
Practical Resource Management for Grid-based Visual Exploration

Karl Czajkowski Alper K. Demir Carl Kesselman Marcus ThiCbaux

Information Sciences Institute
University of Southern California

Marina del Rey, CA 90292
E-mail: {karlcz, demir, Carl, thiebaux}@isi . edu

Abstract

Computational grids are enabling collaboration between
scientists and organizations to generate and archive ex-
tremely large datasets across shared, distributed resources.
There is a need to visually explore such data throughout the
life-cycle of projects. Practical exploration of large datasets
requires visualization tools that can function in the same
grid environment in which the data is created and stored.
Resource management interfaces are an important struc-
tural component of grid computing environments because
they enable uniform access to the wide variety of resources
necessary f o r scient@ work. We describe a new advance-
reservation system f o r graphics resources; and an applica-
tion of existing grid technology to create general-purpose
active storage systems. We report our experience with pro-
totype infrastructure and application components, involving
experiments coupling end-to-end resources f o r interactive
visual exploration of large data in representative distributed
environments.

1. Introduction

Grid environments [21] are increasingly being used by
applications such as particle physics [22], climate model-
ing [3], or astrophysics [4]. These applications make use
of unique, high-end supercomputers and storage-systems
and produce large multi-dimensional data sets. This type
of work is increasingly being performed in collaborative ef-
forts between geographically distributed scientists and or-
ganizations, utilizing shared resources that are also widely
distributed [36,25,7].

Throughout the life-cycle of such projects, there is a need
to visually explore the resulting data. Motivations include
visual validation during algorithmic prototyping and imple-
mentation, visual evaluation of results while exploring the
parameter space of the simulation, and browsing and mining
of full-scale results while exploring the coordinate space of
the results. To integrate such visual methods into the scien-

tific process, graphics tools must be developed to function
with grid resources [181.

There are important motivations for making visual tools
grid-aware. Computations often generate and store data
at locations remote from the visualization user. For ex-
ploratory tasks, it is inconvenient for users to manually
transfer remote datasets to their local visualization host
prior to browsing. Also, remote datasets in the grid are
likely to be large-the user may not be able to store the
data locally, and browsing may only require sparse selec-
tions of data. It is also important to note that grid-aware
tools can also exploit additional capabilities offered by re-
mote resources. In general, programming with grid inter-
faces enhances the portability of an application, increasing
both availability and aggregate capacity [39, IO).

Interactive access to large, remote datasets requires re-
liable, high-performance interfaces. Grid environments are
dynamic, so visual tools must also be easy to switch from
one resource to another. For some large-data or high-
performance visualization tasks, tools must access remote
computers as well as data. Finally, most users have limited
desktop resources, and visual tools may need to make use
of remote or centralized graphics resources.

To access grid resources, visual tools must utilize re-
source management (RM) interfaces. We have defined and
prototyped two new RM interfaces that, when combined
with existing infrastructure, permit end-to-end management
of distributed visualization tasks. First, we generalize exist-
ing notions of application-aware storage, such as ADR [26],
to provide an appropriate grid-level active storage resource.
Second, we provide advance graphics reservations to fa-
cilitate sharing of centralized graphics accelerators and dis-
plays.

In the following sections, we focus on large-scale visual
browsing-interactive exploration of multi-dimensional
data at varying levels of detail-as a representative appli-
cation that can utilize grid resources. We examine in more
detail the kinds of resources and RM interfaces needed to
enable end-to-end management of grid-based visual tasks.

Finally, we present experiences from running our own

4 16
0-7695-1296-8/01$10.00 0 2001 IEEE

Parallel YO RedUctlon Sortlng Transport Renderlng

TCPilP Recisve Buffer

21

Figure 1. Visual reduction datapath channels
parallel I/O and computing into graphics sys-
tems.

browsing application for volumetric time-series data in a
distributed grid testbed. Our application experience shows
that it is feasible to saturate contemporary graphics hard-
ware with data obtained over wide-area networks using dis-
tributed resources. This work illustrates the viability of our
new RM interfaces in executing distributed visualizations.
Observed wide-area performance variation also suggest the
need for new RM interfaces supporting network quality-of-
service (QoS) in production grids.

