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Abstract 

Computational grids are enabling collaboration between 
scientists and organizations to generate and archive ex- 
tremely large datasets across shared, distributed resources. 
There is a need to visually explore such data throughout the 
life-cycle of projects. Practical exploration of large datasets 
requires visualization tools that can function in the same 
grid environment in which the data is created and stored. 
Resource management interfaces are an important struc- 
tural component of grid computing environments because 
they enable uniform access to the wide variety of resources 
necessary f o r  scient@ work. We describe a new advance- 
reservation system f o r  graphics resources; and an applica- 
tion of existing grid technology to create general-purpose 
active storage systems. We report our experience with pro- 
totype infrastructure and application components, involving 
experiments coupling end-to-end resources f o r  interactive 
visual exploration of large data in representative distributed 
environments. 

1. Introduction 

Grid environments [21] are increasingly being used by 
applications such as particle physics [22], climate model- 
ing [3], or astrophysics [4]. These applications make use 
of unique, high-end supercomputers and storage-systems 
and produce large multi-dimensional data sets. This type 
of work is increasingly being performed in collaborative ef- 
forts between geographically distributed scientists and or- 
ganizations, utilizing shared resources that are also widely 
distributed [36,25,7]. 

Throughout the life-cycle of such projects, there is a need 
to visually explore the resulting data. Motivations include 
visual validation during algorithmic prototyping and imple- 
mentation, visual evaluation of results while exploring the 
parameter space of the simulation, and browsing and mining 
of full-scale results while exploring the coordinate space of 
the results. To integrate such visual methods into the scien- 

tific process, graphics tools must be developed to function 
with grid resources [ 181. 

There are important motivations for making visual tools 
grid-aware. Computations often generate and store data 
at locations remote from the visualization user. For ex- 
ploratory tasks, it is inconvenient for users to manually 
transfer remote datasets to their local visualization host 
prior to browsing. Also, remote datasets in the grid are 
likely to be large-the user may not be able to store the 
data locally, and browsing may only require sparse selec- 
tions of data. It is also important to note that grid-aware 
tools can also exploit additional capabilities offered by re- 
mote resources. In general, programming with grid inter- 
faces enhances the portability of an application, increasing 
both availability and aggregate capacity [39, IO). 

Interactive access to large, remote datasets requires re- 
liable, high-performance interfaces. Grid environments are 
dynamic, so visual tools must also be easy to switch from 
one resource to another. For some large-data or high- 
performance visualization tasks, tools must access remote 
computers as well as data. Finally, most users have limited 
desktop resources, and visual tools may need to make use 
of remote or centralized graphics resources. 

To access grid resources, visual tools must utilize re- 
source management (RM) interfaces. We have defined and 
prototyped two new RM interfaces that, when combined 
with existing infrastructure, permit end-to-end management 
of distributed visualization tasks. First, we generalize exist- 
ing notions of application-aware storage, such as ADR [26], 
to provide an appropriate grid-level active storage resource. 
Second, we provide advance graphics reservations to fa- 
cilitate sharing of centralized graphics accelerators and dis- 
plays. 

In the following sections, we focus on large-scale visual 
browsing-interactive exploration of multi-dimensional 
data at varying levels of detail-as a representative appli- 
cation that can utilize grid resources. We examine in more 
detail the kinds of resources and RM interfaces needed to 
enable end-to-end management of grid-based visual tasks. 

Finally, we present experiences from running our own 
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Figure 1. Visual reduction datapath channels 
parallel I/O and computing into graphics sys- 
tems. 

browsing application for volumetric time-series data in a 
distributed grid testbed. Our application experience shows 
that it is feasible to saturate contemporary graphics hard- 
ware with data obtained over wide-area networks using dis- 
tributed resources. This work illustrates the viability of our 
new RM interfaces in executing distributed visualizations. 
Observed wide-area performance variation also suggest the 
need for new RM interfaces supporting network quality-of- 
service (QoS) in production grids. 

