amazon Web Services cloud based infrastructure

- 12:30pm Challenges for biomedical analysis at scale
- 12:45pm Best practices and solution components
- 1:00pm Introduction to Globus Genomics, Globus Transfer
- 1:30pm Exercise: Transferring raw NGS datasets from sequencing centers and sharing
- 2:00pm Refreshment Break
- 2:15pm Demonstration of QC pipeline, Exome, RNA, Whole Genome analysis
- 2:30pm Exercise: Running example pipelines with sample data sets
- 2:45pm Running analysis at scale using Globus Genomics
- 3:15pm Exercise/Demonstration: Executing Exome, RNA, QC pipelines at scale
- 3:45pm Interactive Q&A and Session Wrap-up

Exercise: Transferring raw NGS datasets from sequencing centers and sharing

Exercise 1: Account Signup

- 1. Go to: globus.org/signup
- 2. Create your Globus account
- 3. Validate e-mail address
- 4. Optional: Login with your campus/InCommon identity

Exercise 2: Transfer, Sharing, Group Management

- 1. Install Globus Connect Personal
- 2. Move file(s) from esnet#anl-diskpt1 to your laptop
- 3. Check your email for a notification on successful transfer
- 4. Go to globus.org/Groups and search for group named BioIT2015. Click Join the Group

Exercise 3: Transferring data from a Sequencing center

- 1. Login to https://bioit.globusgenomics.org
- 2. Click on Browse and Get Data using Globus Online tool on the left hand panel
- 3. Start typing the name of the endpoint sulakhe#SequencingCenter
- 4. Log in to the endpoint with username genomics, password globus
- 5. Select the the forward Exome files under Exome-seq-sample data and click Execute
- 6. Repeat the above step for reverse file

Break

Resume at 2:15pm

- 12:30pm Challenges for biomedical analysis at scale
- 12:45pm Best practices and solution components
- 1:00pm Introduction to Globus Genomics, Globus Transfer
- 1:30pm Exercise: Transferring raw NGS datasets from sequencing centers and sharing
- 2:00pm Refreshment Break
- 2:15pm Demonstration of QC pipeline, Exome, RNA, Whole Genome analysis
- 2:30pm Exercise: Running example pipelines with sample data sets
- 2:45pm Running analysis at scale using Globus Genomics
- 3:15pm Exercise/Demonstration: Executing Exome, RNA, QC pipelines at scale
- 3:45pm Interactive Q&A and Session Wrap-up

Demonstration of QC pipeline, Exome, RNA, Whole Genome analysis

RNA-Seq Analysis Workflow

Workflow Canvas | Illumina RNA-seq Analysis

RNA-Seq Analysis Workflow (Stage 1)

RNA-Seq Analysis Workflow (Stage 2)

Exome / Whole Genome Analysis

Workflow Canvas | Illumina Complete Exome Analysis Pipeline

- 12:30pm Challenges for biomedical analysis at scale
- 12:45pm Best practices and solution components
- 1:00pm Introduction to Globus Genomics, Globus Transfer
- 1:30pm Exercise: Transferring raw NGS datasets from sequencing centers and sharing
- 2:00pm Refreshment Break
- 2:15pm Demonstration of QC pipeline, Exome, RNA, Whole Genome analysis
- 2:30pm Exercise: Running example pipelines with sample data sets
- 2:45pm Running analysis at scale using Globus Genomics
- 3:15pm Exercise/Demonstration: Executing Exome, RNA, QC pipelines at scale
- 3:45pm Interactive Q&A and Session Wrap-up

Running example pipelines with sample data sets

Exercise 4 : Exome Analysis Workflow

- 1. Login to https://bioit.globusgenomics.org
- 2. Copy "dbsnp" and "1000G" files from: "Shared Data -> Data Libraries -> Reference Data Library" (into same history)
- 3. On the Main page, click on the "Workflow for Illumina Exome-Seq" and "import workflow"
- 4. Run Workflow: Click Workflow tab and select the imported Exome workflow and click "Run"
- Input Parameters: Select appropriate input files (Forward & Reverse as well as reference files for each step.
- 6. Click "Run Workflow" button.

Exercise 5 : Exome Analysis Workflow

 Try the Exome Workflow with Transfers jobs as inputs (Under Published Workflows)

Running Batch Job

- Create workflow
- Generate user API Key (if necessary)
- Download and fill out workflow table file
- Upload table file
- Submit

Running Batch Job (Workflow)

Running Batch Job (API Key)

-	
Logged in as arodri7@globusonline.org	pad
Logout	
Saved Histories	
Saved Datasets	
Saved Pages	
API Keys	
Public Name	
14	-

User preferences

Web API Key

Current API key: 286872d6!