2. Visual Browsing Datapath

There are many visualization techniques that can ben-
efit from distributed resources using simple client-server
mechanisms. Large-scale parallel renderers can be hosted
on supercomputers to serve remote display clients [24].
Similarly, conventional rendering techniques can be cou-
pled with remote storage services to view remotely homed
data [181. To study the limits of grid RM systems, we in-
stead look at a more distributed exploration problem.

A large-data exploration problem can be characterized
as a reduction datapath wherein bulk data from high-speed
storage systems is reduced with parallel algorithms and fed
to a graphics system for final rendering (Figure 1). Such
datapaths are easily adapted for grid execution because they
permit streaming primitives, masking latency over high-
bandwidth networks. There are many well known tech-
niques that can be applied during the reduction stage.

We present results using our own distributed volumetric-
data browser with grid-based resources, but the utility of a
reduction datapath is not unique to the dithering and splat-
ting algorithms used in this application. Examples of com-
mon reduction methods include resolution down-sampling,
iso-surfacing, field slicing, and even parallel rendering-
in which case the final rendering might be a compositing
process. Recent work by others has improved the perfor-
mance of the popular Visualization Toolkit (VTK) [32] on
parallel hardware and adapted some algorithms for out-of-
core execution [1,271. Programmers using VTK commonly

construct multi-stage, reduction datapaths.
There are many usage scenarios for a visual reduction

datapath, benefitting from different ranges of distributed re-
sources. To name a few:

Unstructured browsing. A user can operate a CUI
and manually control datapath parameters that select
regions of data and filtering options. This technique
is most sensitive to datapath latency and performance
predictability.

Animated browsing. When one or more browsing pa-
rameters are changed in an automated or continuous
fashion, the application can predict requests to mask
path delays. This variant allows tasks to more effec-
tively pipeline and buffer operations than with unstruc-
tured browsing.

Batch processing. Movie generation and other high-
throughput problems can easily utilize distributed re-
sources with very loose synchronization.

In this article we focus on exploratory browsing. As de-
scribed in Section l , interactive examination of data is use-
ful throughout the life-cycle of large scientific projects. For
such interactive scenarios, responsiveness is important. For
large-data visualization, response time is affected by both
message latency in the datapath as well as the size of work
units.

When tools are stressed to their limits by users with large
data, the time it takes to process or render data may dom-
inate the total response time. While large work units al-
low one to minimize control overhead, a stream of smaller
work units permits more effective user interaction. Thus our
choice of browsing tasks focuses our interest in distributed
resources. We require high-bandwidth resources that can be
coupled to produce responsive work streams.

3. Important Resources

In order to distribute the components of our browsing
datapath, we need to access a variety of resources. Grid
computing environments provide scheduling and allocation
for several of these, but highly distributed visualization dat-
apaths also may need to access more specialized graphics
hardware for which there are no extant grid interfaces (Fig-
ure 2). The resources we are interested in include:

0 compute resources

0 storage systems

graphics equipment

networks and switches

417

To be accessed by applications, grid resources must be
exported through RM interfaces that support resource al-
location and configuration. In practice, grid environments
must facilitate the &covey of resources too, so that appli-
cation and users need not manually identify every remote
resource. However, we focus here on the core allocation
and configuration problem.

In this section we describe these resources and survey
existing grid RM interfaces, where available.

3.1. General-purpose processors

General-purpose processors are important to execute
data reduction tasks in the visualization pipeline. Such
desktop and parallel computers have received the most at-
tention in grid environments. There are interfaces to sched-
ule, submit and control jobs remotely with varying levels
of generality, security, and other features. Condor [3 11
provides support for high-throughput tasks, and is mostly
suited to movie-generation and other batch visualization
problems. Legion [1 I] and PBS [38] provide support for
certain types of automated job placement across multiple
resources. We have considerable experience deploying and
using resources with the Globus GRAM job-submission in-
terface; GRAM provides a single mechanism to start jobs on
a wide range of remote computer types, and permits higher-
level components to plan job placement and/or coordinate
distributed tasks [14, 10, 1.51.