2. Visual Browsing Datapath 

There are many visualization techniques that can ben- 
efit from distributed resources using simple client-server 
mechanisms. Large-scale parallel renderers can be hosted 
on supercomputers to serve remote display clients [24]. 
Similarly, conventional rendering techniques can be cou- 
pled with remote storage services to view remotely homed 
data [ 181. To study the limits of grid RM systems, we in- 
stead look at a more distributed exploration problem. 

A large-data exploration problem can be characterized 
as a reduction datapath wherein bulk data from high-speed 
storage systems is reduced with parallel algorithms and fed 
to a graphics system for final rendering (Figure 1). Such 
datapaths are easily adapted for grid execution because they 
permit streaming primitives, masking latency over high- 
bandwidth networks. There are many well known tech- 
niques that can be applied during the reduction stage. 

We present results using our own distributed volumetric- 
data browser with grid-based resources, but the utility of a 
reduction datapath is not unique to the dithering and splat- 
ting algorithms used in this application. Examples of com- 
mon reduction methods include resolution down-sampling, 
iso-surfacing, field slicing, and even parallel rendering- 
in which case the final rendering might be a compositing 
process. Recent work by others has improved the perfor- 
mance of the popular Visualization Toolkit (VTK) [32] on 
parallel hardware and adapted some algorithms for out-of- 
core execution [ 1,271. Programmers using VTK commonly 

construct multi-stage, reduction datapaths. 
There are many usage scenarios for a visual reduction 

datapath, benefitting from different ranges of distributed re- 
sources. To name a few: 

Unstructured browsing. A user can operate a CUI 
and manually control datapath parameters that select 
regions of data and filtering options. This technique 
is most sensitive to datapath latency and performance 
predictability. 

Animated browsing. When one or more browsing pa- 
rameters are changed in an automated or continuous 
fashion, the application can predict requests to mask 
path delays. This variant allows tasks to more effec- 
tively pipeline and buffer operations than with unstruc- 
tured browsing. 

Batch processing. Movie generation and other high- 
throughput problems can easily utilize distributed re- 
sources with very loose synchronization. 

In this article we focus on exploratory browsing. As de- 
scribed in Section l ,  interactive examination of data is use- 
ful throughout the life-cycle of large scientific projects. For 
such interactive scenarios, responsiveness is important. For 
large-data visualization, response time is affected by both 
message latency in the datapath as well as the size of work 
units. 

When tools are stressed to their limits by users with large 
data, the time it  takes to process or render data may dom- 
inate the total response time. While large work units al- 
low one to minimize control overhead, a stream of smaller 
work units permits more effective user interaction. Thus our 
choice of browsing tasks focuses our interest in  distributed 
resources. We require high-bandwidth resources that can be 
coupled to produce responsive work streams. 

3. Important Resources 

In order to distribute the components of our browsing 
datapath, we need to access a variety of resources. Grid 
computing environments provide scheduling and allocation 
for several of these, but highly distributed visualization dat- 
apaths also may need to access more specialized graphics 
hardware for which there are no extant grid interfaces (Fig- 
ure 2). The resources we are interested in include: 

0 compute resources 

0 storage systems 

graphics equipment 

networks and switches 
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To be accessed by applications, grid resources must be 
exported through RM interfaces that support resource al- 
location and configuration. In practice, grid environments 
must facilitate the &covey of resources too, so that appli- 
cation and users need not manually identify every remote 
resource. However, we focus here on the core allocation 
and configuration problem. 

In this section we describe these resources and survey 
existing grid RM interfaces, where available. 

3.1. General-purpose processors 

General-purpose processors are important to execute 
data reduction tasks in the visualization pipeline. Such 
desktop and parallel computers have received the most at- 
tention in grid environments. There are interfaces to sched- 
ule, submit and control jobs remotely with varying levels 
of generality, security, and other features. Condor [3 11 
provides support for high-throughput tasks, and is mostly 
suited to movie-generation and other batch visualization 
problems. Legion [ 1 I ]  and PBS [38] provide support for 
certain types of automated job placement across multiple 
resources. We have considerable experience deploying and 
using resources with the Globus GRAM job-submission in- 
terface; GRAM provides a single mechanism to start jobs on 
a wide range of remote computer types, and permits higher- 
level components to plan job placement and/or coordinate 
distributed tasks [14, 10, 1.51. 