Generate a new key now (invalidates old key)

An API key will allow you to access Galaxy via its web API (documentation forthcoming). Please note that this key acts as an alternate means to access your account, and should be treated with the same care as your login password.

Running Batch Job (Download)

Your workflows

Name								
Illumi	Illumina RNA-seq Analysis 👻							
API b	atch test worfklow - with trar	nsfer 💌						
API b	atch test worfklow 🕶							
Illum	Edit	ne 🕶						
	Run							
Work	Share or Publish	y others						
No wo	Download or Export	u.						
Othe	Submit via API batch mo	de						
Ourie	Сору							
Conf	Rename							
	View							
	Delete							
-								

g) 🖏 globus genomics | Galaxy

Analyze Data Workflow

Export Workflow Parameters for API Batch Submission: Workflow 'AF

Export parameters of workflow for API batch submission

The Globus Genomics Galaxy API allows submission of a user defined workflow multiple times

- API Key You will need to generate an API key to identify yourself with the Galaxy server. T following the instructions.
- Workflow parameters table You can create a workflow through the workflow generator. with your input files and parameters that are specific to your workflow. Please don't modify
 Export Workflow Parameters for batch submission

Running Batch Job (Fill out)

 $\Theta \Theta \Theta$

Galaxy-API-Workflow-API batch test worfklow (1).txt

#Data Export for Workflow Batch Submission Through the APII

INSTRUCTIONS

#The following data can be used to input the parameters you have previously determined to be #set at runtime. Please specify the library or history where the input data can be found. #Once you have filled out the table you can run the API script to submit the jobs through Galaxy #via the API.

#NOTE: If you make any changes to the workflow or edit the name of the workflow, you will need #to recreate the table before submitting the job via the API since some metadata parameters will #be modified.

#NOTE: It is up to the user to make sure the input files are in the correct format for each #parameter being filled out.

#NOTE: You will need to specify three items for input files to an application. #The format for an input file should be [SourceType:SourceName:file_name]: #1. Source Type - which can be library or history #2. Source Name - the name of the library or history. #3. Filename - specify the name of the file as it exists in the library or history.

SampleName	SourceType:SourceName:Ref1	SourceType:SourceName:Ref2	Param:addValue:exp	
TestSample1	library:API Test Library:Tab	ular1.bed library:API Tes	t Library:Tabular2.bed	expressionToAdd1
TestSample2	library:API Test Library:Tab	ular1.bed library:API Tes	t Library:Tabular2.bed	Second submission
TestSample3	library:API Test Library:Tab	ular1.bed library:API Tes	t Library:Tabular2.bed	Just for kicks

Running Batch Job (Upload)

#Data Export for Workflow Batch Submission Through the APII

INSTRUCTIONS

#The following data can be used to input the parameters you have previously determined to be #set at runtime. Please specify the library or history where the input data can be found. #Once you have filled out the table you can run the API script to submit the jobs through Galaxy #via the API.

#NOTE: If you make any changes to the workflow or edit the name of the workflow, you will need #to recreate the table before submitting the job via the API since some metadata parameters will #be modified.

#NOTE: It is up to the user to make sure the input files are in the correct format for each #parameter being filled out.

#NOTE: You will need to specify three items for input files to an application. #The format for an input file should be [SourceType::SourceName::file_name]: #1. Source Type - which can be library or history #2. Source Name - the name of the library or history. #3. Filename - specify the name of the file as it exists in the library or history.

###TABLE DATA

SampleNa	ane i	Sourc	етуре	::SourceName::Ref1	SourceType::S	ource	Name::Ref2	Param::2	62::addValue::exp
Run 1	library:	API	TEST	LIBRARY::Tabular1.bed	library::API	TEST	LIBRARY: :Tabul	ar2.bed	Value1
Run2	library:	API	TEST	LIBRARY::Tabular1.bed	library::API	TEST	LIBRARY: :Tabul	ar2.bed	Value2
Dun 3	1.1.1.		THE OWNER	LIDDADY Wahulart had	Liberry ADT	1000 C 100	T.T.D.D.A.D.V Malawall	had free	ttal und

Run3 library::API TEST LIBRARY::Tabular1.bed library::API TEST LIBRARY::Tabular2.bed Value3

Your History	C 🕈
Simple-Batch-no-transfer 3.4 KB	4
1: Galaxy-API-Workflow- API_batch_test_worfklow.t 7 lines format: txt, database: ? Globus transfer summary: Fro arodri7#ci-arodri-laptop To: galaxy instance.	op (/ ≌ xt Docal ⊘ ■
#Data Export for Workflo ### INSTRUCTIONS ####################################	w Batch ######### be used