3.2. Online storage systems

Random access to large data requires online storage sys-
tems. These systems are particularly interesting for inter-
active visual exploration since they allow users to browse
large amounts of data in an unstructured manner. Existing
remote interfaces to online storage systems include high-
level schedulers such as SRB [5] and HPSS [23], as well
as block-level interfaces such as DPSS [37], FTP, and NFS.
The bandwidth, latency, and request granularity of an on-
line storage interface all affect the responsiveness of appli-
cations using their services.

3.3. Graphics accelerators

Graphics rendering algorithms can often take advantage
of hardware accelerators. Parallel accelerators have been
used to render large data on SGI Onyx2 systems [28], and
the Pomegranate [161 system proposes an architecture for
scalable (clustered) acceleration. For practical resource
sharing, there is a need to mediate access to the hardware
by both local and remote users. However, we do not know
of any existing grid-level interfaces to manage graphics re-
sources.

In typical graphics server platforms, system adminis-
trators must make static decisions about how to logically

Nelwork Graphlca Display Active Storage

Figure 2. Important resources for grid-based
visualization.

partition graphics hardware [30, 341; graphics sessions are
scheduled by users approaching a console and logging in.
The length of a session is controlled by the user applications
that are launched at login time, and may continue indefi-
nitely. Commercial SGI software provides an environment
for running OpenGL tasks on an acceleration server with
a virtualized displayhnput device on a remote host within
the local organization [29]. In the following sections, we
describe the use of our own new graphics RM service.

3.4. Networks

To plan interactive visualization datapaths, we must be
able to predict communication performance between re-
sources. In addition to the discovery problem that exists for
all resources, we face the problem that the communication
network itself is a shared resource. To insulate applications
from unexpected performance variations (due to changes in
the behavior of unrelated applications), researchers have de-
veloped a concept of Quality of Service (QoS) guarantees.

Various mature network QoS allocation schemes exist,
such as IntservRSVP [9], Diffserv [8] and ATM [35], but
they do not provide secure and generic grid interfaces for
end-users. The prototype GARA advance-reservation sys-
tem provides a grid interface to underlying network man-
agers such as Diffserv, as well as other non-network re-
source managers [20]. The Condor high-throughput sched-
uler can manage network resources for its jobs but does
not interact with underlying network managers to provide
service guarantees [6]. Due to a lack of QoS interfaces in
production networks, we have been unable to benefit from
network service guarantees in our visualization experiments
thus far.

3.5. Graphics displays

In resource centers with multiple visualization users, i t is
common to find shared display devices. These displays may
be shared because they are expensive or special-purpose,
e.g. CAVE and ImmersaDesk [121 installations, or because

4 18

they are attached to expensive, shared graphics accelerators
such as are described in Section 3.3. Another common ex-
ample is video projectors in AN-equipped conference and
seminar rooms. In typical environments, such shared dis-
plays are either managed manually by site administrators or
made available on a first-come, first-served basis through
simple, local mechanisms. We address this issue in the fol-
lowing sections while describing our new graphics RM ser-
vice.

4. New Interfaces

In the course of our visualization experiments, we have
found it useful to define new RM interfaces for parallel ac-
tive storage systems and shared graphics resources.

We obtain active storage systems by combining online
storage with general-purpose processors. These systems are
capable of storing large amounts of application data in a per-
sistent or scheduleable way, while simultaneously hosting
domain-specific or application programs that can be paral-
lelized to scale with the available data size and bandwidth.
These systems are realized by clustered computers with dis-
tributed disks, or with parallel computers connected to local
or system-area storage.

The active storage model enhances the utility of large-
scale storage equipment. Our visualization datapath is not
hindered by overly-general access protocols that only per-
mit bulk transfer of raw data. By executing our reduction
algorithm at the storage system, we are able to optimize the
network-bound data for the viewing parameters selected by
the user.