3.2. Online storage systems 

Random access to large data requires online storage sys- 
tems. These systems are particularly interesting for inter- 
active visual exploration since they allow users to browse 
large amounts of data in an unstructured manner. Existing 
remote interfaces to online storage systems include high- 
level schedulers such as SRB [5] and HPSS [23], as well 
as block-level interfaces such as DPSS [37], FTP, and NFS. 
The bandwidth, latency, and request granularity of an on- 
line storage interface all affect the responsiveness of appli- 
cations using their services. 

3.3. Graphics accelerators 

Graphics rendering algorithms can often take advantage 
of hardware accelerators. Parallel accelerators have been 
used to render large data on SGI Onyx2 systems [28], and 
the Pomegranate [ 161 system proposes an architecture for 
scalable (clustered) acceleration. For practical resource 
sharing, there is a need to mediate access to the hardware 
by both local and remote users. However, we do not know 
of any existing grid-level interfaces to manage graphics re- 
sources. 

In typical graphics server platforms, system adminis- 
trators must make static decisions about how to logically 
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Figure 2. Important resources for grid-based 
visualization. 

partition graphics hardware [30, 341; graphics sessions are 
scheduled by users approaching a console and logging in. 
The length of a session is controlled by the user applications 
that are launched at login time, and may continue indefi- 
nitely. Commercial SGI software provides an environment 
for running OpenGL tasks on an acceleration server with 
a virtualized displayhnput device on a remote host within 
the local organization [29]. In the following sections, we 
describe the use of our own new graphics RM service. 

3.4. Networks 

To plan interactive visualization datapaths, we must be 
able to predict communication performance between re- 
sources. In addition to the discovery problem that exists for 
all resources, we face the problem that the communication 
network itself is a shared resource. To insulate applications 
from unexpected performance variations (due to changes in 
the behavior of unrelated applications), researchers have de- 
veloped a concept of Quality of Service (QoS) guarantees. 

Various mature network QoS allocation schemes exist, 
such as IntservRSVP [9], Diffserv [8] and ATM [35], but 
they do not provide secure and generic grid interfaces for 
end-users. The prototype GARA advance-reservation sys- 
tem provides a grid interface to underlying network man- 
agers such as Diffserv, as well as other non-network re- 
source managers [20]. The Condor high-throughput sched- 
uler can manage network resources for its jobs but does 
not interact with underlying network managers to provide 
service guarantees [6]. Due to a lack of QoS interfaces in 
production networks, we have been unable to benefit from 
network service guarantees in our visualization experiments 
thus far. 

3.5. Graphics displays 

In resource centers with multiple visualization users, i t  is 
common to find shared display devices. These displays may 
be shared because they are expensive or special-purpose, 
e.g. CAVE and ImmersaDesk [ 121 installations, or because 
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they are attached to expensive, shared graphics accelerators 
such as are described in Section 3.3. Another common ex- 
ample is video projectors in AN-equipped conference and 
seminar rooms. In typical environments, such shared dis- 
plays are either managed manually by site administrators or 
made available on a first-come, first-served basis through 
simple, local mechanisms. We address this issue in the fol- 
lowing sections while describing our new graphics RM ser- 
vice. 

4. New Interfaces 

In the course of our visualization experiments, we have 
found it  useful to define new RM interfaces for parallel ac- 
tive storage systems and shared graphics resources. 

We obtain active storage systems by combining online 
storage with general-purpose processors. These systems are 
capable of storing large amounts of application data in a per- 
sistent or scheduleable way, while simultaneously hosting 
domain-specific or application programs that can be paral- 
lelized to scale with the available data size and bandwidth. 
These systems are realized by clustered computers with dis- 
tributed disks, or with parallel computers connected to local 
or system-area storage. 