Running Batch Job (Submit)

	g) 🏷 globus genomics Galaxy		Analyze Data	Workflow	Shared Data -	Your History	C 🕈
,	Tools Metagenomic analyses	Workflow batch su	ubmit (version 1	.0.0)		Simple-Batch-no-transfer 3.4 KB	0 🖻
	ASTA manipulation NCBI BLAST+ Ontology services	Table file with param 1: Galaxy-API-Work	kflorfklow.txt 🛊			2: Log for batch submission data 1 55 lines	● / ¤
6	Batch Management Workflow batch submit Submit workflows multiple times	Execute				format: txt, database: ?	0 🖻
		^				Workflow Name APT ha	tch test v
Sa	ved Histories					Your History	0.6
sea Adv	anced Search					<your_project_name> ple1~API batch test worfklow~Mon_Aug_(:32:57_PM</your_project_name>	~TestSam 05_2013_4
	Name	Datasets	Tags	Sharing S	Size on Disk 🤇	667 bytes	47 🖻
	~TestSample3~API batch test worfklow~Mon_Aug_05_2013_4:33:00	D_PM ▼ 2 3	3 O Tags	(2 667 bytes n a	5: Concatenate datase on data 4 and data 2	ets 👁 🖉 💥
	~TestSample2~API batch test worfklow~Mon_Aug_05_2013_4:32:58	2 3	5 0 Tags	(2 667 bytes n a	4: Cut on data 3	• 0 ×
					-	3: Add column on dat	ta 1 👁 🖉 💥
	~TestSample1~API batch test worfklow~Mon_Aug_05_2013_4:32:57	_PM 2 3	0 Tags	(667 bytes n	2: Tabular2.bed	• / %
	~Test1~Gerogetown-ExomeSeq-	▼ 47	0 0 T		c.z.c.p. 2	1: Tabular1.bed	• / ×
			8 U lags		0.3 GB		

Example Collaborations

Dobyns Lab

Backround: Investigate the nature and causes of a wide range of human developmental brain disorders

Approach: Replaced manual analysis with Globus Genomics

Results: Achieved greater than 20X speed-up in analysis of exome data

Future Plans: Leverage scale-out capability of Globus Genomics on 150 exome data set and seek to achieve 50X speed-up in analysis

Example Collaborations

Georgetown Medical Center

Backround: Innovation Center for Biomedical Informatics is an academic hub for innovative research in the field of biomedical informatics.

§ICDI

Approach: Augment current team and tools with a NGS analysis platform to support standard and best-practice pipelines while leveraging elastic cloud-based resources.

Results: Pilot effort is complete – improved quality and performance results on whole genome, exome and RNA-Seq pipelines utilizing Globus Genomics

Future Plans: Provide Globus Genomics as a well-managed platform-as-aservice for ICBI collaborators and users

Typical Engagement

Proof of Concept

- Limited scale
- Existing or slightly modified pipeline
- Setup
- Training
- Testing

Pilot

- Multi-endpoint
- Additional tools
- Pipeline validation
- Scale-out analysis
- Optimization
- Training
- Staged transition to production

Production

- Monthly, annual subscription
- Startup help
- Training
- Support

1 – 2 weeks

1 – 3 months

Ongoing

Wrapping up...

We are a non-profit service provider to various research communities

We are a non-profit service provider to various research communities

We offer multiple subscription tiers to provide a cost-effective solution and ensure sustainability of our service

Subscription Pricing

	Starter	Standard	Large
Cumulative Analysis Workload* (over a 12-month subscription)	~ 800 exomes ~80 whole genomes ~ 400 RNA-seqs	~ 4000 exomes ~ 400 whole genomes ~ 2000 RNA-seqs	~ 20000 exomes ~ 2000 whole genomes ~ 10000 RNA-seqs
Technical Support	M-F, 9-5 CT 2-business day response	M-F, 9-5 CT, 1-business day response	M-F, 9-5 CT 1-business day response
Access to Enhanced Workbench	Yes	Yes	Yes
Multi-sample submission	Yes	Yes	Yes
Usage Dashboard	Yes	Yes	Yes
Price/Performance Controls	Basic	Advanced	Advanced
On-Demand Tool Wrapping	No	Limited	Yes
HIPAA / optional BAA	Not Available	Available	Available

Annual subscriptions start at \$5,000 for individual PIs and \$10,000 for core labs

* Representative workloads based on human genome, GATK variant calling pipeline (whole genome, exome), Tuxedo suite of tools (RNA-Seq), etc.

Thank you to our sponsors!

U.S. DEPARTMENT OF ENERGY

Argonne NATIONAL LABORATORY