Several domain-specific active storage abstractions have
been previously published, such as the ADR [26]. Such ab-
stractions do not conflict with our notion of an active storage
system; rather the software that responds to domain-specific
requests is part of the schedulable application in our model.
This simplifies resource deployment, as the operator need
only configure base RM components and policy elements
to allow multiple application groups to share the resource.

4.1. Active storage manager

We have defined a minimal grid interface for active
storage systems that consists of the Globus GRAM job-
submission interface [141 and the normal UNIX filesystem.
In the Globus RM architecture, GRAM provides resource
access but resource discovery is left to complementary ser-
vices such as the MDS information system [13, 17, 19,211,
which is an ongoing research effort. Related work on data
catalogs and storage-system directories include other ser-
vices that will simplify grid-based visualization [2]. For the
experiments described in this article, we utilized ad hoc dis-
covery and dataset management, in anticipation of improv-
ing grid information services.

419

While it had been argued that high-performance stor-
age and computational systems should export rich advance-
reservation capabilities in the grid [20], there are interim so-
lutions that allow immediate application deployment. These
alternatives enable practical work while new grid capabili-
ties are being developed. For space-sharing job submission,
we dedicate disk bandwidth implicitly as part of each pro-
cessing node; for time-sharing job submission, disk band-
width can be allocated by a locale-specific interface such
as guaranteed-rate U0 (GRIO) [33], though this admits cer-
tain scheduling deadlock risks that would be avoided with
advance reservation.

Our visual browsing application uses the DUROC co-
allocation library [151 to automate interaction with multiple
GRAM resources. On clustered storage, the application ex-
plicitly manages data and task layout. On centralized stor-
age, the host scheduler places tasks.

4.2. Graphics session manager

We have constructed a session-based grid interface to
graphics systems that combines advance reservation with
dynamic logical re-partitioning of hardware. A remote
client makes a reservation of a particular set of accelerators
for a particular period of time, and the resource manager
automatically invokes the session software at the selected
time. So far, we have identified three typical usage scenar-
ios:

1. Public terminal. The session requires password re-
authentication to prevent unauthorized use of the con-
sole.

2. Secure terminal. With grid single sign-on security, the
session can start directly if the console is physically
secured.

3. No terminal. The requested session runs with null de-
vice inputs either as a batch program or a remotely-
controlled application.

These scenarios are distinguished only by minor variations
in how the session software is initialized.

In general one might want to separately reserve an accel-
erated graphics session, a display device, and the required
video data path and then bind them together close to the ses-
sion time. However, our RM system does not address virtu-
alized displays so the managed displays are always part of
the local physical resource pool. We chose to add a “seat”
location attribute to the session management interface de-
scribed in the previous section, so the accelerator, display,
and M x N keyboard/video/mouse (KVM) switch path are all
assigned in one request.

Our session manager extends the GARA generic grid
reservation system [20] with the logic needed to control the
X Windows server tasks as well as the command-channel of
our KVM switch.

PCl

CPU CPU RAM Net
Name cnt MHz MB Mb/s
Cluster1 32 550 4096 2000 8 California;

! Texas

Disk
GB

1500

4. PC3

Cluster2
Origin

, KVMswttch

ClusteR I-Desk Console

8 550 2048 2000 1500
10 200 4096 1000 300

Figure 3. Testbed layout for reported results.

PC2
PC3

5. Experimental Testbed

2 933 384 100 d a
2 933 384 1000 nla

In this section we describe experimental resources we
have deployed in order to gain experience developing and
executing distributed visualization tasks (depicted in Fig-
ure 3 and Table 1). These resources combine existing and
new RM interfaces described above.

5.1. Active storage servers

We have experimented with multiple active storage
servers providing parallel disk-I/O and parallel processing:

10-cpu SGI Origin with 300 GB disk array.

0 32-CPU Linux cluster with 1.5 TB of disk.

8-CPU demo Linux cluster with 1.5 TB of disk.