The active storage model enhances the utility of large- 
scale storage equipment. Our visualization datapath is not 
hindered by overly-general access protocols that only per- 
mit bulk transfer of raw data. By executing our reduction 
algorithm at the storage system, we are able to optimize the 
network-bound data for the viewing parameters selected by 
the user. 

Several domain-specific active storage abstractions have 
been previously published, such as the ADR [26]. Such ab- 
stractions do not conflict with our notion of an active storage 
system; rather the software that responds to domain-specific 
requests is part of the schedulable application in our model. 
This simplifies resource deployment, as the operator need 
only configure base RM components and policy elements 
to allow multiple application groups to share the resource. 

4.1. Active storage manager 

We have defined a minimal grid interface for active 
storage systems that consists of the Globus GRAM job- 
submission interface [ 141 and the normal UNIX filesystem. 
In the Globus RM architecture, GRAM provides resource 
access but resource discovery is left to complementary ser- 
vices such as the MDS information system [13, 17, 19,211, 
which is an ongoing research effort. Related work on data 
catalogs and storage-system directories include other ser- 
vices that will simplify grid-based visualization [2]. For the 
experiments described in this article, we utilized ad hoc dis- 
covery and dataset management, in anticipation of improv- 
ing grid information services. 
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While it  had been argued that high-performance stor- 
age and computational systems should export rich advance- 
reservation capabilities in the grid [20], there are interim so- 
lutions that allow immediate application deployment. These 
alternatives enable practical work while new grid capabili- 
ties are being developed. For space-sharing job submission, 
we dedicate disk bandwidth implicitly as part of each pro- 
cessing node; for time-sharing job submission, disk band- 
width can be allocated by a locale-specific interface such 
as guaranteed-rate U0 (GRIO) [33], though this admits cer- 
tain scheduling deadlock risks that would be avoided with 
advance reservation. 

Our visual browsing application uses the DUROC co- 
allocation library [ 151 to automate interaction with multiple 
GRAM resources. On clustered storage, the application ex- 
plicitly manages data and task layout. On centralized stor- 
age, the host scheduler places tasks. 

4.2. Graphics session manager 

We have constructed a session-based grid interface to 
graphics systems that combines advance reservation with 
dynamic logical re-partitioning of hardware. A remote 
client makes a reservation of a particular set of accelerators 
for a particular period of time, and the resource manager 
automatically invokes the session software at the selected 
time. So far, we have identified three typical usage scenar- 
ios: 

1. Public terminal. The session requires password re- 
authentication to prevent unauthorized use of the con- 
sole. 

2. Secure terminal. With grid single sign-on security, the 
session can start directly if the console is physically 
secured. 

3. No terminal. The requested session runs with null de- 
vice inputs either as a batch program or a remotely- 
controlled application. 

These scenarios are distinguished only by minor variations 
in how the session software is initialized. 

In general one might want to separately reserve an accel- 
erated graphics session, a display device, and the required 
video data path and then bind them together close to the ses- 
sion time. However, our RM system does not address virtu- 
alized displays so the managed displays are always part of 
the local physical resource pool. We chose to add a “seat” 
location attribute to the session management interface de- 
scribed in the previous section, so the accelerator, display, 
and M x N  keyboard/video/mouse (KVM) switch path are all 
assigned in one request. 

Our session manager extends the GARA generic grid 
reservation system [20] with the logic needed to control the 
X Windows server tasks as well as the command-channel of 
our KVM switch. 
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CPU CPU RAM Net 
Name cnt MHz MB Mb/s 
Cluster1 32 550 4096 2000 8 California; 

! Texas 

Disk 
GB 

1500 

4. PC3 

Cluster2 
Origin 

, KVMswttch 

ClusteR I-Desk Console 

8 550 2048 2000 1500 
10 200 4096 1000 300 

Figure 3. Testbed layout for reported results. 

PC2 
PC3 

5. Experimental Testbed 

2 933 384 100 d a  
2 933 384 1000 nla 

In this section we describe experimental resources we 
have deployed in order to gain experience developing and 
executing distributed visualization tasks (depicted in Fig- 
ure 3 and Table 1). These resources combine existing and 
new RM interfaces described above. 