The Origin storage is not distributed, so we operate a single
GRAM gatekeeper that allows the submission of parallel
jobs. For the Linux clusters, we operate a GRAM gate-
keeper on each node so that our applications can place tasks
however desired (see example request in Figure 4). While
the 16-node cluster is a permanent installation in our lab,
the 8-node cluster was a demo machine operated on the
show-floor at the SC2000 conference (Dallas, TX, Novem-
ber 2000).

Because of cooperative policies in our testbed, there is
little competition and we obtain essentially dedicated ac-
cess to the SMP and cluster-based active storage with just
immediate-access time-sharing managers. We are partici-
pating in the configuration of a much larger cluster that will
serve as a testbed for shared access with new grid-based
QoS and advance reservation services.

Table 1. Hardware properties of testbed re-
sources.

+ (& (manager=nodel)

(& (manager=node2)
(executable=filterprog))

(executable=filterprog))
. . .
(&(manager=nodeN)

(executable=filterprog))

Figure 4. Active storage request to a small
cluster.

5.2. Graphics resources

We operate multiple RealityEngine2 accelerator boards
in our SGI Origin storage system. Connected to our SGI
(via a KVM switch) is an ImmersaDesk virtual-reality dis-
play and a wide-screen desktop console. In addition, we
operate multiple commodity personal-computers with re-
cent consumer-level NVIDIA graphics accelerators. The
SGI and several PCs have gigabit-Ethemet network inter-
faces, while one PC has an older lOObaseT Ethernet inter-
face. These resource serve to represent typical visualization
facilities.

Our session manager environment allows users to re-
serve one or more SGI boards for an X Window session.
They also must reserve the desktop or ImmersaDesk seat,
or run without a console for off-screen rendering tasks (see
example request in Figure 5). The implementation is con-
figured with a table of local resources that are subject to
management by the service. A "slot manager" keeps track

&(manager=onyx2)
(pipecount=2)
(sessiontype=public)
(sea t=ides k)
(starttime="13:00 PST")
(duration= " 2 : 0 0 ")

Figure 5. Graphics session request for a local
console.

420

of what resources are assigned over future time intervals.
As the current time approaches the beginning of an allo-
cated slot, session construction is triggered. Conversely, as
the current time approaches the end of the allocated slot,
session destruction is triggered.

Session construction involves configuring the KVM
switch and starting the session software. The KVM switch
is automated via a serial management port. Session destruc-
tion involves resetting the KVM switch and killing the ses-
sion software to bring hardware back to an idle state.

Data
Sink
PCI

PC2

PC3

Origin

6. Application Experience

Data High Low Norm.
Source Mbls Mb/s Range

Clusterl 170 110 35%
Origin 125 90 28%

Clusterl 96 60 38%
Origin 40 12 39%

Clusterl 240 90 63%
Cluster2 320 200 38%
Clusterl 190 120 37%

For experiments, we have constructed an interactive
browser for volumetric time-series data. The application
uses a reduction path as discussed in Section 2, search-
ing the data fields on the active storage system to generate
sparse geometry representing the regions of the field match-
ing a user-specified range of value.

Our application automates acquisition of the storage re-
source, and the user acquires the interactive graphics re-
source in order to launch the application CUI. The user
either reserves the graphics resource in advance using our
GARA service or logs into a regular X server console, de-
pending on whether it is our managed Origin or a PC.

6.1. Transport measurement

Our application provides a fully buffered, streaming dat-
apath. The local rendering can run faster than the data trans-
fer rate, allowing motion-study of one dataset while another
is being received. Buffered data is nearly always saturat-
ing the graphics hardware independent of datapath perfor-
mance. Transfer rate is a better measure of datapath perfor-
mance, though it is capped by graphics hardware capabil-
ity (Tables 2 and 3).

The application GUI allows the user to tune filtering pa-
rameters for the desired trade-off of visual complexity for
transfer or rendering frame-rate, and in practice it adapts
well over burst (5-second average) transfer rates in the range
50 Mbitsls to around 320 Mbitsls, where our current graph-
ics resources become saturated.

6.2. Desktop performance

The application is useful while consuming l00baseT
desktop bandwidth (50-90 Mbls) in both LAN and WAN
datapaths. Operation at this level can utilize a wide range of
graphics and active storage resources, and due to a parallel

‘Our path synchronization causes a partial phase lock between the
transfer and render rates, relaxed by variable-depth buffering and ability to
render multiple times per transfer. For fixed data sizes, this causes multi-
modal rate distributions as the application “searches” for the best transfer
rate and integer renderltransfer multiplier.

Data High Low Norm.
Sink Source Mbls Mb/s Range

Origin Clusterl 250 17%

Table 3. Observed datapath throughput with-
out rendering limit.

transport architecture it can often achieve good bandwidth,
without network QoS guarantees and despite competition in
the LAN and WAN. Such application instances benefit most
from the flexibility of grid access to commodity storage and
graphics resources.

6.3. High performance

The application sometimes saturates our graphics re-
sources when it is connected to gigabit-class networks. In
our SC2000 demo environment, the local show-floor cluster
provided more predictable (and slightly faster) performance
when we had dedicated access, but when we could not get
dedicated access we were able to fall back on remote clus-
ters. Our remote cluster in California sometimes achieved
75% of the dedicated, local cluster performance despite
traversing multiple networks with best-effort service (Table
2). However, wide-area performance varied widely during
the day. Simulating an increase in graphics hardware per-
formance that shifts the path bottleneck, we are confident
the application can utilize close to 400 Mbit/s (Table 3). *

7. Conclusion

Visual exploration of large data can benefit from grid-
based resource environments. Grid interfaces give applica-
tions access to redundant resources, improving availability

*We simulate this increase by disabling the “draw” calls in the appli-
cation loop, but continuing to perform the normal data buffering. We have
not yet tried to tune TCP/IP or Ethernet for gigabit performance since ren-
dering remains our primary bottleneck.

42 1

in the face of contention and failure. Applications can ex-
ploit these same interfaces to obtain higher aggregate re-
source capabilities, e.g. larger storage spaces, higher YO
bandwidths, and higher computational throughput. We have
illustrated a simple visual reduction paradigm that, paired
with any of a number of existing visualization techniques,
can adaptively utilize distributed resource environments.

In addition to typical grid services, we have identified
graphics accelerators and application-extended active stor-
age as important resources deserving of grid RM interfaces.
We have presented a unique grid-based advance reservation
capability for high-end graphics accelerators that can both
simplify usage of localized resource-sharing environments
and assist in planning of distributed visualization runs. Ex-
perimentation with a grid-based visual browsing application
validates the use of standard RM interfaces for active stor-
age systems. We have found it practical to build resilient
visualization environments by replicating data on multiple
remote storage systems and utilizing replicas when the pri-
mary choice is unavailable.

While parallel transfer methods achieve acceptable per-
formance for typical desktop systems in best-effort net-
working environments, we have seen that the lack of grid-
level network QoS guarantees hinders the end-to-end man-
agement of high-performance WAN datapaths. Best-effort
performance over gigabit-class WANs is not predictable on
a level comparable to that of the storage and graphics re-
sources available for distributed applications, reducing the
accuracy of distributed datapath prediction and planning.

Acknowledgements

We appreciate many helpful discussions with colleagues
from the Globus Project and the larger Grid community. In
particular we thank Alain Roy for guidance regarding the
GARA code-base, upon which part of this work is based.

This effort is sponsored by the Lawrence Livermore Na-
tional Laboratory and the U.S. Government, under subcon-
tract B505215. The U.S. Government is authorized to re-
produce and distribute reprints for Government purposes
notwithstanding any copyright annotation thereon.

References

[I] J . Ahrens, C. Law, W. Schroeder, K. Martin, and M. Papka.
A parallel approach for efficiently visualizing extremely
large, time-varying datasets. Technical Report LAUR-OO-
1630, Los Alarnos National Laboratory, 2000.

[2] B. Allcock, J. Bester, J. Bresnahan, A. L. Chervenak, I. Fos-
ter, C. Kesselman, S. Meder, V. Nefedova, D. Quesnel, and
S . Tuecke. Secure, efficient data transport and replica man-
agement for high-performance data-intensive computing. In
IEEE Mass Storage Conference, April 2001. (to appear).