5.1. Active storage servers 

We have experimented with multiple active storage 
servers providing parallel disk-I/O and parallel processing: 

10-cpu SGI Origin with 300 GB disk array. 

0 32-CPU Linux cluster with 1.5 TB of disk. 

8-CPU demo Linux cluster with 1.5 TB of disk. 

The Origin storage is not distributed, so we operate a single 
GRAM gatekeeper that allows the submission of parallel 
jobs. For the Linux clusters, we operate a GRAM gate- 
keeper on each node so that our applications can place tasks 
however desired (see example request in Figure 4). While 
the 16-node cluster is a permanent installation in our lab, 
the 8-node cluster was a demo machine operated on the 
show-floor at the SC2000 conference (Dallas, TX, Novem- 
ber 2000). 

Because of cooperative policies in our testbed, there is 
little competition and we obtain essentially dedicated ac- 
cess to the SMP and cluster-based active storage with just 
immediate-access time-sharing managers. We are partici- 
pating in the configuration of a much larger cluster that will 
serve as a testbed for shared access with new grid-based 
QoS and advance reservation services. 

Table 1. Hardware properties of testbed re- 
sources. 

+ ( &  (manager=nodel) 

( &  (manager=node2) 
(executable=filterprog)) 

(executable=filterprog)) 
. . .  
(&(manager=nodeN) 

(executable=filterprog)) 

Figure 4. Active storage request to a small 
cluster. 

5.2. Graphics resources 

We operate multiple RealityEngine2 accelerator boards 
in our SGI Origin storage system. Connected to our SGI 
(via a KVM switch) is an ImmersaDesk virtual-reality dis- 
play and a wide-screen desktop console. In addition, we 
operate multiple commodity personal-computers with re- 
cent consumer-level NVIDIA graphics accelerators. The 
SGI and several PCs have gigabit-Ethemet network inter- 
faces, while one PC has an older lOObaseT Ethernet inter- 
face. These resource serve to represent typical visualization 
facilities. 

Our session manager environment allows users to re- 
serve one or more SGI boards for an X Window session. 
They also must reserve the desktop or ImmersaDesk seat, 
or run without a console for off-screen rendering tasks (see 
example request in Figure 5). The implementation is con- 
figured with a table of local resources that are subject to 
management by the service. A "slot manager" keeps track 

&(manager=onyx2) 
(pipecount=2) 
(sessiontype=public) 
( sea t=ides k )  
(starttime="13:00 PST") 
( duration= " 2 : 0 0 " ) 

Figure 5. Graphics session request for a local 
console. 
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of what resources are assigned over future time intervals. 
As the current time approaches the beginning of an allo- 
cated slot, session construction is triggered. Conversely, as 
the current time approaches the end of the allocated slot, 
session destruction is triggered. 

Session construction involves configuring the KVM 
switch and starting the session software. The KVM switch 
is automated via a serial management port. Session destruc- 
tion involves resetting the KVM switch and killing the ses- 
sion software to bring hardware back to an idle state. 

Data 
Sink 
PCI 

PC2 

PC3 

Origin 

6. Application Experience 

Data High Low Norm. 
Source Mbls Mb/s Range 

Clusterl 170 110 35% 
Origin 125 90 28% 

Clusterl 96 60 38% 
Origin 40 12 39% 

Clusterl 240 90 63% 
Cluster2 320 200 38% 
Clusterl 190 120 37% 

For experiments, we have constructed an interactive 
browser for volumetric time-series data. The application 
uses a reduction path as discussed in Section 2, search- 
ing the data fields on the active storage system to generate 
sparse geometry representing the regions of the field match- 
ing a user-specified range of value. 

Our application automates acquisition of the storage re- 
source, and the user acquires the interactive graphics re- 
source in order to launch the application CUI. The user 
either reserves the graphics resource in advance using our 
GARA service or logs into a regular X server console, de- 
pending on whether it is our managed Origin or a PC. 