[3] B. Allcock, I. Foster, V. Nefedova, A. Chervenak, E. Deel-
man, C. Kesselrnan, A. Sim, A. Shoshani, B. Drach, and

D. Williams. High-performance remote access to climate
simulation data: A challenge problem for data grid technolo-
gies. Submitted for publication, 2001.

[4] G. Allen, W. Benger, T. Goodale, H.-C. Hege, G. Lanfer-
mann, A. Merzky, T. Radke, E. Seidel, and J. Shalf. The
Cactus code: A problem solving environment for the grid.
In Proc. 9th IEEE Symp. on High Performance Distributed
Computing, 2000.

[5] C. Baru, R. Moore, A. Rajasekar, and M. Wan. The SDSC
storage resource broker. In Proc. CASCON'98 Conference,
Toronto, Canada, November 1998.

[6] J. Basney and M. Livny. Managing network resources in
Condor. In Proc. 9th IEEE Symp. on High Performance Dis-
tributed Computing, 2000.

[7] J. I. Beiriger, H. P. Biven, S. L. Humphreys, W. R. Johnson,
and R. E. Rhea. Constructing the ASCI computational grid.
In Proc. 9th IEEE Symp. on High Performance Distributed
Computing, pages 193-199,2OOO.

[8] D. Black, S. Blake, M. Carlson, E. Davies, and Z. Wang. An
architecture for differentiated services. Intemet RFC 2475,
December 1998.

[9] R. Braden, L. Zhang, S. Berson, S. Herzog, and S. Jamin.
Resource reservation protocol (RSVP) version 1 functional
specification. Intemet RFC 2205, September 1997.

101 S. Brunett, K. Czajkowski, S. Fitzgerald, I. Foster, A. John-
son, C. Kesselman, J. Leigh, and S. Tbecke. Application
experiences with the Globus toolkit. In HPDC7, pages 81-
89, 1998.

1 I] S. Chapin, J . Karpovich, and A. Grimshaw. The Legion re-
source management system. In The 5th Workshop on Job
Scheduling Strategies for Parallel Processing, 1999.

121 C. Cruz-Neira, D. Sandin, and T. DeFanti. Surround-screen
projection-based virtual reality: The design and implemen-
tation of the CAVE. In Proceedings of SIGGRAPH '93,
pages 135-142, August 1993.

[13] K. Czajkowski, S. Fitzgerald, I. Foster, and C. Kesselman.
Grid information services for distributed resource sharing.
In Proc. 10th IEEE Symp. on High Performance Distributed
Computing, (to appear) 2001.

[141 K. Czajkowski, I. Foster, N. Karonis, C. Kesselman, S. Mar-
tin, W. Smith, and S . Tuecke. A resource management ar-
chitecture for metacomputing systems. In The 4th Workshop
on Job Scheduling Strategies for Parallel Processing, pages

151 K. Czajkowski, 1. Foster, and C. Kesselman. CO-allocation
services for computational grids. In Proc. 8th IEEE Symp.
on High Performance Distributed Computing, 1999.

161 M. Eldridge, H. Igehy, and P. Hanrahan. Pomegranate: A
fully scalable graphics architecture. In Proceedings of SIG-
GRAPH 2000, pages 443-454, July 2000.

171 S. Fitzgerald, I. Foster, C. Kesselman, G. von Laszewski,
W. Smith, and S. Tuecke. A directory service for config-
uring high-performance distributed computations. In Proc.
6th IEEE Symp. on High Performance Distributed Comput-
ing, pages 365-375, 1997.

181 I. Foster, J. Insley, G. von Laszewski, C. Kesselman, and
M. Thiebaux. Distance visualization: Data exploration on
the Grid. Computer, 32(12):36-43, December 1999.

[I91 I. Foster and C. Kesselman. Globus: A metacomputing in-
frastructure toolkit. Intl. Journal of Supercomputing Appli-
cations, 11(2):115-128, 1997.

62-82, 1998.

422

[20] I. Foster, C. Kesselman, C. Lee, R. Lindell, K. Nahrstedt,
and A. Roy. A distributed resource management architec-
ture that supports advance reservations and co-allocation.
In Proceedings of the International Workshop on Quality of
Service, 1999.

[21] 1. Foster, C. Kesselman, and S. Tuecke. The anatomy of
the Grid: Enabling scalable virtual organizations. Intl. SIAM, 1999.
Journal of Supercomputing Applications, (to appear) 2001.
http://www.globus.org/research/papers/anatomy.pdf.

[22] Grid physics network. Intemet document, 2001.
http://www.griphyn.org.

[23] Basics of the high performance storage system. Intemet doc-
ument. http://www.sdsc.edu/projects/HPSS.

[24] G . Johnson and J. Genetti. Volume rendering of large
datasets on the Cray T3D. In Cray User Group: 1996 Spring
Proceedings, pages 155-1 59, 1996.

[25] W. E. Johnson, D. Gannon, and B. Nitzberg. Grids as pro-
duction computing environments: The engineering aspects
of NASA's Information Power Grid. In Proc. 8th IEEE
Symp. on High Performance Distributed Computing, pages

[26] T. Kurc, Umit Catalyiirek, C. Chang, A. Sussman, and
J . Salz. Exploration and visualization of very large datasets
with the Active Data Repository. Technical Report CS-TR-
4208, University of Maryland, 2001.

[27] C. Law, W. Schroeder, K. Martin, and J. Temkin. A multi-
threaded streaming pipeline architecture for large structured
data sets. In Proceedings of IEEE Visualization '99, 1999.

[28] P. McCormick, J. Qiang, and R. Ryne. Visualizing high-
resolution accelerator physics. IEEE Computer Graphics
andAppfications, 19(5):11-13, Sep/Oct 1999.

[29] C. Ohazama. OpenGL vizserver. Internet white paper, 2000.
http://www.sgi.com/software/vizserver/.

[30j K. Packard. X Display Manager. MIT X Consortium, 2000.
Online manual page.

[31] R. Raman, M. Livny, and M. Solomon. Resource manage-
ment through multilateral matchmaking. In Proc. 9th IEEE
Symp. on High Performance Distributed Computing, 2000.

[32] W. Schroeder, K. Martin, and W. Lorensen. The Visualiza-
tion Toolkit: An Object Oriented Approach to 3 0 Graphics.
Prentice Hall, 1996.

[33] Silicon Graphics, Inc. Guaranteed-rate I/O. Online manual
Page.

[34] Silicon Graphics, Inc. X Window System server for Silicon
Graphics Workstations, 1998. Online manual page.

[35] S. Siu and R. Jain. A brief overview of ATM: Proto-
col layers, LAN emulation and traffic management. Com-
puter Communications Review (ACM SIGCOMM), 25(2):6-
28, April 1995.

[36] P. H. Smith and J . V. Rosendale, editors. Data and fisu-
alization Corridors, Report on rhe 1998 DVC Workshop Se-
ries. California Institute of Technology Center for Advanced
Computing Research, September 1998.

[37] B. Tiemey, J. Lee, B. Crowley, M. Holding, J. Hylton, and
F. Drake. A network-aware distributed storage cache for data
intensive environments. In Proc. 8th IEEE Symp. on High
Performance Distributed Computing, 1999.

1381 Portable batch system. Internet document, August 2000.
http://pbs.mrj.com.

[39] G. von Laszewski, I. Foster, J. A. Insley, J. Bresnahan,
C. Kesselman, M. Su, M. Thiebaux, M. L. Rivers, I. Mc-
Nulty, B. Tieman, and S. Wang. Real-time analysis, visu-
alization, and steering of microtomography experiments at
photon sources. In Proceedings of the Ninth SIAM Con-
ference on Parallel Processing for Scientific Computing.

197-204, 1999.

423

http://www.globus.org/research/papers/anatomy.pdf
http://www.griphyn.org
http://www.sdsc.edu/projects/HPSS
http://www.sgi.com/software/vizserver
http://pbs.mrj.com