6.1. Transport measurement 

Our application provides a fully buffered, streaming dat- 
apath. The local rendering can run faster than the data trans- 
fer rate, allowing motion-study of one dataset while another 
is being received. Buffered data is nearly always saturat- 
ing the graphics hardware independent of datapath perfor- 
mance. Transfer rate is a better measure of datapath perfor- 
mance, though it  is capped by graphics hardware capabil- 
ity (Tables 2 and 3). 

The application GUI allows the user to tune filtering pa- 
rameters for the desired trade-off of visual complexity for 
transfer or rendering frame-rate, and in practice it adapts 
well over burst (5-second average) transfer rates in the range 
50 Mbitsls to around 320 Mbitsls, where our current graph- 
ics resources become saturated. 

6.2. Desktop performance 

The application is useful while consuming l00baseT 
desktop bandwidth (50-90 Mbls) in both LAN and WAN 
datapaths. Operation at this level can utilize a wide range of 
graphics and active storage resources, and due to a parallel 

‘Our path synchronization causes a partial phase lock between the 
transfer and render rates, relaxed by variable-depth buffering and ability to 
render multiple times per transfer. For fixed data sizes, this causes multi- 
modal rate distributions as the application “searches” for the best transfer 
rate and integer renderltransfer multiplier. 

Data High Low Norm. 
Sink Source Mbls Mb/s Range 

Origin Clusterl 250 17% 

Table 3. Observed datapath throughput with- 
out rendering limit. 

transport architecture it can often achieve good bandwidth, 
without network QoS guarantees and despite competition in 
the LAN and WAN. Such application instances benefit most 
from the flexibility of grid access to commodity storage and 
graphics resources. 

6.3. High performance 

The application sometimes saturates our graphics re- 
sources when it is connected to gigabit-class networks. In 
our SC2000 demo environment, the local show-floor cluster 
provided more predictable (and slightly faster) performance 
when we had dedicated access, but when we could not get 
dedicated access we were able to fall back on remote clus- 
ters. Our remote cluster in California sometimes achieved 
75% of the dedicated, local cluster performance despite 
traversing multiple networks with best-effort service (Table 
2). However, wide-area performance varied widely during 
the day. Simulating an increase in graphics hardware per- 
formance that shifts the path bottleneck, we are confident 
the application can utilize close to 400 Mbit/s (Table 3). * 

7. Conclusion 

Visual exploration of large data can benefit from grid- 
based resource environments. Grid interfaces give applica- 
tions access to redundant resources, improving availability 

*We simulate this increase by disabling the “draw” calls in the appli- 
cation loop, but continuing to perform the normal data buffering. We have 
not yet tried to tune TCP/IP or Ethernet for gigabit performance since ren- 
dering remains our primary bottleneck. 
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in  the face of contention and failure. Applications can ex- 
ploit these same interfaces to obtain higher aggregate re- 
source capabilities, e.g. larger storage spaces, higher YO 
bandwidths, and higher computational throughput. We have 
illustrated a simple visual reduction paradigm that, paired 
with any of a number of existing visualization techniques, 
can adaptively utilize distributed resource environments. 

In addition to typical grid services, we have identified 
graphics accelerators and application-extended active stor- 
age as important resources deserving of grid RM interfaces. 
We have presented a unique grid-based advance reservation 
capability for high-end graphics accelerators that can both 
simplify usage of localized resource-sharing environments 
and assist in planning of distributed visualization runs. Ex- 
perimentation with a grid-based visual browsing application 
validates the use of standard RM interfaces for active stor- 
age systems. We have found it practical to build resilient 
visualization environments by replicating data on multiple 
remote storage systems and utilizing replicas when the pri- 
mary choice is unavailable. 

While parallel transfer methods achieve acceptable per- 
formance for typical desktop systems in best-effort net- 
working environments, we have seen that the lack of grid- 
level network QoS guarantees hinders the end-to-end man- 
agement of high-performance WAN datapaths. Best-effort 
performance over gigabit-class WANs is not predictable on 
a level comparable to that of the storage and graphics re- 
sources available for distributed applications, reducing the 
accuracy of distributed datapath prediction and planning. 
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